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Abstract: The penetration of wearable devices in our daily lives is unstoppable. Although they are
very popular, so far, these elements provide a limited range of services that are mostly focused on
monitoring tasks such as fitness, activity, or health tracking. Besides, given their hardware and
power constraints, wearable units are dependent on a master device, e.g., a smartphone, to make
decisions or send the collected data to the cloud. However, a new wave of both communication
and artificial intelligence (AI)-based technologies fuels the evolution of wearables to an upper level.
Concretely, they are the low-power wide-area network (LPWAN) and tiny machine-learning (TinyML)
technologies. This paper reviews and discusses these solutions, and explores the major implications
and challenges of this technological transformation. Finally, the results of an experimental study
are presented, analyzing (i) the long-range connectivity gained by a wearable device in a university
campus scenario, thanks to the integration of LPWAN communications, and (ii) how complex the
intelligence embedded in this wearable unit can be. This study shows the interesting characteristics
brought by these state-of-the-art paradigms, concluding that a wide variety of novel services and
applications will be supported by the next generation of wearables.
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1. Introduction

The wearable industry has notably evolved during the last years. From the first
devices, which could be worn as accessories, e.g., wristbands or glasses, or integrated
within clothing, e.g., footwear sensors, currently novel solutions that are tattooed or
implanted in the body are gaining momentum [1]. The importance of wearables in today’s
modern societies is prominent, as they are capable of continuously monitoring a large
range of parameters and provide useful information in real time. Moreover, they are able
to trigger pre-configured alerts, in order to interact with the device’s carrier in a dynamic
fashion. Nowadays, the most popular application of wearables is fitness tracking, although
others that are closely related to the eHealth ecosystem are also gaining relevance [2].

Although the design of wearable’s hardware and software is progressively being
improved, most of the wearable units in the market present the following common char-
acteristic: they should be linked to a master device, usually a smartphone, in order to
exploit their full potential. Thus, the wearable unit is a mere data collector and/or alerting
device, with highly restricted processing and communication capabilities. The main reason
for adopting this strategy is the stringent constraints of these tiny elements, in terms of
hardware resources (processing power, memory, storage, etc.) and energy consumption, as
they are normally powered by small batteries [3].

Nevertheless, a new range of solutions in two relevant areas for the further devel-
opment of wearables has recently emerged. On the one hand, the low-power wide-area
network (LPWAN) communication paradigm will permit long-range and energy-efficient
direct connectivity of wearable units with the cloud. This communication model is cur-
rently being quickly developed, and different solutions and platforms are already available
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in the market [4]. They will permit wearables to be detached from the master device to ex-
change data with the internet, hence making them independent units from this perspective.
Although LPWANs have been deeply studied during the last years [5], their integration
within wearable devices has not been well explored yet.

On the other hand, providing wearable units with intelligence would be of great
relevance, in order to convert them into truly autonomous devices that are capable of
making smart decisions using their collected data. However, so far, the most popular
artificial intelligence (AI) family of mechanisms, i.e., machine learning (ML), has required
a great amount of resources to be executed. Fortunately, the recently arrived TinyML
paradigm fills this gap, by enabling the conversion of powerful ML models aiming at being
runnable by constrained processing units, such as microcontrollers [6]. Besides, other ML
approaches following a distributed strategy such as federated learning (FL), enable ML
model building in a cooperative way [7].

The principal aim of this work is to investigate the synergies between these state-of-
the-art concepts under the umbrella of the wearable ecosystem. To this end, this article
explores and discusses these communication and AI techniques, which are highly suitable
to be adopted by the next generation of wearable devices, hence, paving the way for the
development of innovative services. These services and applications are also identified,
and their main challenges are examined. Finally, an experimental study is presented, in
which (i) the long-range coverage provided to a wearable unit by a smart campus LPWAN
deployment is studied, and (ii) the limits of this constrained device for running intelligent
mechanisms are evaluated.

The rest of the paper is organized as follows. Section 2 provides insights regarding
the integration of the LPWAN, TinyML, and FL paradigms within the wearable ecosystem.
The potential applications and challenges for next-generation wearables are explored in
Section 3. A wearable device architecture and its implementation in presented is Section 4.
Besides, the results of a real case study, aimed at evaluating the LPWAN-based connectivity
gained by a wearable device, as well as the AI complexity supported by this unit, are also
presented in this section. The paper is concluded in Section 5, which also presents future
research lines.

2. Background: Enabling Technologies

The Internet of Things (IoT) and AI paradigms have been a great revolution for the
digitalization of many vertical industries. Nowadays, they have evolved enough to be
adopted by the wearable industry, aiming at producing truly autonomous and intelligent
devices. In the following, the communication and AI technologies that will drive the
development of the next generation of wearables are examined.

2.1. Communications: Low-Power Long-Range Transmissions

The development of transmission technologies permitting long-distance communica-
tions with a highly limited energy consumption, has been one of the great achievements
in the IoT ecosystem during the recent years [8]. This family of technologies, so-called
LPWAN, is receiving great attention, given the almost omnipresence of connected devices
in different scenarios, namely, urban, rural, aerial, etc., where a pre-existent communication
infrastructure is not always present.

LPWANs bring interesting advantages for wearables over other traditional solutions
that are traditionally employed in IoT systems, such as cellular communications, WiFi,
Bluetooth low energy (BLE), or IEEE 802.15.4-based protocols (Zigbee or 6LoWPAN).
Essentially, LPWAN-based systems adopt the typical cellular architecture, in which end-
devices directly communicate with a central gateway or base station, in this case, within
the ranges of 10 and 20 km in urban and rural scenarios, respectively [5]. As can be
observed, this performance is greatly superior to those of the other mentioned technologies.
These transmission distances are achieved with very low-power consumption, which is
comparable to that of wireless sensor network (WSN) technologies, such as Zigbee or
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6LoWPAN. Furthermore, the network architecture of LPWANs permits great scalability
and node density, which is an important aspect in ultra-dense scenarios, such as highly
populated cities. The network complexity of LPWANs is very low because, although
possible [9], the cooperation among end-devices is not required to reach the central point,
so neither routing protocols nor node coordination are needed in this type of deployment.

