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Abstract: In this paper we study the code design problem of a new form of linear frequency modula-
tion phase-coded (LFM-PC) hybrid signal with wide Doppler tolerance based on a range-Doppler
discrete ambiguity function (DAF) to get better detection performance and anti-jamming capability.
The DAF of the LFM-PC inter pulse signal is derived within the Doppler tolerance. Two optimization
models are established. One is single pulse sequence design (SSD) for Doppler tolerance extension
based on minimum integral normalized sidelobe level (INSL); the other is multi pulse sequence set
design (MSSD) for signal orthogonality based on the minimizing sum of the normalized DAF sidelobe
(NDAFSL) and discrete cross ambiguity function (DCAF). Two low-complexity signal optimization
methods based on alternating direction method of multiplier (ADMM) are proposed, respectively.
The simulation results show that the optimized signals have either wide Doppler tolerance or good
orthogonal performance, and the optimization methods (i.e., SSD-ADMM and MSSD-ADMM) have
the characteristics of fast convergence speed and low operation amount.

Keywords: hybrid modulated signal; ambiguity function; Doppler tolerance; signal optimization
design; alternating direction method of multipliers

1. Introduction

In the last decade, high-speed processors have enabled radar systems to take full
advantages of received signals to obtain sensible performance improvements in their
detection and anti-jamming capability [1]. Meanwhile, modern multifunction phased array
radar systems equipped with digital arbitrary waveform generators give the ability to
generate high-accuracy, sophisticated, time-varying radar waveforms to achieve good anti-
jamming performance and sensing objectives, such as improved detection performance
with ideal ambiguity function (AF) shape [2,3]. As a consequence, in radar engineering,
it has become crucial to optimize the transmitted waveform on a pulse-by-pulse basis to
meet performance requirements, in terms of high detection possibility with good Doppler
tolerance and low intercept probability with good orthogonal performance.

Linear frequency modulated (LFM) signal is well-known for its excellent charac-
teristics, such as constant-envelope, easy generation, and good Doppler tolerance [4,5].
However, those anti-jamming methods based on LFM signal have poor performance, due
to its simple and fixed form. Phase-coded (PC) signal (e.g., constant modulus sequence
set) is another widely used waveform in several areas, for its high resolution and ranging
accuracy. However, on account of its Doppler sensitivity, PC signal is usually restricted
to detecting targets whose velocity ranges are a priori known. Taking into account the
advantages of LFM and PC signals, we obtain the LFM-PC hybrid modulation signal. As a
result, Doppler tolerance is extended, compared with a PC signal, and the complexity of
the signal form is greatly increased to achieve better anti-jamming ability in radar systems.
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It must be pointed out that the traditional LFM-PC signal is linear-frequency mod-
ulated within the pulse and coded by the sequence set between the pulses. In order to
obtain better anti-jamming ability and wider Doppler tolerance, we investigate a new
form of LFM-PC signal that is modulated by linear frequency and sequence set simulta-
neously within the pulse. Furthermore, considering the quantification of the digital to
analog converter (DAC) of the radar waveform generator, we should optimize the constant
modulus sequence set with a discrete phase constraint. In this paper, we pay attention to
the unimodular sequence design of coherent waveform-agile radar on a predefined area of
range-Doppler discrete ambiguity function (DAF) within the Doppler tolerance. In order
to obtain better detection and orthogonal performance, the research was carried out in
two scenarios; the first was a single pulse sequence design based on minimum INSL; the
second was a multi pulse sequence set design based on minimizing the sum of NDAFSL
and DCAF.

Over the last few decades, extensive research has investigated transmit waveform
design in the radar research area. The optimal radar waveform is synthesized based on
different performance objectives. Some studies have focused on shaping the AF of ag-
ile waveforms in sensing. In the works [6–13], the dynamic selection of waveforms for
target tracking was considered, and the optimal waveform parameters were derived for
tracking target motion using a linear/nonlinear observations model with detection in a
clutter/clutter-free environment. In [14], a kind of efficient gradient method was proposed
for designing AFs for multistatic primary surveillance radar systems. Kerahroodi [15,16]
applied the coordinates down (CD) to the optimization design of a PC signal. Agile wave-
form can also be designed from the viewpoint of orthogonality. Orthogonal waveforms are
widely used in multiple input multiple output (MIMO) radar systems [17] and anti-spoof
jamming technology [18]. In the literature [19], the orthogonal waveform of MIMO radar
is designed by constrained nonlinear programming based on the optimization criteria of
minimizing the peak correlation sidelobe. Khan [20] and Huang [21] et al. considered the
influence of Doppler frequency when designing orthogonal waveforms. Majumder [22]
proposed to use Walsh orthogonal code to realize intra pulse phase-coded modulation. Wu
Yue [23] used a LFM-PC signal to design an orthogonal waveform based on autocorrelation
and cross-correlation AF. In [24,25], a CA-New (CAN) algorithm and a multi-CAN algo-
rithm were proposed for peak sidelobe level (PSL) minimization and orthogonal waveform
optimizing, respectively.

