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Abstract: In the field of surface defect detection, the scale difference of product surface defects is often
huge. The existing defect detection methods based on Convolutional Neural Networks (CNNs) are
more inclined to express macro and abstract features, and the ability to express local and small defects
is insufficient, resulting in an imbalance of feature expression capabilities. In this paper, a Multi-Scale
Feature Learning Network (MSF-Net) based on Dual Module Feature (DMF) extractor is proposed.
DMF extractor is mainly composed of optimized Concatenated Rectified Linear Units (CReLUs) and
optimized Inception feature extraction modules, which increases the diversity of feature receptive
fields while reducing the amount of calculation; the feature maps of the middle layer with different
sizes of receptive fields are merged to increase the richness of the receptive fields of the last layer of
feature maps; the residual shortcut connections, batch normalization layer and average pooling layer
are used to replace the fully connected layer to improve training efficiency, and make the multi-scale
feature learning ability more balanced at the same time. Two representative multi-scale defect data
sets are used for experiments, and the experimental results verify the advancement and effectiveness
of the proposed MSF-Net in the detection of surface defects with multi-scale features.

Keywords: surface defect classification; deep learning; convolutional neural network; multi-scale
features; multi-size defects

1. Introduction

With the rapid development of the manufacturing industry, people are paying more
and more attention to the surface quality of various industrial products. The surface quality
of the product will not only affect the appearance and visual effect of the product, but also
affect the internal quality and performance of the product. In order to reduce production
costs, improve production efficiency and product quality, it is very necessary to effectively
detect surface defects in the product manufacturing process.

At present, the commonly used surface defect detection methods are as follows [1]:

1. Artificial visual inspection, which has the disadvantages of low detection efficiency,
high false detection rate and high missed detection rate, high labor intensity, and low
speed.

2. The non-contact detection method based on machine vision [2,3] usually adopts image
processing algorithms or manual design feature extractors to combine the classifier.
Liu T.I. [4] proposed a fuzzy logic expert system for roller bearing defect detection,
the system combines frequency response and fuzzy reasoning and has achieved good
results. Baygin et al. [5] used Otsu thresholding and Hough transform to extract
features from the reference image for the problem of printed circuit board with defects
and matched the image to be inspected with the reference image to accurately detect
the missing holes on the circuit board. Zhang Lei et al. [6] proposed a fabric defect
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classification algorithm combining Local Binary Pattern (LBP) and Gray Level Co-
occurrence Matrix (GLCM). The algorithm first uses the LBP algorithm to extract the
local feature information of the image and then uses the GLCM to describe the overall
texture information, and finally, the feature information of the two parts as a whole
constructed as the input of the BP neural network, and a higher classification accuracy
is obtained. Denis Sidorov et al. [7] proposed an automatic defect classification method
based on the p-median clustering technique, the proposed method uses the p-median
combinatorial optimization problem to complete the clustering problem, which can
be sued in semiconductor and other manufacturing industries. In general, compared
with artificial visual inspection methods, the above methods have the advantages of
safety and reliability, high detection accuracy, and long-term operation in complex
production environments, which effectively improves production efficiency and
quality inspection efficiency. However, in a real and complex industrial environment,
there are generally small differences between surface defects and background, low
contrast, large differences in defect scales, and various types of defects. The design
of image processing algorithm schemes and artificially designed feature extraction
schemes typically requires rich expert experience and a large number of experiments,
resulting in high cost and time consumption, and the effectiveness and generalization
cannot be guaranteed, and it is difficult to obtain better detection results.