These interesting characteristics are achieved thanks to a series of strategies. Firstly,
LPWAN solutions make use of highly reliable modulation and coding schemes. They
permit to send data at very long distances, with a very low-power transmission, at the
time of being greatly robust to noise and interferences. For this to be conducted, adap-
tative bit rates and data redundancy are employed, in order to adjust the robustness of
the transmission to the environmental conditions. Besides, many LPWAN technologies
employ sub-GHz frequency bands, hence obtaining longer transmission distances and
wave penetration in walls than those solutions employing the 2.4 GHz bands, such as WiFi
of BLE. This is of relevant importance for wearables, as they may operate in different indoor
and outdoor scenarios during a normal day. In addition, the use of lower transmission
frequencies permits electronic circuits to be more energy efficient, which is another desired
characteristic, as stated above.

In the light of these features, LPWAN-based solutions seem to be highly convenient
for wearable devices, although some additional aspects should be considered as well. Most
LPWAN technologies make use of the industrial, scientific, and medical (ISM) frequency
bands, which are free and open to be exploited. For this reason, they are highly saturated
in certain areas. In order to control the use of these bands, a strict duty cycle is established
by the corresponding regulation bodies; for example, in Europe, each node is allowed
to transmit just 1% of time per day. This notably restricts the number of transmissions
per device, although this limit is usually enough for most IoT applications. This issue
is overcome by certain LPWAN solutions, by employing licensed spectrum, at the ex-
pense of introducing additional costs. LPWAN’s long transmission distances are achieved
by reducing the transmission data rate to the order of kilobits per second (kbps). This
fact prevents end-devices to exchange heavy data, such as multimedia content. Again,
considering the potential applications of wearables, the produced data streams should
not be continuous and with a limited bandwidth, therefore assumable by most LPWAN
technologies. Besides, as discussed later, novel optimized ML techniques will permit a
reduction in the communication activities of end-devices, as the transmission of raw data
to the cloud will be strictly limited.

Currently, the most relevant LPWAN solutions are LoRaWAN, Sigfox, and narrow-
band IoT (NB-IoT), which are notably different in their concepts and infrastructure de-
signs [8]. Sigfox and NB-IoT bet on an infrastructure that is managed by a telco operator
and, while Sigfox is an independent and standalone solution, NB-IoT is linked to the further
development of the 4G and 5G networks. In turn, in a first instance, LoRaWAN proposes
the deployment of private networks that should be maintained by their owners, although
it may also be purchased from diverse commercial providers, which eases the deployment
and management processes (https://www.semtech.com/lora/ecosystem/networks; ac-
cessed on date: 23 July 2021). This leads to two different models that may fit into different
use cases. Sigfox or NB-IoT requires a monthly subscription to gain connectivity, as it
leverages on an already deployed and managed infrastructure that makes use of licensed
frequency bands, hence avoiding channel saturation issues, as aforementioned. This is an
adequate alternative when a plug-and-play solution is desired; however, the expansion of
this infrastructure is subject to the telco decision. On the other hand, the model adopted
by LoRaWAN permits the vast deployment of networks that are freely accessible, but are
not supported by a big company. A clear example of a wide and international LoRaWAN
deployment is The Things Network (https://www.thethingsnetwork.org/; accessed on
date 23 July 2021). In line with this, many city councils are deploying LoRaWAN networks
as part of their plans to transform current urban settings into smart cities [10].

https://www.semtech.com/lora/ecosystem/networks
https://www.thethingsnetwork.org/
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From the perspective of wearables, the use of both technologies is complementary, as
they will coexist in future connected scenarios. While NB-IoT permits greater transmission
rates and good coverage in urban areas, LoRaWAN is more cost and power-consumption
effective, and presents the possibility of a quick coverage extension with a limited in-
vestment [8]. The advantages of integrating LPWAN communication modules within
wearables are clear, given their low price, very low-power consumption and the possi-
bility of detaching the device from the smart phone. Thereby, wearables will be able to
bidirectionally communicate with the cloud, for example, adopting the IPv6 addressing
scheme [11], which is greatly attractive for the development of novel services and ap-
plications. Besides, LPWAN-based device-to-device solutions will also allow the direct
communication among end-devices, which is highly relevant in the case of developing
distributed intelligent systems, as explored below.

2.2. Embedded Intelligence: ML-Based Mechanisms

Different ML-related solutions have recently emerged, aiming at converting IoT sys-
tems and devices into smart entities. In line with this, both on-device and distributed
intelligent mechanisms are considered as two different approaches for reaching this goal.

2.2.1. On-Device Intelligent Mechanisms

As mentioned previously, TinyML is a recently arrived paradigm that permits the
embedding of powerful ML models in resource-constrained units, such as wearable de-
vices [12]. The usual TinyML workflow is presented in Figure 1. As can be observed, it is
split into three well-differentiated phases. In the first one, the selected ML algorithm is
trained in a computer or server, in order to obtain a regular ML model. To this end, typical
ML frameworks can be employed, e.g., scikit-learn, Pytorch, TensorFlow, Keras, etc. The
obtained model is then optimized and ported to a coding language that is supported by
constrained end-devices, normally C in some of its versions. This task is performed by
different TinyML toolkits from both big companies (e.g., Google, Microsoft, ARM, etc.)
and developers that can be used without cost in some cases. A detailed survey of the
TinyML frameworks that are available in the market can be found in [6]. The output of the
conversion stage is a TinyML model that has inherited all the properties of the original
one, but it is optimized to be embedded and executed by a microcontroller unit. Finally,
in the last step, the ML-based inference is performed by the end-device, which now may
be considered as a smart entity, leveraging the capabilities that are introduced by the
integrated ML mechanism.
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Focusing on the benefits of embedding TinyML-based intelligence within wearables,
they are manifold. Firstly, as discussed previously, this enriched processing capacity will
permit the detachment of the constrained unit from the master device. This is important
in order to obtain truly autonomous devices that are able to make their own decisions.
Besides, increasing on-device processing also permits the reduction in communication
tasks. Although in the previous section the LPWAN technology has been identified as an
energy-efficient alternative in comparison with other communication solutions, it is still
more consuming than moderate local processing. Regarding the delay in obtaining the
output of a certain computation, the process of sending data to the cloud and waiting to
receive the answer is notably slower than performing the data processing locally. This
aspect is crucial for non-delay-tolerant applications. Furthermore, considering that many



Sensors 2021, 21, 5218 5 of 22

applications of wearables are oriented to monitor fitness or health metrics, the privacy
and security of these data should be ensured. For that reason, conducting on-device
processing of the collected data avoids possible data leaking and other cybersecurity
risks [13]. Besides, current wearable devices lack a high grade or personalization. This is
important for tailoring the experience that is offered to each user, in an automatic way. User
and gesture recognition, emotion analysis, etc., will permit the development of wearable
applications that are capable of dynamically adapting themselves to the state of the user in
real time.