In the aforementioned works, the sequences designed by the methods mentioned
above are arbitrary phase-coded signals. If we simply set the continuous phases to their
closest discrete phase, the sequence performance will deteriorate drastically. To generate
a sequence with a discrete phase set, many methods have been proposed and can be di-
vided into two categories: the first is to use existing codes, such as Barker code or M code;
the second is to use an intelligent search method to find the desired sequence. Genetic
algorithm (GA) [26,27] is a search heuristic that is inspired by Charles Darwin’s theory of
natural evolution. In [28], a general and complicated problem of discrete-phase sequence
design has already been addressed, and a GA approach is exploited for minimizing ISL
in code sequence design. Discrete-phase sequence design with GA has also been suc-
cessfully applied for orthogonal frequency division multiplexing (OFDM) radar [29] and
MIMO radars [30]. In this paper, the performance of a GA approach is compared with the
proposed algorithms.

The alternating direction method of multipliers (ADMM) [31] is also a search algorithm
that solves convex optimization problems by breaking them into smaller pieces, each of
which are then easier to handle. It has recently found wide application in a number of areas.
In [32], Boyd showed that the ADMM is well suited to large-scale convex optimization
problems. Liang successfully used the ADMM method to design a unimodular sequence
with low autocorrelation sidelobes [33] by solving a quadratic optimization problem with
constraints. ADMM has also been successfully applied for radar in spectrally crowded
environments [34] and MIMO radars [35,36]. Considering the high dimension in LFM-PC
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sequence set design problem and the decomposability and superior convergence properties
of ADMM, we designed SSD-ADMM and MSSD-ADMM methods to solve this problem.

In this article, we propose an ADMM algorithm to design a discrete phase-coded
sequence set on range-Doppler plane within Doppler tolerance. The rest of this work is
organized as follows. Section 2 discusses the mathematical model and derives the DAF of
LFM-PC signal. Section 3 proposes two optimization methods for optimizing the shape of
DAF based on ADMM, i.e., SSD-ADMM and MSSD-ADMM. Section 4 demonstrates the
proposed algorithms by extensive simulation experiments. Finally, concluding remarks
and directions for future research are presented in Section 5.

2. LFM-PC Signal Model

In the following paragraphs the boldface upper case letters denote matrices; boldface
lower case letters denote column vectors, and italics denote scalars. C denotes the complex
field, and Z denotes the integer field. The superscripts (.)T , (.)∗, and (.)H denote transpose,
complex conjugate, and conjugate transpose, respectively. ⊗ denotes the Kronecker product
of matrices. arg( .) denotes the argument of a complex number. argmax( .) and argmin( .)
stand for the argument of the maximum and minimum, respectively. diag( . ) denotes
the diagonal matrix formed by the entries, and ‖.‖ indicates the Frobenius norm, < ., . >
denotes inner product.

We assume a waveform agile radar transmits a coherent burst of M slow-time pulses.
The baseband transmit signal can be formulated as the following general form:

u(t) =
M−1

∑
i=0

ui(t− iTR) (1)

where ui(t) is the complex envelope of the ith transmit pulse, and TR is the pulse repetition
interval (PRI). We assume that T is the pulse duration and that TR is much larger than T.

The complex envelope of the ith LFM-PC transmit pulse ui(t) is expressed as [4]:

ui(t) = ejπut2 N−1
∑

n=0
ci(n)pn(t), 0 ≤ t ≤ T (2)

where u is the slope of frequency modulation; N is the sub-pulse length; ci(n) is the
modulating code sequence of ith pulse, and pn(t) is an ideal rectangular shaping pulse of
time length TP, in which TP = T

N stands for the code element width.
Let, ci = [ci(0), ci(1), · · · , ci(N − 1)]T denote the modulating code sequence of the ith

transmit subpulse, and code element ci(n) is modulated by discrete phase and expressed as

ci(n) = ej2π
ki(n)

K , n = 0, 1 · · ·N − 1, ki(n) ∈ [0, 1, · · ·K− 1] (3)

where K denotes the number of discrete phases.
According to the literature [37], the AFs of the ith subpulse is expressed as:

χi(τ, f ) =
∫ ∞

−∞
ui(t)u∗i (t + τ)ej2π f tdt (4)

where τ is the time delay, and f denotes the Doppler frequency shift. Substituting (2) into
the definition of ambiguity function in (4), we can obtain:

χi(τ, f ) = e−jπuτ2
N−1

∑
n=0

N−1

∑
m=0

ci(n)c∗i (m)
∫ ∞

−∞
pn(t)pm(t + τ)ej2π( f−uτ)tdt (5)

In order to derivate the discrete ambiguity function (DAF) of the ith transmit pulse, we
suppose that there are NS sampling points within each code element and that the sampling
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period is TS = TP
NS

; the total number of sampling points in a pulse is N′ = N · NS. The
signal in (2) can be rewritten as:

ui(t) = ejπut2 N′−1
∑

n=0
c′ i(n)p′n(t), 0 ≤ t ≤ T (6)

where ci
′ = [ci

′(0), ci
′(1), · · · , ci

′(N′ − 1)]T = ci ⊗ 1Ns, 1Ns = [1, 1, 1...1]T represents the
ith code sequence after sampling; p′n(t) indicates ideal rectangular pulse with the width
TS. Thus, AF in (5) can be rewritten as:

χi(τ, f ) = e−jπuτ2
N′−1

∑
n=0

N′−1

∑
m=0

c′ i(n)c′
∗
i (m)

∫ ∞

−∞
p′n(t)p′m(t + τ)ej2π( f−uτ)tdt (7)

We set τ = kTS, −(N′ − 1) ≤ k ≤ N′ − 1 to discretize the delay time axis, and
we also set f = upTS, −(N′ − 1) ≤ p ≤ N′ − 1 to discretize the Doppler shift axis
and obtain:

χi(kTS, upTS) = ejπuT2
S (p−k−k2)sinc

[
uT2

S(p− k)
]N′−1

∑
n=0

c′ i(n)c′
∗
i (n + k)ej2nπuT2

S (p−k) (8)

We write χi(kTS, upTS) as χi(k, p) for short, and define:

ςk,p = ejπuT2
S (p−k−k2)sinc

[
uT2

S(p− k)
]

(9)

Dk,p = diag
(

1, ej2πuT2
S (p−k), · · · , ej2(N′−1)πuT2

S (p−k)
)

(10)

Jk =

(
0k×(N′−k) 0k×k

IN′−k 0(N′−k)×k

)
N′×N′

(11)

H(k, p) = ςk,pJkDk,p (12)

Then the DAF of LFM-PC signal can be abbreviated as:

χi(k, p) = c′Hi H(k, p)c′ i (13)

The above range-Doppler DAF defined on discrete range and Doppler plane is widely
used in the designing of radar waveforms. Since the shape of DAF is related to the
modulation sequence codes, ci

′, then we can shape the DAF by optimizing ci
′ within

the Doppler tolerance on discrete range and Doppler plane to satisfy the requirement in
sensing objectives.

3. Optimization Process

The ADMM algorithm is a computational framework for solving optimization prob-
lems, which is suitable for solving convex optimization problems with distributed structure.
ADMM decomposes a large global problem into several smaller, easier to solve local sub-
problems by decomposing the coordination process and obtains the solution of the large
global problem through the solution of the coordination subproblem.

The expression of ADMM for solving problems is expressed as [31]:

min f (x) + g(z)
s.t. Ax + Bz = c ,

(14)

It is transformed to an augmented Lagrangian function:

Lρ(x, z, λ) = f (x) + g(z) + λT(Ax + Bz−c) +
ρ

2
‖Ax + Bz−c‖2

2, (15)



Sensors 2021, 21, 5227 5 of 18

where ρ is the penalty coefficient.
Set u = λ/ρ, then the solution steps can be expressed as follows [38]:

x(t+1) = argmin
x

(
f (x) +

ρ

2

∥∥∥Ax + Bz(t) − c + u(t)
∥∥∥2
)

, (16)

z(t+1) = argmin
z

(
g(z) +

ρ

2

∥∥∥Ax(t+1) + Bz− c + u(t)
∥∥∥2
)

, (17)

u(t+1) = u(t) + Ax(t+1) + Bz(t+1) − c. (18)

3.1. Single Pulse Sequence Design
3.1.1. Optimization Model

In single pulse sequence design, the DAF of LFM-PC signal in (13) can be simplified as:

χ(k, p) = c′HH(k, p)c′ (19)

The amplitude of the main peak of DAF can be expressed as:

|χ(k0, p)| =
∣∣∣c′HH(k0, p)c′

∣∣∣ = argmax
k

∣∣∣c′HH(k, p)c′
∣∣∣, (20)

where −(NS − 1) ≤ p ≤ (NS − 1); when Doppler shift p is given,
∣∣χ(k0, p)

∣∣ is a fixed
value. According to the properties of AF, the maximum of

∣∣χ(k0, p)
∣∣ is at |χ(0, 0)|. When

p 6= 0,
∣∣χ(k0, p)

∣∣ declines due to Doppler mismatch, the Doppler tolerance is defined as an
area of the range-Doppler plane in which

∣∣χ(k0, p)
∣∣ decreases by no more than 3 dB, then

the normalized discrete ambiguity function (NDAF) within the Doppler tolerance can be
expressed as:

|χ(k, p)| = c′HH(k,p)c′

|c′HH(k0,p)c′ | , −(N′ − 1) ≤ k ≤ (N′ − 1),−NDT ≤ p ≤ NDT , (21)

where NDT < (NS − 1) indicates the boundary of Doppler frequency corresponding to
Doppler tolerance.

Define the optimization area of NDAF on discrete range and Doppler plane as:

Ψ =
[
(k, p)

∣∣NS ≤ |k| ≤ N′ − 1, 0 ≤ |p| ≤ NDT
]

(22)

and the integral normalized sidelobe level (INSL) of this area can be expressed as:

INSL = ∑
k,p∈Ψ

∣∣∣c′HH(k, p)c′
∣∣∣2∣∣∣c′HH

(
k0, p

)
c′
∣∣∣2 (23)

In order to improve the detection performance of radar in the case of Doppler detuning,
the INSL of optimization area need to be minimized, and the optimization problem can be
expressed as:

PINSL : min
c

∑
k,p∈Ψ

∣∣∣c′HH(k,p)c′
∣∣∣2

|c′HH(k0,p)c′ |2

s.t. cn = ej2π kn
K , n = 0, 1, · · · , N − 1, kn ∈ [0, 1, . . . K− 1].

