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Abstract: Texture recognition is important for robots to discern the characteristics of the object surface
and adjust grasping and manipulation strategies accordingly. It is still challenging to develop texture
classification approaches that are accurate and do not require high computational costs. In this work,
we adopt a bionic tactile sensor to collect vibration data while sliding against materials of interest.
Under a fixed contact pressure and speed, a total of 1000 sets of vibration data from ten different
materials were collected. With the tactile perception data, four types of texture recognition algorithms
are proposed. Three machine learning algorithms, including support vector machine, random forest,
and K-nearest neighbor, are established for texture recognition. The test accuracy of those three
methods are 95%, 94%, 94%, respectively. In the detection process of machine learning algorithms,
the asamoto and polyester are easy to be confused with each other. A convolutional neural network
is established to further increase the test accuracy to 98.5%. The three machine learning models and
convolutional neural network demonstrate high accuracy and excellent robustness.

Keywords: tactile perception; vibration data; texture recognition; machine learning; convolutional
neural network

1. Introduction

As an irreplaceable source of information, tactile perception is an important way of
understanding the surrounding environment for humans [1]. Due to the fact that tactile
perception is achieved through direct contact with objects, tactile data collection is only
sensitive to the inherent physical characteristics of the object. This characteristic renders
tactile perception highly reliable and less susceptible to external environmental interfer-
ences. Similar to humans, tactile perception in robots is essential to realize their intelligence.
In the robotic system, tactile perception is achieved through the implementation of tactile
sensors [2–10]. Similar as tactile perception of human, tactile perception of robots include
many aspects such as discerning the shape, size, modulus, hardness, textures of objects, as
well as contact forces and slippage during manipulation, etc. Among them, object texture
recognition is important as the characteristics of object surface can significantly affect the
grasping or manipulation strategies of robots.

In recent decades, the development of tactile sensors has greatly enhanced the ability
of robotic tactile perception. Tactile sensors that measure temperature, humidity, contact
force, or pressure have been demonstrated. Among those sensors, the contact force or
pressure sensors are essential as the shape, size, texture, hardness of the object and slippage
of grasping are usually judged based on the analysis of force data [11–13]. Contact force or
pressure sensors based on various measurement mechanisms, such as piezoelectric sensors,
piezoresistive sensors, triboelectric sensors, have been developed [14–17]. Tactile sensors
that can only measure single-point contact pressure [18–28], or tactile sensor arrays with
high spatial resolution [28–38], or those cover large area [39–44], have been developed.
Commercially available tactile sensors, such as Biotac, which can simulate part of human
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perception and have high detection accuracy and stability, are also widely adopted for the
recognition of object properties.

With the raw data collected from tactile sensors, it is necessary to propose effective
algorithms for the classification of material properties such as surface texture. With the
advances of machine learning [45–48] and deep learning [49–52], new solutions have been
provided for interpreting tactile data. Fishel et al. [45] proposed a Bayesian exploration-
based texture recognition method using three descriptive indicators of traction, roughness,
and fineness. Through a number of well-chosen exploratory movements, the recognition
success rate was 95.4%. However, this method required manual selection of the direction
of exploration multiple times, which consumed a lot of time and labor. Yuan et al. [13]
developed a surface material recognition algorithm based on tactile vibration and contact
force. After the experimental data collection was completed, the method did not require any
manual intervention, and only used the support vector machine model to achieve texture
recognition, finally the overall texture recognition rate reached 80%. The neural network
model can be used to extract data features directly, and the model can be trained to achieve
classification and recognition. The deep learning algorithms have low manual participation
and high accuracy, and they are widely used in many fields. Gandarias et al. [38] used
two artificial intelligence methods to recognize objects through pressure images from high-
resolution tactile sensors. The experimental results showed that the classification accuracy
based on SURF was 80%, and the classification accuracy based on DCNN was 91.67%.

Although a variety of texture recognition methods have been proposed, it is still
desirable to further improve the accuracy and reduce the computational costs of the
algorithm. Therefore, in this study, we adopt the BioTac SP multi-modal tactile sensor
to obtain the vibration signal generated when the sensor and the materials to be tested
slide against each other. Based on the collected tactile signals, the material textures are
identified through machine learning and deep learning methods, and the classification
accuracy can reach as high as 98.5%. Compared with texture recognition methods reported
previously, our approach features higher recognition accuracy with low computational
time. The advantages and disadvantages of machine learning algorithms and deep learning
algorithms in the classification of material texture are analyzed and evaluated. This work
is organized as follows. Section 2 describes the collection of the data set and the algorithms
used. Section 3 describes the results and discussion of the algorithms. The conclusions are
given in Section 4.