In recent years, with the successful application of deep learning models represented
by convolutional neural networks (CNNs) [8] in computer vision fields such as face recogni-
tion [9], scene text detection [10], target tracking, and autonomous driving [11], the surface
defect detection methods based on deep learning have also been widely used in various in-
dustrial scenarios and have become the mainstream method in the field of defect detection.
Weimer [12] explored the influence of the design of CNN and different hyper-parameters
on the accuracy of defect detection results. Ren [13] built a classifier based on the features of
image patches, transferred the features from the pre-trained deep learning model, and con-
volved the trained classifier on the input image to obtain pixel-level predictions, compared
with multi-layer perception and support vector machine, its error rate is lower. Masci [14]
proposed a max-pooling CNN method for steel defect classification, experiments were
performed on seven types of defects, the accuracy rate reached 93%, and its performance is
far better than SVM classification trained on feature descriptors. Aiming at the problem of
jujube surface defect detection, Guo [15] has done a series of work on data preprocessing,
data augmentation, and composite convolutional neural network design, and achieved
good results. Deitsch [16] used a modified VGG 19 network to identify solar panel image
defects with a resolution of 300 × 300, with an accuracy rate of 88.42%, which exceeds
a variety of manual design features and supported vector machine methods. Xu [17]
presented a small data-driven convolutional neural network (SDD-CNN) to detect the
subtle defects of rollers, the method first used label dilation to solve the problem of the
imbalance of the number of classes, then a semi-supervised data augmentation method
is proposed, and finally, CNNs were trained, experimental results show that compared
with the original CNNs, SDD-CNNs has significantly improved the convergence time and
classification accuracy. In addition, some advanced CNN structures have also achieved
good detection results, including but not limited to references [18–23].

CNNs are currently used by domestic and foreign researchers and engineers as the
preferred architecture for product surface defect classification. However, difficulties and
challenges still exist.

For different types of products, the surface defects often have the characteristics of
different sizes, uncertain positions, and different shapes; even for the same type of product,
the color, texture, shape, and size between different types of defects is also very different.
The general CNN often contains a few specific scales of receptive fields and is more inclined
to express macroscopic and abstract features. It is not strong in expressing local and small
defects, which leads to an imbalance in feature expression capabilities. Therefore, how to
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design a deep CNN that can simultaneously take into account multi-scale feature extraction
has become the focus of research.

Since the receptive fields of the convolution kernels in the CNN are closely related
to the sizes of the target features, the CNN’s ability to express features at different scales
directly determines its ability to detect defects of different sizes [24]. This paper starts with
the analysis of the appearance and size characteristics of product surface defects, analyzes
the processing mechanism of mainstream CNNs for different scale features, and tries to
improve the expression and classification capabilities of deep CNNs for different scale
features. On the basis of the above research, a Multi-Scale Feature Learning Network
(MSF-Net) based on Dual Module Feature (DMF) extractor is proposed, experiments are
carried out on two public multi-scale defect data sets, the experimental results verify the
effectiveness and superiority of the MSF-Net proposed in this paper.

The structure of this paper is as follows. Section 2 introduces the related work.
Section 3 is the research method. Section 4 is the experimental results and discussion,
and Section 5 summarizes the paper.

2. Related Work

The receptive field refers to the input area that neurons can “see” in the CNN [25],
as shown in Figure 1, the calculation of an element on the feature map in a CNN corre-
sponds to a certain area on the input image, so the corresponding area is the receptive
field of the element. It can be seen from Figure 1 that the receptive field is a relative
concept, the elements on the feature map of a certain layer can see different areas on the
previous layers.

Figure 1. Schematic diagram of the receptive field in CNNs.

The receptive field RFi of the feature map of the i-th layer is shown by Formula (1):

RFi = RFi−1 + (Ki − 1) ∗
i−1

∏
k=1

Sk i ≥ 1 (1)

where Ki and Si respectively represent the size of the convolution kernel and the stride of
the i-th convolution layer. In addition, for the input layer, RF0 = 1, S0 = 1.

In recent years, some researchers have tried to improve the classification performance
of CNNs on multi-scale target data sets by optimizing the CNNs’ structure, such as the
works of Tang [26] and Kim [27]. In essence, the optimization ideas for these works are
derived from the classic CNN architecture, so the distribution of the receptive field in the
classic CNNs are analyzed.

2.1. AlexNet and VGGNet

As we all know, there is no branch structure in the two CNNs of AlexNet [28] and
VGGNet [29]. Therefore, the receptive field size of the last convolution layer before the
fully connected layer is uniform, and the receptive field size is shown in Table 1.
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Table 1. The receptive fields of the last convolution layer of feature maps of AlexNet and VGG-16.

CNNs Feature Maps of the Last
Convolution Layer Receptive Field

AlexNet pool5 195 × 195
VGG-16 pool5 212 × 212

It can be seen from Table 1 that the size of the feature map output by the last convolu-
tional layer of AlexNet is 195 × 195, while the size of the feature map output by the last
convolutional layer of VGG-16 is 212 × 212, and the input image size of the two CNNs is
224 × 224. In other words, what the two CNNs finally extract are macroscopic and abstract
features, and the extraction of tiny and concrete features is insufficient.