In light of this discussion, it can be concluded that the dependency of wearable
devices from the cloud can be notably limited, thanks to the TinyML paradigm. Besides,
the reduction in communications with the cloud shortens task latencies at the time of
improving data security and user experience. However, the main limitation of the strategy
followed by TinyML is that the optimized models are hard to be updated once embedded
in the device. Therefore, they are static in nature and cannot be updated on-the-fly. To cope
with this issue, other AI-distributed solutions have also recently emerged, with the aim of
permitting end-devices to build ML models in a cooperative and dynamic way.

2.2.2. Distributed Intelligent Mechanisms

Given the mobile nature of wearable devices, and their vast number in the near future
(together with other IoT devices), in some applications it can be highly beneficial to train
and build ML models from decentralized data, and in a distributed way. This is the
proposal of the federated learning (FL) paradigm. Concretely, FL permits the coordination
of a number of end-devices with a central server for collaboratively building a global model
using the local data of each end-device, although without sharing these raw datasets. To
this end, firstly the central server builds the first version of the global model, with certain
initial parameters. Then, each end-device downloads the model and updates it locally by
using its own dataset. Once the model has been updated, it is uploaded back to the central
server, which aggregates and combines all the model updates that were received from the
end-devices. The model generation may be conducted in different ways. For example,
the whole model may be cooperatively built by all end-devices, or each end-device (or a
group of them) may be in charge of building a certain portion of the whole model. After
some iterations, the model will be refined, thanks to the collaboration of the constrained
units, which will finally obtain an updated and rich ML model that has been built with
a variety of local datasets of each end-device. In addition to this approach, based on the
coordination of end-devices from a central point, there is another decentralized strategy
that permits end-devices to coordinate themselves without an external entity. Thus, IoT
units communicate with each other in a p2p fashion, and, following a similar process
as that described above, after a certain rounds of model exchanges and updates, they
obtain a finally consensual model [7]. Each of the mentioned strategies, centralized and
decentralized, are related to different networking architectures, which follow different
paradigms, such as edge [14] or fog [15] computing, respectively. Figure 2 presents the
architecture of both the approaches.

Following the FL strategy, a number of benefits are brought to IoT devices in general,
and wearables in particular. Firstly, the model quality is improved, as it is trained using
different datasets, hence expanding its training inputs. This is of crucial importance for a
wearable unit, given its dynamic nature, as it will be ready to adequately react to situations
never seen before by itself, but already captured in others’ datasets. Besides, this learning
process will be maintained during the system’s lifetime, as the datasets will be continuously
updated with new end-devices’ observations. This will permit constrained units to get
smarter over time, which is different to the TinyML solution that, as aforementioned, is
more static, although the firmware over-the-air (FOTA) concept may fill this gap and permit
TinyML models to be dynamically updated as well [16].
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Similar to the TinyML approach, FL will allow the reduction in communication tasks
in comparison with strategies based on centralized processing in a datacenter. Observe that
no raw data is transmitted from the end-devices to the central server, but just the ML model
parameters. This has two main implications. Firstly, the volume of transmitted data is
notably limited, with the energetic benefits discussed previously. Besides, considering the
low data rate of LPWANs, as the amount of exchanged data is decreased, the latency on the
model generation is also reduced. Secondly, data security and privacy are also enhanced,
as the transmission just includes model parameters, which are difficult to understand by a
malicious observer. This is crucial in the case of wearables, as they usually handle sensitive
data from the carrier, such as health metrics or his/her geographical position in real time.

Another important feature of FL is the transparent interaction of several types of
devices. Firstly, these elements may be working in different environments, thus enriching
the finally produced model. This will permit wearables to host intelligent mechanisms built
by themselves and by other gadgets, hence expanding their possibilities and capability
to react against situations they have never seen before. In addition, the use of different
datasets also prevents the obtention of biased models, which may be limited by the data
captured by a specific class of device.
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The integration of intelligent algorithms in resource-constrained units is not something
new [17]. However, the proposals that can be found in the literature are ad hoc solutions
to deal with specific problems or use cases. The development of well-defined methodolo-
gies and procedures for embedding intelligence within end-devices is a step forward for
extending the use of solid ML libraries, e.g., scikit-learn or TensorFlow, instead of fostering
individual efforts with limited generalization capability. This will fuel the integration of
reliable ML mechanisms in a plethora of IoT and wearable units, with all the advantages
identified above. Consequently, and given the open nature of many TinyML toolkits, a rich
and dynamic ecosystem of researchers, developers, and makers will be created.

To conclude this section, it can be observed how the recent advances in both commu-
nication and AI technologies will provide a great momentum to the wearable industry.
The reviewed solutions provide novel capabilities to end-devices for interacting with the
environment, the cloud, and other IoT elements, in a smart and context-aware way. Un-
doubtedly, this paves the way for the development of innovative services and applications,
as discussed in the following.

3. Discussion: The Future of Wearables

The LPWAN and intelligent optimized mechanisms analyzed above are the building
blocks for future wearable devices and applications. As discussed previously, they will
permit the definitive detachment of end-devices from the smartphone. This is important in
several use cases, where removing this heavy and bulky element is a clear benefit for the
user, such as in the following: jogging, water sports, elderly people monitoring, etc. Besides,
in order to increment the autonomy of wearables, battery-free solutions are also being inves-
tigated [18]. In the following, insights regarding the wearables applications are provided,
which will be potentially benefited from the integration of long-range communications and
intelligent capabilities.