(24)
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3.1.2. SSD-ADMM Optimization Method

We applying an ADMM framework to problem (24) by introducing the auxiliary
variable z and constraint c = z, and obtain:

PINSL−ADMM : min
c

∑
k,p∈Ψ

∣∣∣c′HH(k,p)c′
∣∣∣2

|c′HH(k0,p)c′ |2
+ zHz

s.t. c = z
zn = ej2π kn

K , n = 0, 1, · · · , N − 1, kn ∈ [0, 1, . . . K− 1].

(25)

Equation (24) is equivalent to (25), since zHz is a constant term under the above
constraints. According to (15) and (25), and let u = (λr + jλi)/ρ, so the augmented
Lagrange equation is devised as:

Lρ(c, z, u) = ∑
k,p∈Ψ

∣∣∣c′HH(k, p)c′
∣∣∣2∣∣∣c′HH

(
k0, p

)
c′
∣∣∣2 + zHz +

ρ

2
‖c− z + u‖2 − ρ

2
‖u‖2 (26)

where λr, λi, and ρ are Lagrange coefficients.
Let c(t) indicate the value of c after ADMM iterating t times (z and u correspond,

represented as z(t), u(t)). Given the initial value c(0), z(0), u(0), then the solution of the
problem can be carried out according to the following steps:

(1) Update c. Suppose z(t), u(t) as known quantities:

c(t+1) = argmin
c

 ∑
k,p∈Ψ

∣∣∣c′HH(k, p)c′
∣∣∣2∣∣∣c′HH

(
k0, p

)
c′
∣∣∣2 +

ρ

2

∥∥∥c− z(t) + u(t)
∥∥∥2

. (27)

To solve this problem, we need to transform (27) from the complex form to a real form
Let, c̃′ =

[
Re(c′T) Im(c′T)

]T , z̃ =
[

Re(zT) Im(zT)
]T , c̃ =

[
Re(cT) Im(cT)

]T ,

ũ =
[

Re(ũT) Im(ũT)
]T

and A =

[
Re(H) −Im(H)
Im(H) Re(H)

]
, B =

[
Im(H) Re(H)
−Re(H) Im(H)

]
,

then we can convert (27) to

c̃(t+1) = argmin
c̃

{
∑

k,p∈Ψ

(c̃′TA(k, p)c̃′)2
+ (c̃′TB(k, p)c̃′)2

(c̃′TA(k0, p)c̃′)2
+ (c̃′TB(k0, p)c̃′)2 +

ρ

2

∥∥∥c̃− z̃(t) + ũ(t)
∥∥∥2
}

. (28)

This problem is an unconstrained optimization problem, which can be solved with
the quasi-Newton method [39]. In the following steps, we need to convert the real vector
c̃(t+1) back to the complex vector c(t+1).

(2) Update z. Suppose c(t+1), u(t) as known quantities:

z(t+1) = argmin
z

zHz +
∥∥∥c(t+1) − z + u(t)

∥∥∥2

s.t. zn = ej2π kn
K , n = 0, 1, · · · , N − 1, kn ∈ [0, 1, · · ·K− 1].

(29)

By omitting the constant terms, the above problem is converted to

z(t+1) = argmax
z

Re[(c(t+1) + u(t))
H

z]

s.t. zn = ej2π kn
K , n = 0, 1, · · · , N − 1, kn ∈ [0, 1, · · ·K− 1].

(30)

The elements z are independent of each other; therefore, they can be decomposed into
N subproblems.
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If taking c(t+1)
n + u(t)

n , z(t)n as vectors in the complex plane and ignoring the constant
part, then we can obtain:

z(t+1)
n = argmax

k
cos
〈

c(t+1)
n + u(t)

n , z(t)n

〉
s.t. zn = ej2π

kn
K , kn ∈ [0, 1, · · ·K− 1].

(31)

It is equivalent to find the integer kn(0 ≤ kn < K), which make the angle between the
vectors zn = ej2πkn/K and c(t+1)

n + u(t)
n minimum.

The solution z(t+1)
n is as follows:

z(t+1)
n = exp

j2π

⌊
K · arg

(
cn

(t+1) + un
(t)
)

/2π + 1
2

⌋
K

. (32)

(3) Update u.
u(t+1) = u(t) + c(t+1) − z(t+1). (33)

Therefore, the procedures of SSD -ADMM algorithm are as follows. Firstly, initialize
variables c(0), z(0), u(0). Secondly, repeat steps (1) to (3), until the iteration stop condition is
satisfied (the number of iterations reaches the upper limit or

∣∣∣INSL(t+1) − INSL(t)
∣∣∣ ≤ ε. ε

is a smaller positive number as the convergence threshold). Thirdly, stop the iteration. The
steps of solving the optimization model by SSD -ADMM are given in Table 1.

Table 1. SSD-ADMM steps.

SSD-ADMM

(a) Set t as the times of iterations, initialize t = 0 and given the initial value c(0), z(0), u(0);
calculate k0 for each p;

(b) Use the quasi Newton method to solve the problem

c(t+1) = argmin
c

{
∑

k,p∈Ψ

∣∣∣c′HH(k,p)c′
∣∣∣2

|c′HH(k0,p)c′|2
+

ρ
2

∥∥∥c− z(t) + u(t)
∥∥∥2
}

.