2.2. GoogLeNet and ResNet

Unlike AlexNet and VGGNet, GoogLeNet [30] and ResNet [31] have rich branch
structures. This is due to the modularization of the two CNNs, the smallest module unit of
GoogLeNet is called the Inception module, and the smallest module unit of ResNet is the
Residual Block.

Figure 2 shows the structure of four simplified Inception modules connected in series,
for the convenience of calculation, the ratio of the number of output feature maps of the
three branches of 1 × 1, 3 × 3, and 5 × 5 is set to 2:1:1. Figure 3 shows the structure of two
residual modules connected in series, and the output ratio of feature maps of all branches
is set to 1:1.

Figure 2. Four Inception modules in series structure.

Figures 4 and 5 respectively reveal the evolution of the receptive fields of the corre-
sponding feature maps of the GoogLeNet and ResNet as the convolutional layer deepens.
It can be seen that although the specific number of receptive fields at each scale is not
completely the same, both of them reveal a common phenomenon. That is, in the initial
stage of feature extraction by CNNs, the size of the receptive field is small, it is sensitive
to the micro and local feature information of the image, and the learning ability is strong;
in the middle and last stages of feature extraction by CNNs, as the number of convolution
operations increases, the feature map becomes more abstract and is more inclined to express
macro and global information.
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Figure 3. Two residual modules in series structure.

Figure 4. Distribution of the receptive field of the series structure of four Inception modules.

Figure 5. Distribution of the receptive of receptive field of the series structure of two residual blocks.

In addition, although in the distribution map of the fourth module in Figures 4 and 5,
three are still small receptive fields such as 1 × 1, 3 × 3, and 5 × 5, but as the convolutional
neural network becomes deeper, these local receptive fields will gradually disappear. Table 2
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shows the minimum and maximum receptive field scale distributions of the last layer
of feature maps in the GoogLeNet and ResNet-18, it can be seen that the local receptive
fields have disappeared and been replaced by macroscopic large and even super large
receptive fields.

Table 2. The maximum and minimum values of the receptive field of the last convolution layer of
feature maps of GoogLeNet and ResNet-18.

CNNs Feature Map of the Last
Convolutional Layer

Minimal Receptive
Field

Maximum Receptive
Field

GoogLeNet pool5/7 × 7_s1 267 × 267 907 × 907
ResNet-18 pool5 203 × 203 627 × 627

In summary, the existing CNNs have similar characteristics in design, that is, in the
early stage of feature extraction of CNNs, they focus on learning the local and concrete
information of images, and in the middle and later stages of feature extraction of CNNs,
the macro, and abstract feature information are more likely to be learned. Of course,
the above law is logical and effective in most classification and detection tasks, but for the
surface defect data sets with multi-scale features studied in this paper, the above design
ideas of CNNs are obviously not the optimal choice.

3. Methods
3.1. Data Set Preparation

(1) The magnetic tile defect data set [17] was collected by the Institute of Automation
of the Chinese Academy of Sciences, the data set has six categories, including non-defective
samples, the representative samples of each category are shown in Figure 6. It should
be noted that when using a CNN to train the magnetic tile data set, there is a problem
with an insufficient number of samples, therefore, in this paper, the Semi-Supervised Data
Augmentation (SSDA) method is used, the SSDA method takes into account the shape and
location characteristics of the defective target on the basis of the classic data augmentation
operation, and maintains the original label attributes of the samples while performing data
augmentation, which provides high-quality data support for the training of CNNs [17],
and finally get 10,320 sample images, including 6192 images in the training set, 2064 images
in the validation set and 2064 image in the test set, the ratio of the training set, validation
set and test set is 3:1:1.

(2) Roller surface defect data set [17], which is from the data set collected and published
by the Institute of Automation of the Chinese Academy of Sciences (CAS). The roller
surface defect data set collects various morphological samples of the roller surface in
the air-conditioning compressor. The data set is made from the original image after
preprocessing such as ring region expansion, sliding window cutting, image enhancement,
etc. The sample examples and numbers of each category are shown in Table 3. Among them,
EFQ and CQ are non-destructive surface samples, and the other categories are defective
samples. After data augmentation, 22,400 samples are finally obtained, among them, there
are 13,440 images in the training set, 4480 images in the validation set, and 4480 sheets in
the test set, the ratio between them is also 3:1:1.
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Figure 6. Samples of magnetic tile data set.