2. Materials and Methods

In this work, an experimental setup is built and the vibration data when the sensor and
the material moved relative to each other under fixed experimental conditions are collected.
Three machine learning algorithms and a deep learning algorithm are established to analyze
and process the vibration data of different materials to achieve texture recognition of objects.
In this paper, the term identification refers to detection and classification. The frequency
domain features of the vibration data are extracted, and three machine learning models
including Support Vector Machines, random forests, and K Nearest Neighbor are used to
analyze the frequency domain features. A seven-layer convolutional neural network model
is established, and the self-built data set is used to train the network model. A general
flowchart of texture recognition is shown in Figure 1.
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Figure 1. Flowchart of the proposed approach for texture recognition. 
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tile sensor for vibration data collection in this study [53]. The original BioTac sensor struc-
ture is shown in Figure 2a. The biomimetic design consists of a rigid core surrounded by 
an elastic skin filled with liquid to provide compliance similar to the human fingertip. The 
photograph of BioTac SP is shown in Figure 2b. The design principle of BioTac SP is the 
same as the original BioTac but with slightly different structure design. The BioTac SP is 
capable of detecting the full range of cutaneous sensory information that human fingers 
can detect: forces, micro vibrations, and temperature [54]. The sampling rate of the sensor 
is 4.4 KHz. Row data collected from the BioTac SP include voltages on impedance sensing 
electrodes, absolute fluid pressure (DC Pressure), dynamic fluid pressure (AC Pressure), 
temperature (DC Temperature), and heat flow (AC Temperature). Among them, the AC 
pressure signal is related to the surface roughness and texture of the material to be tested, 
and can indicate the micro-vibration generated during the relative movement. 

The AC pressure is measured with the BioTac SP sensor with a range of 0–4095 bits. 
In a small pressure range, the AC pressure is linearly related to the actual normal force 
(N), and the relationship between the change of the AC pressure and the normal force is 
shown in Figure 2c. Specifically, in order to characterize the relationship between the AC 
pressure displayed by the BioTac sensor and the actual applied force, a commercial force 
sensor (HP-50N by HANDPI) is used for calibration. The BioTac sensor is in contact with 
the force sensor, and they are subjected to the same magnitude of force at the contact po-
sition. In this way, the value indicated by the AC pressure in the BioTac is correlated to 
the commercial force sensor. By continuously changing the contact condition to vary the 
applied force, the correlation can be established as shown in Figure 2c. In order to ensure 
that the elastic skin of the sensor is not subject to severely wear during the data collection 
process, the experiment was carried out under the condition of a normal force of 0.15 N. 

Figure 1. Flowchart of the proposed approach for texture recognition.

2.1. Experimental Device and Data Collection

BioTac SP, a bionic sensor with high sensitivity and stability, was selected as the tactile
sensor for vibration data collection in this study [53]. The original BioTac sensor structure
is shown in Figure 2a. The biomimetic design consists of a rigid core surrounded by an
elastic skin filled with liquid to provide compliance similar to the human fingertip. The
photograph of BioTac SP is shown in Figure 2b. The design principle of BioTac SP is the
same as the original BioTac but with slightly different structure design. The BioTac SP is
capable of detecting the full range of cutaneous sensory information that human fingers
can detect: forces, micro vibrations, and temperature [54]. The sampling rate of the sensor
is 4.4 KHz. Row data collected from the BioTac SP include voltages on impedance sensing
electrodes, absolute fluid pressure (DC Pressure), dynamic fluid pressure (AC Pressure),
temperature (DC Temperature), and heat flow (AC Temperature). Among them, the AC
pressure signal is related to the surface roughness and texture of the material to be tested,
and can indicate the micro-vibration generated during the relative movement.

The AC pressure is measured with the BioTac SP sensor with a range of 0–4095 bits.
In a small pressure range, the AC pressure is linearly related to the actual normal force
(N), and the relationship between the change of the AC pressure and the normal force
is shown in Figure 2c. Specifically, in order to characterize the relationship between the
AC pressure displayed by the BioTac sensor and the actual applied force, a commercial
force sensor (HP-50N by HANDPI) is used for calibration. The BioTac sensor is in contact
with the force sensor, and they are subjected to the same magnitude of force at the contact
position. In this way, the value indicated by the AC pressure in the BioTac is correlated to
the commercial force sensor. By continuously changing the contact condition to vary the
applied force, the correlation can be established as shown in Figure 2c. In order to ensure
that the elastic skin of the sensor is not subject to severely wear during the data collection
process, the experiment was carried out under the condition of a normal force of 0.15 N.
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Figure 2. Experimental setup and measurement performances of the sensor: (a) schematic showing the structure of the
original BioTac [55]; (b) photograph of BioTac SP sensor [55]; (c) the relationship between the change of AC pressure (bits)
and applied normal force (N); (d) photograph of the experiment setup.