(c) for n = 0 : N − 1

z(t+1)
n = exp

(
j2π
bK·arg(cn

(t+1)+un
(t))/2π+ 1

2 c
K

)
. end;

(d) u(t+1) = u(t) + c(t+1) − z(t+1);

(e) t← t + 1 ;

(f) If the convergence condition is satisfied, the algorithm is completed, otherwise it returns
to (b)

3.2. Multi Pulse Sequence Set Design
3.2.1. Optimization Model

In multi pulse sequence set design, orthogonality is required for the transmit pulses to
get better anti-jamming capability. Orthogonal performance can be measured by the cross
ambiguity function (CAF), which is defined as:

χij(τ, f ) =
∫ ∞

−∞
ui(t)u∗j (t + τ)ej2π f tdt (34)
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where ui(t) and uj(t) is the ith and jth transmit pulse, respectively. Accordingly, the discrete
form of the CAF (DCAF) can be easily obtained as:

χij(k, p) = c′Hj H(k, p)c′ i (35)

According to the orthogonal waveform design criteria, both the sidelobe of AF and
CAF of the inter-pulse signals should be close to zero. Meanwhile, in order to improve the
detection performance of the signal in the case of Doppler detuning, the optimization of
DAF is also taken into account. Note that the definition of NDAF in (21) is not applicable
for multi pulse design; we redefine the NDAF by an approximate formula of main peak
of DAF.

In order to derive the amplitude of the main peak of DAF, we set f = uτ(τ > 0), and
assuming that |χi(τ, f )| is close to the main peak when the time delay τ is small enough,
then (5) can be approximately transformed into a concise expression as:

argmax
τ
|χi(τ, f )| ≈

N−1
∑

n=0
ci(n)c∗i (n)

∫ ∞
−∞ pn(t)pn(t + τ)dt

=
N−1
∑

n=0
ci(n)c∗i (n)

∫ (n+1)TP−τ
nTP

dt

= N(TP − τ)

(36)

Considering f = upTS, Tp = TSNs, the above equation of the main peak can also be
transformed into discrete form as:

|χi(k0, p)| ≈ NTs(Ns − |p|)− (NS − 1) ≤ p ≤ (NS − 1) (37)

According to (5) and (37), the expression of NDAF can be derived as:

χi(k, p) = c′Hi H(k, p)c′ i, −(N′ − 1) ≤ k ≤ (N′ − 1),−NDT ≤ p ≤ NDT (38)

where H(k, p) = H(k,p)
NTs(Ns−|p|) , and NDT =

⌊
0.293 · NS

⌋
is the boundary of Doppler tolerance

on discrete range and Doppler plane, b·c stands for rounding.
Therefore, the optimization of the multi pulse sequence set of the LFM-PC signal

can be carried out based on the minimization of the sum of NDAFSL and DCAF of the
inter-pulse signals. The objective function can be expressed as:

∆ = ∑
i

∑
k,p∈Ψ

|χi(k, p)|2 + ∑
i 6=j

∑
k,p∈Φ

∣∣χij(k, p)
∣∣2 (39)

where Ψ =
[
(k, p)

∣∣NS ≤ |k| ≤ N′ − 1, 0 ≤ |p| ≤ NDT
]

is the range of the NAF sidelobe
within the Doppler tolerance, and Φ = [(k, p)|0 ≤ |k| ≤ N′ − 1, 0 ≤ |p| ≤ NDT] is the
range of the Doppler tolerance on discrete range and Doppler plane.

3.2.2. MSSD-ADMM Optimization Method

By applying ADMM to the quasi-Newtonian method to minimize the sum of NDAFSL
and the CAF of the LFM-PC signal, and the optimization problem is:

P∆ : min
c

∑
i

∑
k,p∈Ψ

∣∣∣c′Hi H(k, p)c′ i
∣∣∣2 + ∑

i 6=j
∑

k,p∈Φ

∣∣∣c′Hj H(k, p)c′ i
∣∣∣2

s.t ci(n) = ej2π
kn
K n = 0, 1, · · · , N − 1; i = 0, 1, · · · , M− 1; kn ∈ [0, 1, . . . K− 1]

(40)
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Introducing auxiliary variable z and constraint c = z, we can obtain:

P∆−ADMM : min
c

∑
i

∑
k,p∈Ψ

∣∣∣c′Hi H(k, p)c′ i
∣∣∣2 + ∑

i 6=j
∑

k,p∈Φ

∣∣∣c′Hj H(k, p)c′ i
∣∣∣2 + zHz

s.t. c = z

zi(n) = ej2π
kn
K , n = 0, 1, · · · , N − 1; i = 0, 1, · · · , M− 1; kn ∈ [0, 1, · · ·K− 1]

(41)

where c = [cT
0 , cT

1 . . . cT
M−1]

T , z = [zT
0 , zT

1 . . . zT
M−1]

T . Note that problem (40) is equivalent
to (41). According to ADMM and (41), and let u = (λr + jλi)/ρ; the augmented Lagrange
equation is written as:

Lρ(c, z, u) = ∑
i

∑
k,p∈Ψ

∣∣∣c′Hi H(k, p)c′ i
∣∣∣2 + ∑

i 6=j
∑

k,p∈Φ

∣∣∣c′Hj H(k, p)c′ i
∣∣∣2

+zHz + ρ
2‖c− z + u‖2 − ρ

2‖u‖
2

(42)

Let c(t) indicate the value of c After ADMM iterating t times (z and u are represented
as z(t), u(t)). Given the initial value c(0), z(0), u(0), then the solution of the problem can be
carried out according to the following steps:

(1) Update c. Suppose z(t), u(t) as known quantities:

c(t+1) = arg min
c

{
∑
i

∑
k,p∈Ψ

∣∣∣c′Hi H(k, p)c′ i
∣∣∣2

+ ∑
i 6=j

∑
k,p∈Φ

∣∣∣c′Hj H(k, p)c′ i
∣∣∣2 + ρ

2

∥∥∥c− z(t) + u(t)
∥∥∥2
} (43)

This problem is an unconstrained optimization problem, which can be solved by the
quasi-Newton method. First, we need to translate (43) from the complex form to a real form

Let,̃ci =
[

Re(c′Ti ) Im(c′Ti )
]T

, z̃ =
[

Re(zT) Im(zT)
]T , c̃ =

[
Re(cT) Im(cT)

]T ,

ũ =
[

Re(ũT) Im(ũT)
]T

, and A =

[
Re(H) −Im(H)
Im(H) Re(H)

]
, B =

[
Im(H) Re(H)
−Re(H) Im(H)

]
,

then we can convert (43) to:

c̃(t+1) = arg min
c̃

{
∑
i

∑
k,p∈Ψ

(c̃T
i A(k, p)c̃i)

2
+ (c̃T

i B(k, p)c̃i)
2

+ ∑
i 6=j

∑
k,p∈Φ

(c̃T
j A(k, p)c̃i)

2
+ (c̃T

j B(k, p)c̃i)
2
+ ρ

2

∥∥∥c̃− z̃(t) + ũ(t)
∥∥∥2
} (44)

In the following steps, we need to convert the real vector c̃(t+1) back to the complex
vector c(t+1).

(2) Update z. Suppose c(t+1), u(t) as known quantities:

z(t+1) = arg min
z

zHz +
∥∥∥c(t+1)−z + u(t)

∥∥∥2

s.t zi(n) = ej2π
kn
K n = 0, 1, · · · , N − 1; i = 0, 1, · · · , M− 1; kn ∈ [0, 1, · · ·K− 1]

(45)

The above equation can be converted into

z(t+1) = arg max
z

Re
((

c(t+1) + u(t)
)H

z
)

s.t zi(n) = ej2π
kn
K n = 0, 1, · · · , N − 1; i = 0, 1, · · · , M− 1; kn ∈ [0, 1, · · ·K− 1]

(46)

Note that problem (46) is a linear problem and that the elements of z are independent
of each other; therefore, they can be decomposed into NM sub problems.
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If taking c(t+1)
i (n) + u(t)

i (n), z(t)i (n) as vectors in the complex plane and ignoring the
constant part, then (46) can be transformed to:

z(t+1)
i (n) = argmax

k
cos
〈

c(t+1)
i (n) + u(t)

i (n), z(t)i (n)
〉

s.t zi(n) = ej2π kn
K kn ∈ [0, 1, · · ·K− 1]

(47)

It is equivalent to find the integer k(0 ≤ k < K), which make the angle between the
vectors z(t)i (n) = ej2π k

K and
[
c(t+1)

i (n) + u(t)
i (n)

]
minimal.

The solution of (47) is as follows:

z(t+1)
i (n) = exp

j2π

⌊
K · arg

[
c(t+1)

i (n) + u(t)
i (n)

]
/2π + 1

2

⌋
K

 (48)

(3) Update u.
u(t+1) = u(t) + c(t+1) − z(t+1). (49)

Therefore, the procedures of MSSD-ADMM algorithm are as follows. Firstly, initialize
variables c(0), z(0), u(0). Secondly, repeat steps (1) to (3) until the iteration stop condition
is satisfied (the number of iterations reaches the upper limit or

∣∣∣∆(t+1) − ∆(t)
∣∣∣ ≤ ε. ε is a

smaller positive number as the convergence threshold). Thirdly, stop the iteration. The
steps of solving the optimization model by MSSD-ADMM are given in Table 2.

Table 2. MSSD-ADMM steps.

MSSD-ADMM

(a) Set t as the times of iterations, initialize t = 0, and give the initial value c(0), z(0), u(0);

(b) Using quasi Newton method to solve the problem

c(t+1) = argmin
c

{
∑

k,p∈Ψ

∣∣∣c′HH(k,p)c′
∣∣∣2

|c′HH(k0,p)c′|2
+

ρ
2

∥∥∥c− z(t) + u(t)
∥∥∥2
}

.