Table 3. The sample examples and numbers of each category in the roller surface defect data set.

Category Name EFQ * EFC EFI EFSc EFSt EFSF

Number of samples 1500 470 70 160 90 220

Sample example

Category name CQ CC CI CSc CSt

Number of samples 1000 350 155 30 105

Sample example

* EFQ: end-face qualified; EFC: end-face cracks; EFI: end-face indentations; EFSc: end-face scratches; EFSt: end-face stains EFSF: end-face
serious fracture CQ: chamfer qualified CC: chamfer cracks CI: chamfer indentations CSs: chamfer scratches CSt: chamfer stains.

3.2. Sample Defect Size Analysis

Figures 7 and 8 respectively show samples with large differences in defect scales in the
two datasets and their corresponding defect labeling positions, it can be seen that the size
differences between different defect types are quite huge, which poses a great challenge
to classification and recognition tasks. In addition, even for defects of the same type,
the size of the defect varies from sample to sample. Figure 9 shows the area statistics of all
defect types in the two datasets. It can be seen that in the defect data set of magnetic tile,
the average area of wear defects and uneven defects is more than 60 times that of stomatal
defects; the maximum defect area of the wear defect sample exceeds the maximum area of
the stomatal defect sample by 140 times.
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Figure 7. The samples with large scale difference of surface defects of magnetic tile and their corresponding defect
labeling positions.

Figure 8. The samples with large scale difference of surface defects of roller and their corresponding defect labeling positions.

Figure 9. Defect area statistics of chart of different types of defect samples in the two data sets (The upper and lower lines of
each column in the figure represent the maximum and minimum values respectively, and the middle line of each column
represents the average value).
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In the roller defect data set, the average defect area of defect samples of CI type is
close to 17,000 pixels, while the average defect area of defect sample types such as CC, CSc,
CSt, EFC, EFSc, EFSt do not exceed 1000. From the above analysis, it can be seen that these
two defect data sets have obvious multi-scale defects problems.

3.3. Multi-Scale Feature Learning Network Based on Dual Module Feature Extractor

In order to solve the problem that the existing CNNs are not strong in learning
small-scale defect features, and to improve the classification and recognize the ability of
multi-scale surface defects, this paper proposes Multi-Scale Feature Learning Network
(MSF-Net) based on Dual Module Feature Extractor (DMF), where DMF is built by the
Concatenated Rectified Linear Units (CReLUs) and the Inception modules. The main
design ideas of MSF-Net are as follows:

(1) Increase the diversity of the receptive field of a single convolution module in CNNs
From the analysis of the receptive field of CNN in Section 2.1, it can be seen that
single branch CNNs, such as AlexNet and VGGNet, have a relatively single receptive
field scale. As the number of layers of the CNN deepens, the small-scale receptive
field gradually disappears, which is not conducive to the feature expression of subtle
defects in the classification task of surface defects. Therefore, this paper chooses the
convolution module with branch structure as the basic unit of MSF-Net. Among
the many representative modules with branch structures, the Inception module
has favored domestic and foreign researchers in the field of target classification
and detection, because of its lightweight design ideas and excellent characteristic
expression ability and classification accuracy. In this paper, the Inception v3 [32]
structure is used as the design prototype, as the feature extraction module in the
middle and late stages of MSF-Net; and in the early stage of MSF-Net, in order to
reduce the parameter quantity and calculation amount, this paper selects the CReLU
module [33] as the prototype design feature extraction module. In this way, the Dual
Module Feature (DMF) extractor is formed.

(2) Increase the diversity of the receptive field of the feature map output by the last
convolutional layer of CNNs In order to improve the classification accuracy of multi-
scale defect samples, it is necessary to ensure that the feature map output by the
last convolutional layer before the fully connected layer has sufficient receptive field
scales, especially the number of small-scale receptive fields. Therefore, inspired by
HyperNet [34], the feature maps of several convolution modules with different scale
receptive fields are combined to effectively increase the diversity of the receptive
fields of the feature maps of the last convolution layer before the fully connected layer.

(3) Improve training efficiency The improvement of feature expression ability inevitably
means the deepening of the number of layers of CNNs. Therefore, it is essential
to improve training efficiency. MSF-Net improves training efficiency and avoids
over-fitting by using residual shortcuts and batch normalization (BN) layers.