3.1. Evolved Wearables Applications

The sectors within the wearables ecosystem that will be benefited from the integration
of the technologies under consideration in this paper are multiple. In the first place, the most
popular wearable devices, i.e., fitness and activity trackers, will increment their features and
services offered to users, e.g., earbuds for monitoring vital signs [19]. Given the variety of
physiological and biomechanics metrics that they are able to measure, tailored monitoring
for each specific user will be enabled, thanks to the integration of intelligent processing.
This is of relevant importance for professional athletes with the aim of meticulously
planning their training sessions to maximize their performance [20]. Intelligent wearables
will become advanced personal trainers, by means of human activity recognition (HAR)
mechanisms [21], hence being capable of analyzing the athlete posture and dynamics. In
line with this, the device will be able to flexibly readjust its behavior depending the user
and contextual circumstances, e.g., scenario, climatic conditions, user status, etc. Thus,
thanks to the wearable’s embedded ML models, precise medical diagnosis, improved
physical rehabilitation efficiency, or detailed sport performance analysis, among others, are
services that will be available in the next generation of fitness and sport trackers. Besides,
the integration of long-range transmission capabilities will enable the quick triggering of
alerts in the case of an emergency, such as in mountain and water sports, or activities in
remote areas, in general. Other interesting solutions are oriented to improve the safety of
pedestrians and joggers, by warning them when a vehicle is approaching [22].

Clearly, the eHealth industry is another hot niche for the development of innova-
tive applications, thanks to the upcoming smart wearables, specially implanted devices,
e-patches, or e-tattoos [23]. Prompt disease detection is fundamental for the diagnosis of
illnesses before their first symptoms [24]. In line with this, a quick detection of infectious
diseases is crucial in order to avoid pandemics [25]. Besides, having continuous monitoring
of critical patients [26], chronic diseases [27], or elderly people [28], is greatly relevant for
the patient’s quality of life. This monitoring is usually conducted in indoor environments,
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hence the exploitation of LPWANs for maintaining periodic contact or triggering alerts to
the patient’s healthcare service may be highly beneficial [29]. Considering mental disorders,
emotional recognition is critical for providing an adequate care service and ensuring the
patient’s well-being [30]. Advanced wearables for this kind of patient, or others with physi-
cal disabilities, would be highly valued, such as automatic drug dispensers [31] or personal
assistants, e.g., the smart-belt for blind people, recently proposed in [32]. Regarding the
latter, end-devices with natural language processing [33], computer vision [34], or city
navigation [35] capabilities, will be essential to increase the autonomy of impaired people.
Smart jewelry and straps are other devices that are currently receiving great attention,
given their features to be employed in a range of eHealth-related services [36].

Personal assistants may be oriented to other multiple applications in both personal and
industrial segments. They will enable an enriched user experience through the exploitation
of augmented reality mechanisms. For example, smart glasses and masks will be employed
in industrial environments to help workers in their daily tasks, for example, by guiding
them through a factory, indicating the precise point of failure in a complex system, or
providing virtualized controllers [37,38]. In this case, the independence of the wearable
unit from a master device will allow the freedom of both hands, which is highly important
in this kind of scenario. Aligned with the natural language processing use case identified
above, smart hearables will be capable of translating incoming speech in real-time, thus
improving the interaction between people that do not share a common language. Regarding
this interaction between individuals, the detection of other’s sentiments and mood will
help to better understand each other [39]. Finally, eyerables, or smart glasses, will enable
advanced infotainment services in different domains, by means of virtual reality. For
example, tourists will receive updated city maps or real-time information of the monuments
they are visiting [40]. In turn, intelligent earables, such as headsets or earbuds, will be
able to automatically select the most adequate music according to the emotional status of
the user [41].

The market of smart clothes and e-textiles has also notably been growing during
the recent years, and it is predicted that their penetration will increase in the following
years [42]. The integration of intelligence in garments will enable the active sensing of
biometric information, aiming at making them adaptive to the user conditions. Clear
examples are continuous body temperature sensing and regulation [43], or detection of
excessive sun exposure [44,45]. Intelligent clothes will boost the development of multiple
applications in sensitive ambits, such as the baby’s heart and breathing rate monitor
presented in [46], which triggers an alert in the case of detecting anomalies. Besides
the fitness wearable gadgets mentioned above, a new wave of intelligent textiles will be
oriented to this market segment. Considering professional athletes, smart clothes will
be able to intelligently track their activity for providing specialized support for reaching
certain goals. This concept, known as wearable coach, is being deeply investigated, and
some authors have proposed to include built-in haptic vibrations for pulsing particular
body parts, with the aim of encouraging the athlete to move it or hold a certain posture [47].
As mentioned previously, wearables will have an important role in the improvement of
rehabilitation processes [48]. Another hot research line is the use of e-textiles for ambient
sensing, in order to develop intelligent ambient-assisted living applications for elderly
people [49], or environmental monitors for detecting harmful levels of pollution [50]. Given
the large size of certain garments, e.g., shirts or pants, they can be employed as smart energy
harvesters, by means of flexible solar panels to provide energy to other wearables [51].

Finally, the smart interaction of wearables with other gadgets will pave the way for the
development of the tactile and gesture-based internet [52]. In addition, gesture- and touch-
sensitive clothes will permit the easily control of applications in other screens, e.g., maps
or multimedia services, as proposed by Samsung’s smart suit (https://samsung.com/;
accessed on date: 5 July 2021) or Google’s Jacquard (https://atap.google.com/jacquard/;
accessed on date: 8 July 2021) projects.

https://samsung.com/
https://atap.google.com/jacquard/
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3.2. Challenges

Although the development of the next generation of wearables keeps progressing at a
good pace, there are still certain challenges that need to be addressed in order to achieve
the successful integration of the intelligent and communication technologies that have been
reviewed above.

3.2.1. Energy Constraints

Firstly, the most important challenge to overcome is the energetic limitations of
wearable units. Although the combination of LPWANs and embedded ML permits the
reduction in the volume of the power-demanding communication tasks, the small size
of wearable’s batteries prevents them from providing large capacities, and, consequently,
long working times under intense operations. Wireless charging is offering more flexibility
and convenience to the users; however, charging devices is usually annoying, hence its
frequency should be reduced. Batteries are being improved in their efficiency and size,
and, even though the most employed element is still lithium/lithium-ion, other innovative
materials, such as graphene, are also being investigated [53].