(c) For i = 0 : M− 1

for n = 0 : N − 1

z(t+1)
i (n) = exp

(
j2π

⌊
K·arg

[
c(t+1)

i (n)+u(t)
i (n)

]
/2π+ 1

2

⌋
K

)
end;

end

(d) u(t+1) = u(t) + c(t+1) − z(t+1);

(e) t← t + 1 ;

(f) If the convergence condition is satisfied, the algorithm is completed, otherwise it returns
to (b)

3.3. Computational Complexity Analysis

In the ADMM algorithm, (43) dominates the main computation. We need to calculate
the gradient of (43). Considering the subpulse length N′, we can suppose Ψ contains αN′2

points, where 0 < α < 1. Then, the computation of gradient contains

α · N′2 · 2 · (NDT · 8 · N′
3
+ NDT · 4 · N′

2
) + 2NDTN′ (50)
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times of real number multiplications and

α · N′2 · 2 · (NDT · 8 · N′
3
+ NDT · 4 · N′

2
) + 4NDTN′ (51)

times of real number additions. Therefore, the computational complexity of ADMM
algorithm is on the order of o(NDTN′5)

We note that GA algorithm can also be successfully applied in discrete-phase sequence
design problems. However, with increased variables in the LFM-PC sequent design
problem, the efficiency of the GA algorithm is not satisfactory.

In each iteration of the GA algorithm, the number of variables in c is N′, and for each
variable cn, we need to calculate the number αN′2 locations in the DAF. The problem of cn

in [31] has the computational complexity of o(NDTN′3).The total computational complexity
of the GA algorithm is o(NDTN′6). Therefore, the computational complexity of tbe GA
algorithm is higher than that of the ADMM algorithm.

4. Numerical Experiments

In this section, we provide two simulation examples to demonstrate the performance
of the proposed method. In the following examples, it is assumed that the radar pulse
width T is 10 µs and thatthe PRI equals 1 ms to ensure the unambiguity of the detect
range. We also assume that the frequency modulation slope is u = 6× 1012 to ensure the
resolution for target detection. The coherent radar system transmits M pulses in a CPI
and N subpulses in a pulse. In DAF image, the time delay axis is normalized by subpulse
duration TP, and the Doppler frequency shift axis is normalized by 1/TP. The convergence
of the proposed algorithms will be tested by using randomly generated sequences in
the initialization.

4.1. Single Pulse Sequence Design Case

In this example, in order to implement the algorithm, the Doppler tolerance needs
to be calculated first. The PC signal is also taken into account for comparison. Let the
code length of LFM-PC signals be N = 60, the coding sequence consists of random codes.
The code length and coding sequence of the PC signals are same as the LFM-PC signals.
After 1000 instances of the Monte Carlo experiment, respectively, with modulation phase
number K = 2/4/8, we calculate the Doppler tolerance of PC signals and LFM-PC signals.
According to Table 3, the Doppler tolerance of the LFM-PC signal is obviously better than
that of the PC signal regardless of the modulation phase number K.

Table 3. Doppler tolerance.

K = 2 K = 4 K = 8

PC 73.833 KHz 73.833 KHz 73.833 KHz
LFM-PC 202.6 KHz 201.8 KHz 204.9 KHz

To measure the effectiveness of optimization, we define Average Integral Normalized
Sidelobe Level (AINSL) as:

AINSL =
1

2
(

N′ − NS
)(

2NDT + 1
) ∑

k,p∈Ψ

∣∣∣c′H H(k, p)c′
∣∣∣2∣∣∣c′H H

(
k0, p

)
c′
∣∣∣2 . (52)

where Ψ =
[
(k, p)

∣∣NS ≤ |k| ≤ N′ − 1, 0 ≤ |p| ≤ NDT
]

represents the sidelobe range within
the Doppler tolerance. The AINSLs of PC and LFM-PC signals are calculated respectively
within Doppler tolerance by 1000 times of Monte Carlo experiments. It can be seen from
Table 4 that the AINSLs of these two signals are almost the same.
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Table 4. AINSL before optimization.

K = 2 K = 4 K = 8

PC −20.5436 dB −20.0856 dB −20.9821 dB
LFM-PC −20.2248 dB −20.2945 dB −20.8219 dB

In order to improve the detection performance of LFM-PC signals, the ambiguity func-
tion of LFM-PC signals was optimized by using the minimum INSL in Doppler tolerance.
The upper limit of iteration number was set to 100 times, and the same initial signal was
optimized by the above SSD-ADMM algorithm and GA algorithm, respectively. After
iteration, the simulation results before and after optimization are shown in Figures 1 and 2.

Figure 1. Ambiguity function before optimization.

The AF can be seen as the matching filter output of a set of radar echo signals with
same time delay and different Doppler frequency shift. As shown in the Figure 1, the weak
target will be masked by the sidelobe of the strong target. So the sidelobe of AF must be
suppressed and better detection performance can be obtained for closely spaced targets.

It can be seen from the Figures 1 and 2 that the AFs after optimization are better than
those before optimization, regardless of the SSD-ADMM algorithm or GA algorithm. But
the optimization result of the SSD-ADMM algorithm is better than that of the GA algorithm.