The photograph of the experiment setup for tactile data acquisition is shown in
Figure 2d. The experiment setup is mainly composed of a LinMot linear motor, a lifting
platform, a BioTac SP multi-modal tactile sensor and materials to be tested. The sensor is
fixed at the end of the linear motor. We can change the height of the lifting platform to
control the pressure between the sensor and the materials to be tested. The linear motor
drives the sensor to move at a constant speed, and transmits the tactile sensor data collected
during the movement to the host computer for processing.

We adjusted the height of the lifting platform to adjust the degree of contact between
the BioTac SP sensor and the materials to be tested. The data were collected under a fixed
pressure and speed. During the experiment, the tactile sensor maintained good contact with
the sample which means the sensor is in close contact with the sample without separation,
and the tactile sensor surface was not severely worn. The size of the materials to be tested
was 4.5 cm × 5.5 cm. The linear motor was controlled to drive the sensor to move 3 cm at a
speed of 0.01 m/s, and the vibration signal detected by the sensor was collected during
this process. We adjusted the starting position of the sensor and repeated the movement.
Vibration data are measured by multiple contacts in different areas and directions of each
material. A total of 1000 sets of vibration data were collected from ten materials. The
photographs of ten materials are shown in Figure 3, and the vibration signals of some
materials are shown in Figure 4.
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The texture of asamoto is finer than the texture of lambswool, so that the vibration fre-
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As shown in Figure 4, the vibration amplitude and frequency of the data collected
from these materials are different, which is due to the different surface roughness and
texture. Smooth surfaces are found to produce virtually no vibrations, while rougher
surfaces produce vibrations of much greater amplitudes [22]. The lambswool has a smooth
surface and the polyester has a rough surface, so that the vibration amplitude of polyester is
much greater than the vibration amplitude of lambswool. The roughness of other materials
is distributed between these two materials. Coarser textures are found to produce low-
frequency vibrations, while finer textures produce higher-frequency vibrations [22]. The
texture of asamoto is finer than the texture of lambswool, so that the vibration frequency
of asamoto is higher than the vibration frequency of lambswool. The fineness of other
materials is distributed between these two materials.

2.2. Feature Extraction of Vibration Data

The original vibration data have a large amount of data, and the sensor data are
unstable in the acceleration and deceleration phases. The excessively large sample data
have redundant information, and it is very easy to cause overfitting in training when it is
completely input into the classification models. Therefore, the original data needs to be
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preprocessed and particular features need to be extracted to represent the characteristics of
the data.

The setup of the hardware environment requires an Inter core i7-9750H processor at
2.60 GHz, with 16 GB RAM, 1T solid state drive, and NVIDIA GeForce RTX 2060 graphics
card. The operating system is 64-bit Windows 10, and our programming software is
MATLAB R2018b.

The fast Fourier transform (FFT) with rectangle window function was performed on
the original vibration signals of different materials to obtain the frequency domain signal,
as shown in Figure 5. It can be found that the frequency domain signal of the ten materials
is distributed in 0–140 Hz, but the intensity distribution of different materials is rather
different, so the feature can be extracted in the frequency domain for effective classification.
The window length was set to 20 Hz, and the window was traversed from 0–140 Hz. Then
we took the average intensity of each window as the feature, and each signal generated
a seven-dimensional vector as the feature. Feature extraction of a set of data takes only
0.47 s.
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2.3. Texture Recognition

The features of the vibration data of different materials are input to the models of
support vector machine, random forest, K-nearest neighbor, and convolutional neural
network.

The support vector machine is used to identify different textures based on vibration
data. The vibration data collected in the experimental is non-linear and a few features
are extracted. Therefore, the radial basis kernel function which is a nonlinear kernel is
selected in this work. There are two hyperparameters in the model, namely the penalty
coefficient of the support vector machine C and the radial basis kernel parameter gamma.
These two hyperparameters are related to the generalization ability and time complexity.
The penalty is optimized to adjust the tolerance of the model to errors, and the radial
basis kernel parameter is adjusted to optimize the number of support vectors. The grid
search algorithm is used to search and debug C and gamma. The accuracy of the algorithm
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reaches the highest when C is 30 and gamma is 0.1. A ten-fold cross-validation algorithm
is used to test the accuracy of the model.