However, the related field of study that is receiving more attention during the recent
years is energy harvesting. As mentioned previously, energy harvesting is a promising
technology for wearables, as it will permit the charging of batteries on-the-fly, making
these devices completely autonomous from the power grid. The sources of energy under
study are manifold, with kinetic, thermoelectric, and solar energy harvesting being the
most advanced ones. The former is a highly interesting option for wearables, as it exploits
the energy generated by the motion of the device carrier. Many studies have focused
on the foot as the most convenient body part for placing this type of harvester [54], and
some self-sustainable simple wearable devices based on inertial kinetic energy have been
already proposed [55]. On the other hand, thermoelectric energy harvesting converts the
temperature gradient between the human body and the environment into electric energy.
This option is especially oriented to devices with certain surface in touch with the skin,
such as smart watches, e-patches, or e-shirts, among others. Leveraging this technology,
the first battery-free body-powered prototypes have been developed, as reported in [56].
Solar and ambient light energy harvesting is the most common and advanced energy
harvesting technology. In line with this, watches and shirts are the most employed form
factors for solar-powered devices. As aforementioned, the latter is a convenient solution,
given the dimensions of the solar panel, which may permit energy to be provided to other
devices worn by the user [57]. Finally, it is worthy to mention another energy harvesting
methodology that is gaining momentum, consisting of converting the energy of ambient
radio-frequency waves into electric energy. This technology leverages the electromagnetic
energy of the omnipresent radiocommunication networks, such as WiFi, BT, or cellular
solutions. Although the energy conversion rate is still very low, interesting advances are
being achieved in this field [58,59].

3.2.2. Computing Limitations and Device Heterogeneity

Given the energy constraints mentioned above, wearable devices usually mount effi-
cient microcontrollers as processing units. Although notable advances are being conducted
in the computation power of these elements, they are still far from modern CPUs. As
discussed in the previous sections, the recent dawn of the TinyML paradigm paves the
way for enabling complex ML-based processing within the device. This is crucial for the
development of novel smart services and applications provided by the wearable device,
without the support of external entities. Besides, it should be considered that wearable
units have very specific functions, hence the scope of their implemented activities is notice-
ably narrow, so the processing algorithms can be highly optimized for these specific tasks.
However, some heavy computing tasks are not adequate to be executed by the device, so
they should be offloaded. Great efforts are being devoted to the computation offloading
paradigm, especially aligned with the edge computing concept [60,61]. As communication
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activities should be limited, given their notable energy consumption, the amount of data
exchanged with the edge or cloud should be reduced. At this point, it is important to
mention the data aggregation solutions that are being developed, leveraging the power of
diverse ML-based mechanisms [62].

In addition to on-device computation and task offloading solutions, distributed ap-
proaches, such as FL, open a variety of possibilities to share processing resources that are
available in other cooperative constrained units. The main advances in this field have been
achieved under the umbrella of the fog computing paradigm [63]. The main challenges of
this computation model are related to the correct coordination of participants, and the need
to be greatly efficient in both computation and communication tasks for reducing energy
consumption. However, as explained previously, the fact that each device may cooperate
with its own data and contextual knowledge is greatly beneficial for all the participants,
as the obtained outcomes are not limited to the scope of a single element. This strategy
permits the aggregation of small portions of available computing resources in different
devices, hence building a web of collective intelligence.

Regarding the variety of wearable devices that are already available on the market,
as well as the new ones that will appear in a short amount of time, it is necessary to
find a common ground for the straight and fruitful integration of the computation and
communication technologies treated in this article. The main issues are related to the
former, because, in the case of embedding intelligent algorithms, the computing and
memory resources of the device dramatically determine the complexity of the integrated
mechanisms, as explored in Section 4. The large range of hardware platforms in the
market is a non-negligible obstacle for producing a set of embedded ML frameworks that
could deal with the constraints of most microcontroller-based units. Besides, this also
is an impediment for designing agnostic benchmarking methodologies and toolkits [64].
For those reasons, the possibility enabled by the TinyML paradigm of employing well-
known and general-purpose ML libraries for developing the desired optimized models
is crucial for obtaining solutions with great generalization capability, which will increase
the awareness and adoption of the developed solutions. Finally, with regard to the issues
of integrating different transmission technologies within the wearable devices, they are
usually related to the dimensions of the communication interface, and, specially, of the
antenna. The size of the antenna is an important factor, as it determines its transmission
and reception gain. Thus, employing communication technologies and modules with very
high sensitivity, such as LPWANs [4], will allow the dimensions of the involved peripherals
to be reduced, therefore easing their integration within the wearable unit.

3.2.3. Data Security

Last, but not least, the confidentiality and integrity of the data that are wirelessly
exchanged by the wearable, with the infrastructure or other devices, must be ensured.
This is of prominent importance, considering the private information that these data may
contain. Focusing on data confidentiality, the cryptographic algorithms should be strong
enough against different types of attacks, such as eavesdropping, traffic analysis, etc. These
threats may increase, considering that the end-devices will gain direct connectivity with
the internet, for example, by receiving a public IPv6 address [65]. The limited processing
and memory resources that are available in wearables make the implementation of highly
robust encryption schemes and other defensive schemes difficult, as they would be greatly
time and energy consuming. This is especially critical in the case of using LPWANs,
given their constraints in the amount and size of the transported messages. Different
solutions are under study, to enable efficient key generation and renewal for constrained
end-devices [66], even being compliant with the security requirements of the novel 5G
architecture [67]. The malicious access to the data that are transmitted by a wearable
may permit user identification, as well as exposing sensitive data, which easily allows
the monitoring user habits and real-time sensed information. For example, sophisticated
analysis of the data generated by a smart watch permits the inference of user inputs to
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keyboards, with the aim of revealing passwords [68,69]. Many other vulnerabilities and
cyberthreats affect wearables [70], hence novel solutions, for example, based on embedded
ML [71], which may permit the dynamic adaptation of the device to future cyberattacks,
would be highly desirable.