3.3.1. Dual Module Feature Extractor

The Dual Module Feature Extractor (DMF) contains two different convolutional mod-
ules: the CReLU modules are mainly used in the early stage of feature extraction of
MSF-Net, which aims to reduce the calculation cost and speed up the calculation of for-
ward propagation; in the later stage of feature extraction of MSF-Net, the Inception modules
are used to increase the depth and width of MSF-Net and improve feature learning ability.

Optimized CReLU Feature Extraction Modules

The research of Shang et al. [33] revealed that in the early stage of feature extraction of
CNNs, the filters in the lower layers form pairs, the phase of each pair of filters is opposite,
that is, CNN has a tendency to learn both positive and negative phase information at the
same time, however, the Rectified Linear Units (ReLU) [35] will suppress the negative
response, making the feature of the lower convolutional layer of the CNN redundant.
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CReLU takes these negative responses as the output of the convolutional layer by inverting
the feature map and then using the ReLU function, the structure of CReLU is shown in
the dashed box in Figure 10. The above operation can convert redundant features into
usable features, and extract twice as many feature maps, thereby improving the utilization
of features in the lower convolutional layer of CNN. In this paper, the CReLU feature
extraction module is designed on the basis of the native CReLU module, as shown in
Figure 10. A 1 × 1 convolutional layer is added to the input and output of the native
ReLU module to achieve dimensionality reduction and dimensionality increase of the
number of convolution kernel channels, which increases the nonlinearity of CNNs and
reduces the amount of calculation. In addition, the shortcut connections in ResNet are also
introduced into the CReLU feature extraction module to reduce the loss of information in
the transmission process and protect the integrity of the information.

Figure 10. Optimized CReLU feature extraction module.

Optimized Inception V3 Module

The Inception V3 module uses convolution kernels of different sizes such as 1 × 1,
3 × 3, and 5 × 5 to obtain different scales of receptive fields, which improves the diversity
of features. In addition, the design of the branch structure saves computational costs while
enhancing the width and depth of CNN.

Based on the native Inception V3 module, this paper proposed an optimized version of
the Inception feature module, as shown in Figure 11. Similar to the optimized version of the
ReLU module, a 1 × 1 convolutional layer is added to the output of the optimized module
to realize the dimension increase of the feature output; in addition, shortcut connections
are also introduced into the optimized Inception module.

Figure 11. Optimized Inception feature extraction module.
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3.3.2. Multi-Scale Feature Learning Network

In order to increase the diversity of the receptive field of the last convolutional layer
of CNNs and improve the ability to learn and express features of different scales, especially
small and local features, MSF-Net aligns and integrates the feature outputs of several
intermediate layers, and then the fully connected layer is used for classification. Figure 12
shows the overall architecture of MSF-Net, and Table 4 lists the specific parameters and
indicators in detail. As can be seen from Figure 12, MSF-Net is mainly composed of five con-
volutional module chains in the feature extraction stage, including two optimized CReLU
modules and three optimized Inception V3 modules. In addition, all convolutional layers in
MSF-Net, except for the optimized CReLU modules, are designed with batch normalization
(BN) layers, scale layers, and ReLU activation layer to better accelerate convergence.

Figure 12. The overall architecture of MSF-Net.
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Table 4. The parameters of MSF-Net.

Layername Type Output
Dimension

Depth

CReLU
Output Inception Output

Parameters
#1×1-3×3-1×1 Pool

Proj #1×1 #3×3 #5×5 #1×1
out

conv1_1 3 × 3 CReLU 224 × 224 × 32 1 NA-16-NA
/

480

pool1_1 3 × 3 Max pool. 112 × 112 × 32 0 / /

conv2_1 3 × 3 CReLU 112 × 112 × 64 3 24-24-64
/

13,440
conv2_2 3 × 3 CReLU 112 × 112 × 64 3 24-24-64 13,440
conv2_3 3 × 3 CReLU 112 × 112 × 64 3 24-24-64 13,440

conv3_1 3 × 3 CReLU 56 × 56 × 128 3 48-48-128
/

53,760
conv3_2 3 × 3 CReLU 56 × 56 × 128 3 48-48-128 53,760
conv3_3 3 × 3 CReLU 56 × 56 × 128 3 48-48-128 53,760