When using random forest to identify different materials, multiple decision trees need
to be established, and the final result is voted by the recognition results of the decision
trees. In the random forest model, it is necessary to determine the number of decision
trees n_estimators and the maximum tree depth max_depth. When increasing the value
of n_estimators and max_depth, the model may have better performance, but it will also
increase the time complexity of the algorithm. Therefore, those two hyperparameters need
to be adjusted appropriately. When the sample features are limited, the value of max_depth
does not need to be limited. The grid search algorithm is used to search for these two
parameters. When n_estimators is 100 and max_depth is not limited, the accuracy of the
algorithm is the highest.

K-nearest neighbor is a supervised algorithm that can solve classification and regres-
sion problems. When using the K-nearest neighbor algorithm to identify different materials,
it is necessary to determine the number of neighbor samples called K value, and the current
sample label is voted by the neighbor sample label. The K value affects the accuracy and
time complexity of the algorithm model, so adjusting K to an appropriate value is very
important for the entire algorithm. The grid search algorithm is used to search for the value
of the number of neighborhoods, and finally, when K is 5, the algorithm has the highest
accuracy. A ten-fold cross-validation algorithm was used to test the accuracy of the model.

Convolutional neural network, a typical deep neural network, is widely used in the
field of object detection and target recognition. A 7-layer convolutional neural network
with 2 convolutional layers, 2 pooling layers, and 3 fully connected layers is also established
to achieve texture recognition. The original data are reconstructed before being input into
the convolutional layer, so that each sample in the original data is a 3300 × 1 vector. The
structure of the convolutional neural network model is shown in Table 1. The first layer of
the convolutional neural network is the convolutional layer, which has 8 convolution ker-
nels of size 25, and the activation function is the Relu function. After the first convolutional
layer, the output data size is 3300 × 8. The second layer is the pooling layer, which uses
maximum pooling with a kernel of size 25, and the output data size is 220 × 8. The third
layer is a convolutional layer, which has 16 convolution kernels of size 25, the activation
function is the Relu function, and finally the output data size is 220 × 16. The fourth layer
is the pooling layer, which uses maximum pooling with a kernel of size 15, and the output
data size is 14 × 16. The output data are expanded and flattened, and a layer containing
224 neurons is obtained. After two fully connected layers, 10 neurons are output, which
represent 10 different materials. Based on the output of 10 neurons, the type of material
can be classified. The choice of hyperparameters in model training is very important to the
final training results. The RMSprop optimization algorithm is used during training. The
batch size is set to 16, the number of iterations, namely nb_epoch is set to 50, and the loss
function of the model is Cross entropy loss function.

Table 1. Operation, input, and output of each layer in CNN.

Layer Connection Input Size Operation Kernel Size Output Size

0–1 3300 × 1 Convolution 25 × 1 × 8 3300 × 8
1–2 3300 × 8 Maxpooling 15 × 1 220 × 8
2–3 220 × 8 Convolution 25 × 1 × 16 220 × 16
3–4 220 × 16 Maxpooling 15 × 1 14 × 16
4–5 14 × 16 Fully connected layer 224 224
5–6 224 Fully connected layer 128 128
6–7 128 Fully connected layer (softmax) 10 10
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2.4. Performance Measures

The performance metrics used to compare the classifier performances are precision,
recall, F1 score, and overall accuracy. These are computed from the confusion matrixes
using Equations (1)–(4).

Precision =
TP

TP + FP
(1)

Recall(TPR) =
TP

TP + FN
(2)

F1 Score =
2TP

2TP + FP + FN
(3)

Accuracy =
TP + TN

TP + FP + FN + TN
(4)

TP refers to the positive samples that are predicted to be positive. TN refers to the
negative samples that are predicted to be negative. FP refers to the negative samples
that are predicted to be positive. FN refers to the positive samples that are predicted to
be negative.

3. Results and Discussion

Support vector machine, random forest, and K-nearest neighbor algorithm models
were built on the Jupter Notebook platform relying on the Sklearn Library, and they were
used to classify ten materials.

In the process of training, it is necessary to divide the training set and the test set.
Ten-fold cross-validation was used for the three machine learning algorithm models. The
data set was divided into ten parts, and nine of them were used as training samples in turn,
the rest was used as test sample. The average of the ten results was used as the estimation
accuracy of the algorithm. The detection results of support vector machine, random forest,
and K nearest neighbor algorithm are shown in Table 2.