Considering data integrity, it is also of prominent importance to avoid the transmitted
information being altered in transit or the user identity being supplanted. Regarding the
latter, impersonation attacks are critical in different applications, such as those related to
medical or financial services. They may permit the attacker to not just supplant the user
identity, but also gain access to the network or data infrastructures [72]. To cope with
these issues, the development of mutual authentication methods, i.e., end-device network,
is a valid solution. However, they usually rely on asymmetric cryptography or digital
certificates, which require great computational and memory resources. Recent proposals,
such as the one in [73], allows a secure and efficient bootstrapping of constrained IoT
devices that are connected to different kinds of network infrastructures. The bootstrapping
process is of prominent importance for ensuring the transactions of the device with the
network. It requires a range of security operations, such as authentication, authorization,
and key management, which should be tailored to the communication and processing
capabilities of the end-device. Thus, once authenticated, the wearable unit may exchange
data with remote servers or other surrounding devices in a safe way. Wearable device
authentication is a hot research field, and different solutions are being proposed according
to the requirements of the different families of wearables [74].

4. Use case

This section aims to propose a general device architecture for next-generation wear-
ables, as well as presenting the results of a real implementation in which the following
have been explored: (i) the connectivity gained by a wearable unit through an LPWAN
deployment, and (ii) the supported complexity of certain ML mechanisms embedded in
the device.

4.1. Device Architecture

A general architecture for wearable devices, integrating the communication and AI
technologies explored previously, is presented in Figure 3. As can be observed, its central
entity is the processing unit, which consists of a microcontroller, as well as the required
program memory space. Here, the main limitations of the device can be found, as this
element should be highly energy efficient, cost effective, and with a reduced size. Consid-
ering the need of storing a certain amount of sensed data for on-device ML processing,
a storage bank is also necessary, although this is not a limiting aspect, given the novel
generation of tiny storage solutions. As depicted in the diagram, a series of sensors (or even
actuators) and a GPS module are also integrated within the unit. The nature of the former
will depend on the target application, and they should also be highly power efficient during
their data sampling activities. Regarding the energetic aspects, the battery is another key
component of the device, as it should be large enough to provide long working times, but
its weight and dimensions should certainly be limited. As discussed previously, some
recent proposals are evaluating the performance of energy harvesting systems that are
attached to wearable devices [56].

Regarding the integration of intelligent mechanisms following some of the paradigms
discussed before, i.e., TinyML or FL, they should be meticulously adapted to the target
unit, considering its computing and memory constraints. To give insights about this issue,
in the following sections, a detailed study addressing the limitations of a well-known
microcontroller unit is presented. As will be discussed, the integration of the optimized ML
model may present issues that are related to the limitations of program or data memories,
depending on the algorithm implementation. The target device will also be crucial for
determining the complexity of the ML-based model. As can be observed in the figure, the
intelligent system may be integrated in a plethora of devices with different requirements
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and needs, in terms of input data, response latency, etc. Thus, the embedded intelligence
will interact with the stored data in order to make smart decisions (TinyML) that may
trigger certain actions or contribute to the cooperative development of an FL-based model,
among other activities [6].
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Considering communication aspects, given their low energy consumption and the
opened possibilities identified above, a number of LPWAN interfaces may be integrated
into the unit. They will be able to directly interact with cloud services that will complement
on-device tasks by providing extra applications or nicely presenting information, and
report to the user. To this end, he/she will make use of personal devices, such smartphones
or tablets, to access and visualize the data by means of specialized apps or web-based dash-
boards. Given that the connectivity between the wearable unit and this kind of device will
still be necessary, additional communication interfaces, such as WiFi or Bluetooth, will be
present, although their use will be notably reduced, as explained in the previous sections.

4.2. Implementation

Aiming at studying the performance of a real wearable device, integrating the tech-
nologies discussed in the paper, a functional wearable unit has been implemented. To
this end, the wearable device that is shown in Figure 4 has been selected. The reason
for choosing this unit is that it is powered by the ATmega 328p microcontroller, which is
widely known, as it is integrated within the Arduino Uno board. This microcontroller is a
highly restricted solution, as it presents an 8-bit processor at 16 MHz, and with flash and
Static RAM (SRAM) memories of 32 and 2 kB, respectively.
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Figure 4. Wearable unit employed in the experiments.

Regarding the connected peripherals, the GY-NEO6MV2 GPS module has been used,
employing the Arduino’s TinyGPS library for interacting with it. Besides, the wearable
unit has been provided with LPWAN connectivity, by means of the RN2483 LoRaWAN
module and a 2dBi helical antenna attached to it. This chip is a certified LoRaWAN device,
and is very popular in both academia and industry implementations, as it provides a
well-documented and easy-to-use library. The communication with both modules are
conducted via two virtual serial ports, opened thanks to the Arduino’s SoftwareSerial
library. Finally, the MPU6050 accelerometer and gyroscope sensor has been connected to
the wearable unit as an example of the possible embedded sensor.

Both the MPU6050 and Arduino’s Wire libraries have been used to communicate
with this module via an I2C (Inter-Integrated Circuits) connection. The specification of the
libraries that were employed in our implementation is important, in order to analyze their
memory footprints, which certainly determine the maximum complexity of the intelligent
algorithm to be integrated. Finally, a 2000 mAh powerbank was employed to power the
built solution.

4.3. Experiment Details

As explained previously, two different studies have been conducted. Firstly, a cover-
age test has been conducted in a university campus scenario, with an already deployed
LoRaWAN infrastructure. This study has consisted of a sampling campaign along the
campus, in both outdoor and indoor locations. Concretely, a ping application has been
developed in order to test the connectivity of the device with the infrastructure, in both
uplink and downlink directions. As shown in Figure 5a, the exploited LoRaWAN infras-
tructure consists of one LoRaWAN base station placed within the Espinardo Campus of
the University of Murcia (Spain). This element is a Kerlink LoRaWAN gateway, with an
8 dBi-gain antenna placed on the roof of a three-story building, at a height of approximately
10 m above ground level (Figure 5b). Regarding the end-device’s LoRaWAN configuration,
the LoRa physical parameters have been set as follows: spreading factor (SF) = 12, coding
rate (CR) = 4/5, and packet length = 50 B. The developed application periodically sent a
“ping” packet to an app server placed in the cloud, which automatically responded back
upon the reception of the “ping” message. With this setup, the packet delivery ratio (PDR)
and coverage level of the wearable device along the campus have been measured.
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Thereafter, the complexity of the TinyML models that can be embedded in the wearable
device has also been studied. To this end, the emlearn (https://github.com/emlearn/
emlearn/; accessed on date: 15 July 2021) library has been employed in order to convert a
series of random forest (RF) and multi-layer perceptron (MLP) models, generated by the
Python’s scikit-learn framework. The selection of the emlearn library has been due to its
wide compatibility with different ML algorithms, and because it is capable of generating a
C code that is runnable by 8-bit processors, which is not a typical characteristic of TinyML
toolkits [6]. For training the models, a public dataset [75] that is oriented to the automatic
identification of the wearable carrier has been employed. Please note that, although an
inertial sensor has been integrated in the wearable unit for consistency purposes, the
accuracy and performance of the generated models for this task are out of the scope of this
work. As mentioned above, the generated TinyML models have been embedded together
with the different libraries that are needed by the connected peripherals (GPS, LoRaWAN
modem, and inertial sensor). This strategy has been followed in order to explore a realistic
use case, in which several elements are connected and work over the wearable unit.