As can be seen from Tables 4 and 5, the AINSL of LFM-PC signals optimized by
the SSD-ADMM algorithm and the GA algorithm is significantly lower than that of the
initial signal. Especially, with the increase in phase number, the optimization effect of the
SSD-ADMM algorithm is more significant than that of the GA algorithm. At the same
time, observing the iterative convergence curve of the optimization algorithm in Figure 3,
we can find that SSD-ADMM algorithm converges faster and has better effect than the
GA algorithm.
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Figure 2. Ambiguity function after optimization.

Table 5. AINSL after optimization.

K = 2 K = 4 K = 8

SSD-ADMM −26.8154 dB −28.9818 dB −31.4835 dB
GA −25.9737 dB −26.1257 dB −28.2915 dB
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Figure 3. Comparison of convergence curve between SSD–ADMM and GA.

4.2. Multi Pulse Sequence Set Design Case

Considering the first and second term of the optimization model in (39), to measure
the optimization performance of LFM-PC inter-pulse signal, auto correlation average side
lobe, (AC-ASL) and cross correlation average level, (CC-AL) are defined as:

AC-ASL = 1
2(N′−NS)(2NDT+1)·M ∑

i
∑

k,p∈Ψ
|χi(k, p)|2

CC-AL = 2
(2N′−1)(2NDT+1)·M(M−1) ∑

i 6=j
∑

k,p∈Φ

∣∣χij(k, p)
∣∣2 (53)

where Ψ =
[
(k, p)

∣∣NS ≤ |k| ≤ N′ − 1, 0 ≤ |p| ≤ NDT
]

is the range of the NAF sidelobe
within the Doppler tolerance, and Φ = [(k, p)|0 ≤ |k| ≤ N′ − 1, 0 ≤ |p| ≤ NDT] is the
range of the Doppler tolerance on discrete range and Doppler plane.

Set the code length of LFM-PC signals N = 60, transmit pulse number M = 3, and
modulation phase number K = 2/4/8. Moreover, the original coding sequences consists of
random codes. The aforementioned algorithms of MSSD-ADMM and GA are implemented
on the same original signal, with an upper limit of iteration number of 50 times.

Figure 4 shows a set of DAF and DCAF images of LFM-PC signals within the Doppler
tolerance. It is observed that both the DAF side lobe (where τ 6= 0) and DCAF value of
optimization signals are significantly lower than that of the original signal, regardless of the
MSSD-ADMM algorithm or the GA algorithm. It also can be seen that the MSSD-ADMM
method outperforms the GA algorithm.

Table 6 shows the AC-ASL and CC-AL metric of LFM-PC signals in different condi-
tions. As can be seen from Table 6, compared with the original signal, the signals optimized
by the MSSD-ADMM algorithm have significantly lower AC-ASL and CC-AL metric,
and the optimization effect became better with the increase in the phase number K. As
a comparison with the GA algorithm, the optimization effect is general, and with the
increase of phase number K, the optimization effect decreases. Therefore, the LFM-PC
signal optimized by the MSSD-ADMM algorithm has better waveform diversity gain and
waveform isolation degree.
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Figure 4. Diagram of AF and CAF before and after optimization.

Table 6. AC-ASL and CC-AL metric of LFM-PC (dB).

K=2 K=4 K=8
AC-ASL CC-AL AC-ASL CC-AL AC-ASL CC-AL

Original −24.8040 −25.0624 −24.8334 −25.1614 −24.8560 −25.1963
GA −28.0128 −26.8928 −26.6000 −26.0746 −26.8713 −26.3941

MSSD-ADMM −28.7169 −27.6719 −29.0256 −29.9253 −31.1796 −30.8433

By comparing the iteration convergence curve of the optimization algorithm in
Figure 5 and the optimization algorithm time in Table 7, we can find that compared with
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the GA algorithm, the MSSD-ADMM algorithm has fewer iterations, faster convergence
time, and better optimization effect.

Figure 5. Comparison of convergence curve between MSSD–ADMM and GA.

Table 7. Comparison of optimization time between MSSD-ADMM and GA.

K=2 K=4 K=8

GA 41 min 04 s 38 min 25 s 45 min 02 s
MSSD-ADMM 10 min 23 s 12 min 45 s 13 min 30 s

As shown in the above two experiments, compared with the GA, ADMM has better
optimization effect and faster convergence speed. The reasons for the significant difference
between the two algorithms can be summarized as follows. Though GA is good at global
search, it turns out in many applications to be inefficient in local search, especially at
the later stages of evolution [40]. So the search speed of the algorithm is relatively slow,
and more training time is needed to obtain a comparatively accurate solution. Moreover,
in practice, with increased variables in a problem, GAs are prone to premature conver-
gence [41]. That is to say, the optimization process stops at a stable point that does not
represent a globally optimal solution. Whereas ADMM can be optimized locally through
Lagrange [42], its convergence speed is much better than GAs, and its convergence effect is
also better than GAs. Therefore, the simulation results are also better than GAs.

5. Conclusions

In this paper, the ADMM framework is used to optimize the LFM-PC signal and
the orthogonal LFM-PC signal. At the same time, combined with the integer model of
phase optimization, two new algorithms for LFM-PC optimization are proposed. From
the perspective of the model, LFM-PC has better Doppler tolerance and better sidelobe
performance than PC. Moreover, from the perspective of algorithm performance, com-
pared with the GA algorithm, the proposed algorithm has faster convergence speed and
less computation.
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