From the results of the three machine learning algorithms shown in Table 2, it can be
seen that the three machine learning algorithms have high detection accuracy. For support
vector machine, we can find that most of the test set data can be accurately classified, and
only a few data are incorrectly identified. Among them, the most severely misidentified
material is asamoto with an accuracy rate of 0.86. The recognition accuracy of materials
except asamoto is above 0.9. According to the detection results of the random forest, we
find that the recognition accuracy of asamoto is the lowest among all materials, and the
recognition accuracy of other materials is above 0.9. The detection results of the K-nearest
neighbor also show that the recognition accuracy of asamoto is the lowest among all
materials, and the recognition accuracy of other materials is above 0.9. The confusion
matrices of the three machine learning algorithms are shown in Figure 6. Among the three
machine learning algorithms, most of the misclassified asamoto is judged to be polyester
and most of the materials misjudged as asamoto are polyester.

The asamoto and polyester are easy to be confused with each other, and their features
are shown in Figure 7. It can be found that all the seven features from the two materials
overlap, thus they are easy to be misidentified. This is the reason the recognition accuracy
of asamoto is not high when using the three machine learning algorithms.

We can see from the recognition results of the three machine learning algorithms
that the recognition accuracy of asamoto is low, so other algorithms based on deep neural
network need to be explored. The detection results of convolutional neural network
proposed in this study are shown in Table 3.

It can be seen in Table 3 that most materials can be accurately classified, and the
recognition accuracy of all materials is above 0.9. The convolutional neural network solves
the problem of low recognition accuracy of asamoto in machine learning algorithms. When
using a convolutional neural network to realize object material recognition, the accuracy
and training loss curves during training and testing are shown in Figure 8. The recognition
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accuracy and training time of the four algorithms are shown in Table 4. As the number of
iterations increases, the training accuracy rate converges to 98.5%, and the test accuracy
rate converges to 98.5%.

Table 2. Detection results of different materials using machine learning algorithms.

Algorithm/Material TP FP FN Precision Recall F1

SVM

Polyester 87 8 13 0.92 0.87 0.89
Flannel 95 1 5 0.99 0.95 0.97

Asamoto 89 18 11 0.86 0.89 0.87
Denim fabric 98 5 2 0.95 0.98 0.97

Foam 99 0 1 1.0 0.99 0.99
Double-sided 97 6 3 0.94 0.97 0.96
Cotton linen 98 5 2 0.95 0.98 0.97

Flax 100 2 0 0.98 1.0 0.99
Lambswool 95 2 5 0.98 0.95 0.96

Satin 90 5 10 0.95 0.90 0.92

RF

Polyester 86 7 14 0.92 0.86 0.89
Flannel 95 2 5 0.98 0.95 0.96

Asamoto 90 21 10 0.81 0.90 0.85
Denim fabric 97 6 3 0.94 0.97 0.96

Foam 97 0 3 1.0 0.97 0.98
Double-sided 95 4 5 0.96 0.95 0.95
Cotton linen 97 5 3 0.95 0.97 0.96

Flax 99 5 1 0.95 0.99 0.97
Lambswool 96 2 4 0.98 0.96 0.97

Satin 89 7 11 0.93 0.89 0.91

KNN

Polyester 88 7 12 0.93 0.88 0.90
Flannel 91 1 9 0.99 0.91 0.95

Asamoto 92 20 8 0.82 0.92 0.87
Denim fabric 98 9 2 0.92 0.98 0.95

Foam 99 2 1 0.98 0.99 0.99
Double-sided 97 9 3 0.92 0.97 0.94
Cotton linen 98 4 2 0.96 0.98 0.97

Flax 97 2 3 0.98 0.97 0.97
Lambswool 97 2 3 0.98 0.97 0.97

Satin 84 3 16 0.97 0.84 0.90

According to the training and test results, among the three machine learning algo-
rithms, the support vector machine model has the highest recognition accuracy. The
training time of the K-nearest neighbor algorithm is the shortest. This is because the result
of the algorithm is only the bidding voting by the labels of the neighborhood samples, and
no complicated mathematical operations are performed on the feature vectors. The training
time of the random forest model is the longest. This is because the sample selection and
node feature selection of each tree in the random forest are random, and there are two
hyperparameters, namely the number of trees and the maximum tree depth. Each training
requires exploring the number of trees and the depth of each tree to optimize the test
accuracy. Five-fold cross-validation is adopted for all the machine learning algorithms. The
variance of the accuracy obtained is shown in Table 4. It is observed that the variances are
very low, indicating that the algorithms are very stable and robust. The test accuracy of the
convolutional neural network is higher than that of the three machine learning algorithms,
and the training accuracy of the convolutional neural network is 98.5%. Our method is
compared with the methods proposed by other reports in recent years, and the results are
shown in Table 5. It can be found that the algorithm we proposed has a higher recognition
accuracy with low computational time.
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Table 3. Detection results of convolutional neural network.