4.4. Results

In the following, the outcomes of the conducted experiments are presented and
discussed. Firstly, the coverage gained by the wearable device, through the LoRaWAN
interface connected to it, has been evaluated. After that, the footprints of different TinyML
models embedded in the device are explored, aiming at providing insights about how
much ML model complexity can be supported by the wearable unit.

4.4.1. LPWAN Communications

As stated above, a sampling campaign has been carried out in order to evaluate the
connectivity of the wearable within a university campus scenario, thanks to a pre-existent
LoRaWAN deployment. This experiment was conducted by carrying the wearable unit
while riding a bicycle or walking along the campus. Note that these measurements are
not intended to comprehensively provide a performance evaluation of the LoRaWAN

https://github.com/emlearn/emlearn/
https://github.com/emlearn/emlearn/
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network in the campus, but to demonstrate the connectivity that a wearable device can
gain, thanks to this kind of long-range low-power communication. Figure 6 shows the
attained coverage and the signal level (signal-to-noise ratio (SNR)) in both the uplink
(Figure 6a) and downlink directions (Figure 6b). Observe that the grey points indicate lost
packets and that indoor locations have been indicated with red circles. In general, observe
the good connectivity obtained by the wearable device along the campus scenario. The
performance is notable in both the indoor and outdoor locations, which is a highly valuable
characteristic for wearables. A coverage shadow has been found in the north-east area of
the campus ring, as it is the most problematic zone, given the distance to the LoRaWAN
gateway and the presence of dense vegetation and big buildings. This area introduces
the major contribution to the overall packet loss obtained in the experiment. In order
to provide more details about the reliability of the communications, Table 1 presents the
packet delivery ratio (PDR) obtained in our trials. Concretely, it is studied depending on the
type of location (indoor or outdoor) and the transmission direction (uplink or downlink).
Observe the good figures obtained in all cases, always with a PDR over 92%. Although
this is an expected result in outdoor environments [5], the good performance in indoor
locations is remarkable. Besides, it can be observed that the performance is better in the
uplink direction, which is the predominant link for this type of device. Given that the
radio link was symmetric, this outcome can be explained by the better noise factor of the
gateway radio module, as compared with that of the end-device. In light of these results, it
can be observed how the wearable device is provided with long range connectivity with an
efficient transmission technology.
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Table 1. Packet delivery ratio (PDR) in indoor and outdoor locations.

Uplink Downlink

Indoor 92.7% 92.4%

Outdoor 97.8% 96.15%

4.4.2. TinyML Integration

As mentioned previously, a series of ML models have been embedded in the wearable
unit, by means of the emlearn TinyML framework. Concretely, the selected algorithms
are as follows: random forest (RF), as a powerful generalization of the decision tree (DT)
algorithm that provides great flexibility and generalization capability, and multi-layer
perceptron (MLP), given the interesting possibilities and widely adopted neural network-
based models. The integration of the produced TinyML models has been conducted
together with the required libraries for the proper functioning of the peripherals connected
to the wearable, namely, LoRaWAN transceiver, GPS module, and inertial sensor. This
strategy allows the evaluation of the joint footprint of these libraries and the TinyML model
on the device.

Focusing on the implemented RF models, some of their configuration parameters have
been fixed as follows: criterion: gini; maximum depth: none; bootstrap: true; minimum
samples to split: two. With these common parameters, a set of RF models with different
internal estimators have been embedded on the wearable device. Figure 7 depicts the
memory footprint on the wearable device of these models and the peripherals libraries.
Concretely, Figure 7a presents the occupied program memory. As expected, the footprint
of the peripherals libraries remains constant, and that of the RF TinyML model grows as its
complexity is increased. As the RF’s nodes and branches are expanded, the generated code
becomes heavier, which is directly reflected in the program memory occupancy. However,
observe that a complex model, with 30 internal estimators, fits perfectly within the device.
The maximum complexity of the RF model to fit within the wearable is about 50 internal
estimators, which is a considerable figure that makes this model adaptable to different cases.
In turn, observe, in Figure 7b, that the footprint on the SRAM is scarcely affected by the RF
model. This is explained by the internal structure of the TinyML model implementation,
which, in this case, does not make much use of variables that are stored in the SRAM.
However, this behavior is not followed by the produced MLP TinyML models, as explained
in the following.

The attained memory footprints for the produced MLP TinyML models are shown in
Tables 2 and 3. Given the number of evaluated models, this presentation format has been
chosen for improving the outcomes readability. Observe that the performance of different
neural network structures has been evaluated, considering several hidden layers and a
number of neurons per layer. Regarding the impact on program memory (Table 1), observe
that, differently from the RF models, the footprint on this memory is barely affected by the
complexity of the MLP model. The total occupancy ranges from 72% to 74% of the available
memory, depending on the number of hidden layers and neurons. However, it is clear that
the impact of the TinyML model is much lower than that of the peripherals libraries.