Algorithm/Material TP FP FN Precision Recall F1

CNN

Polyester 14 0 0 1.0 1.0 1.0
Flannel 11 0 0 1.0 1.0 1.0

Asamoto 25 0 0 1.0 1.0 1.0
Denim fabric 24 0 0 1.0 1.0 1.0

Foam 28 0 0 1.0 1.0 1.0
Double-sided 16 1 0 0.94 1.0 0.97
Cotton linen 16 0 2 1.0 0.89 0.94

Flax 23 0 0 1.0 1.0 1.0
Lambswool 21 2 0 0.91 1.0 0.95

Satin 19 0 1 1.0 0.95 0.97
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Table 4. Recognition accuracy of four algorithms.

Model Training Accuracy (%) Test Accuracy (%) Time (s)

SVM 95.88 ± 1.48 95 ± 2.28 53.9
RF 95.59 ± 1.29 94 ± 2.24 273

KNN 96.75 ± 1.68 94 ± 2.24 3.76
CNN 98.5 98.5 25.9

Table 5. Comparisons of texture recognition algorithms.

Reference Method Sensor Accuracy (%) Run Time (to Train
One Fold) (s) Description

Strese et al. [56], 2014 Gaussian Mixture
Model Accelerometer 80.2 / classification of 43

kinds of objects

Orii et al. [57], 2017 CNN Pressure and 6-axis
accelerometer 70.7 / classification of 4 kinds

of objects

Gandarias et al. [38], 2017
1. SURF High resolution

pressure sensor
80 0.01 classification of 8 kinds

of objects2. DCNN 91.7 0.7

Kerr et al. [58], 2018 SVM BioTac 86.19 0.48 classification of 14
kinds of objects

Gandarias et al. [59], 2019 3D CNN whose
input is 3D data

High resolution
pressure sensor 96.3 / classification of 9 kinds

of deformable objects

Our method CNN BioTac SP 98.5 0.032 classification of 10
kinds of objects
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Judging from the model training results, the convolutional neural network has very
obvious advantages. In the process of establishing the model, the convolutional neural
network can automatically extract features according to the settings of the model, without
manually defining the types of features, rendering the establishment of the entire model
simple and efficient. In the convolutional neural network, the concept of convolution kernel
is also introduced, so that the convolutional layer has the characteristics of parameter
sharing. The pooling layer reduces the number of neurons, and greatly reduces the number
of parameters required to train the convolutional neural network. Therefore, the complexity
and time required for training of the network is greatly reduced. The convolutional neural
network achieves higher accuracy than machine learning methods.

4. Conclusions and Future Work

We have proposed object texture recognition methods based on tactile perception
information from a bionic tactile sensor. Based on the vibration data collected by the
sensor during sliding on material, the data preprocessing algorithm and feature extraction
algorithm are proposed, four algorithm models of support vector machine, random forest, K
nearest neighbor algorithm, and convolutional neural network are established, and training
and test verification are completed. Experimental results show that compared with machine
learning algorithms, convolutional neural networks have better recognition accuracy, which
can reach 98.5%. Among the four algorithms, the K-nearest neighbor algorithm has a simple
principle and does not involve complicated mathematical operations. The result is only
obtained by voting on the neighborhood sample labels of the samples to be tested, so it
has the most advantage in time efficiency. In the machine learning algorithm, our feature
extraction is basically completed by addition, which reduces the time complexity of the
entire algorithm. In the deep learning algorithm, our neural network has fewer layers,
and the convolution kernel is not as complicated as 3D CNN, so the time complexity of
the algorithm is relatively low. According to the results, our algorithm requires a shorter
time. It has been shown that our approach features higher recognition accuracy with low
computational time, when compared with texture recognition methods reported previously.
In future work, the algorithm model can be further improved to improve the recognition
accuracy of the algorithm. For deep learning algorithms, the upper limit of detection
accuracy depends on the size of the data set, so the data set can be further expanded.
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