On the other hand, the major footprint of the MLP TinyML models is on the occupied
SRAM, as shown in Table 2. In this case, observe its variation when the number of neurons
in the network grows. The MLP configurations that surpass the maximum SRAM available
in the unit are highlighted in bold. It can be observed that, in this case, the maximum
number of neurons forming the neural network is about 60, which, again, is a notable
figure that permits many MLP configurations. Differently from the RF models, in this case,
the weights and biases of the MLP TinyML model are stored in the SRAM; therefore, this is
the principal factor that limits the complexity of the embedded model.
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Table 2. Memory footprint of the multi-layer perceptron (MLP) TinyML implementation on the wearable device.

Layers\Neurons per Layer 2 5 10 15

1
Peripherals: 20,812 B

TinyML: 2490 B
Total: 72.2%

Peripherals: 20,812 B
TinyML: 2550 B

Total: 72.4%

Peripherals: 20,812 B
TinyML: 2650 B

Total: 72.7%

Peripherals: 20,812 B
TinyML: 2750 B

Total: 73%

2
Peripherals: 20,812 B

TinyML: 2514 B
Total: 72.3%

Peripherals: 20,812 B
TinyML: 2586 B

Total: 72.5%

Peripherals: 20,812 B
TinyML: 2706 B

Total: 72.9%

Peripherals: 20,812 B
TinyML: 2826 B

Total: 73.2%

3
Peripherals: 20,812 B

TinyML: 2538 B
Total: 72.3%

Peripherals: 20,812 B
TinyML: 2622 B

Total: 72.5%

Peripherals: 20,812 B
TinyML: 2762 B

Total: 73%

Peripherals: 20,812 B
TinyML: 2902 B

Total: 73.5%

4
Peripherals: 20,812 B

TinyML: 2562 B
Total: 72.4%

Peripherals: 20,812 B
TinyML: 2658 B

Total: 72.7%

Peripherals: 20,812 B
TinyML: 2818 B

Total: 73.2%

Peripherals: 20,812
BTinyML: 2978 BTotal:

73.7%

5
Peripherals: 20,812 B

TinyML: 2586 B
Total: 72.5%

Peripherals: 20,812 B
TinyML: 2694 B

Total: 72.8%

Peripherals: 20,812 B
TinyML: 2874 B

Total: 73.4%

Peripherals: 20,812 B
TinyML: 3054 B

Total: 74%
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Table 3. SRAM footprint on the wearable device.

Layers\Neurons per Layer 2 5 10 15

1
Peripherals: 1333 B

TinyML: 162 B
Total: 73%

Peripherals: 1333 B
TinyML: 238 B

Total: 76.7%

Peripherals: 1333 B
TinyML: 378 B

Total: 83.5%

Peripherals: 1333 B
TinyML: 518 B

Total: 90.4%

2
Peripherals: 1333 B

TinyML: 186 B
Total: 74.1%

Peripherals: 1333 B
TinyML: 274 B

Total: 78.4%

Peripherals: 1333 B
TinyML: 424 B

Total: 86.2%

Peripherals: 1333 B
TinyML: 594 B

Total: 94%

3
Peripherals: 1333 B

TinyML: 210 B
Total: 75.3%

Peripherals: 1333 B
TinyML: 310 B

Total: 80.2%

Peripherals: 1333 B
TinyML: 490 B

Total: 89%

Peripherals: 1333 B
TinyML: 670 B

Total: 97.8%

4
Peripherals: 1333 B

TinyML: 242 B
Total: 76.9%

Peripherals: 1333 B
TinyML: 346 B

Total: 81.9%

Peripherals: 1333 B
TinyML:546 B
Total: 91.7%

Peripherals: 1333 B
TinyML: 746 B
Total: 101.5%

5
Peripherals: 1333 B

TinyML: 274 B
Total: 78.4%

Peripherals: 1333 B
TinyML: 382 B

Total: 83.7%

Peripherals: 1333 B
TinyML: 602 B

Total: 94.4%

Peripherals: 1333 B
TinyML: 822 B
Total: 105.2%

The attained results suggest that the complexity of the models that can be embedded
in the wearable unit may be enough to tackle an important range of use cases, as discussed
in [76]. Even more, this complexity can be increased if the footprint of the other employed
libraries is reduced. This is thanks to the good performance of the TinyML frameworks
that are able to notably optimize and reduce the weight of complex ML models [6]. Besides,
the use of LPWANs in this kind of device is also an interesting option that permits efficient
long-range communications for detaching the wearable unit from its master device. There-
fore, the confluence of LPWANs and embedded ML has the potential to be an exceptional
opportunity for the wearable industry, as it may open the door for the development of new
applications and services that have never been seen before [6]. Depending on the require-
ments of the application under consideration, the role of each of the addressed technologies
will be different. Thus, although almost permanent connectivity may be achieved, through
the exploitation of different LPWAN solutions, intelligent TinyML-based mechanisms can
optimize network operations by means of advanced on-device processing. For example,
local aggregation may be highly useful for performing adequate data curation prior to its
transmission to the cloud. Furthermore, the coordination of distributed embedded ML
models may lead to the cooperative development of intelligent mechanisms, which is a
promising solution for obtaining flexible and non-static wearable devices.

5. Conclusions

This article has treated novel technologies that may boost the innovations in the
wearables sector in the following years. Concretely, the focus was on the LPWAN and
embedded ML paradigms. In both the cases, they fill important gaps that prevent current
wearable devices to be truly autonomous and independent units from both communication
and processing perspectives. Regarding LPWANs, they enable long-range transmissions
with limited energy consumption, which permits end-devices to directly connect to the
network infrastructure without using another paired element as a relay, e.g., a smartphone.
On the other hand, the adoption of embedded ML solutions, such as TinyML or FL,
allows wearable units to make their own decisions, without the support of the cloud or a
master device. Thereby, this paper has focused on the integration of these state-of-the-art
communication and artificial intelligence technologies within the wearable’s ecosystem,
hence enabling the development of truly autonomous and smart wearable devices. Both the
approaches have been evaluated by means of a real experiment, in which the performance
of a widely used wearable unit supporting LPWAN communications and TinyML-based
computation, has been studied. The attained results suggest the validity of the proposal,
as the wearable connectivity and processing capabilities can be notably and successfully
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enhanced. As future work, it is planned to design and build a fully integrated wearable
prototype, efficiently gathering a set of peripherals for enabling it to be adaptable to a series
of use cases, thanks to the integration of additional embedded ML models.
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