conv4_1 Inception 28 × 28 × 256 4
/

32 64 96-128 16-32-32 256 322,560
conv4_2 Inception 28 × 28 × 256 4 32 64 96-128 16-32-32 256 322,560
conv4_3 Inception 28 × 28 × 256 4 32 64 96-128 16-32-32 256 322,560

conv5_1 Inception 14 × 14 × 512 4

/

64 128 128-192 32-96-96 512 1,040,384
conv5_2 Inception 14 × 14 × 512 4 64 128 128-192 32-96-96 512 1,040,384
conv5_3 Inception 14 × 14 × 512 4 64 128 128-192 32-96-96 512 1,040,384
conv5_4 Inception 14 × 14 × 512 4 64 128 128-192 32-96-96 512 1,040,384

conv6_1 Inception 7 × 7 × 1024 4
/

128 256 160-320 32-128-128 1024 3,010,560
conv6-2 Inception 7 × 7 × 1024 4 128 256 160-320 32-128-128 1024 3,010,560

concat Concatenation 7 × 7 × 1920 0
/ / /avg pool 7 × 7 Avg pool. 1 × 1 × 1920 0

linear Inner product 1 × 1 × NClass 1 19,200

Total 47 11,371,616

In order to realize the learning and expression of multi-scale features, the specific
design details of MSF-Net are as follows:

(1) At the input of the convolution modules conv3_1, conv4_1, conv5_1, and conv6_1,
the convolution kernel with a size of 1 × 1 and a stride of 2 is used instead of the
pooling layer to achieve the proportional reduction of the feature map size, so that
the feature maps output by conv3, conv4, conv5, conv6 is 1/4, 1/8, 1/16, and 1/32 of
the input image, respectively.

Sizeconv3 =
Sizeinput

4

Sizeconv4 =
Sizeinput

8

Sizeconv5 =
Sizeinput

16

Sizeconv6 =
Sizeinput

32

(2)

(2) The output feature maps of the convolution modules conv3_3, conv4_3, and conv5_4
are down-sampled, and the average pooling layers with kernel sizes of 8 × 8, 4 × 4,
and 2 × 2 are used, so that their respective output feature maps are consistent with
the feature map output by conv6_2


fc1 = Pool8×8

Avg( fconv3_3)

fc2 = Pool4×4
Avg( fconv4_3)

fc3 = Pool2×2
Avg( fconv5_4)

fc4 = fcon6_2

(3)

where fconv3_3, fconv4_3, fconv5_4 and fconv6_2 represent the output feature maps of conv3_3,
conv4_3, conv5_4 and conv6_2, respectively, fc1, fc2, fc3 and fc4 , respectively, represent
the four input feature maps of the concatenation layer.

(3) The above four feature maps are combined and connected to form the final output
feature map, the formula is as follows:

fconcat = concat( fc1, fc2, fc3, fc4) (4)
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where fconcat represents the feature map output by the concatenation layer. In this way, the fi-
nal output features include small-local concrete features and macro-global abstract features.

It is worth mentioning that the architecture design of MSF-Net follows many experi-
ences and guidelines for the design of CNNs, as follows:

(1) Avoiding expression bottlenecks in the early stage of feature extraction. That is,
the information flow should avoid highly compressed convolution layers in the
forward propagation process, and the width and height of the feature map should be
gradually reduced in an orderly manner, especially for surface defect datasets with
subtle defect features, it is not wise to compress the feature map too early. Therefore,
the convolutional layer conv1_1 (size 3 × 3, stride 1) and pooling layer pool1_1 (size
3 × 3, stride 2) are concatenated to slow down the reduction speed of the feature map.

(2) In the middle and late stages of feature extraction in CNNs, the width and depth
of CNNs should be balanced as much as possible. That is, as the CNN deepens,
the feature map gradually shrinks, and the output matrix dimension of each convolu-
tional layer should gradually increase. Therefore, the number of modules, the feature
map sizes, and the number of channels of the three module chains of conv 4, conv 5,
and conv 6 are designed with full reference to Inception V1 [29] and Inception V3 [32]
to improve the rationality of CNN’s evolution.

(3) Average pooling layer is used to replace the fully connected layer, which can greatly
reduce the number of parameters and save calculation costs. Specifically, MSF-Net
uses an average pooling layer with a kernel size of 7 × 7 and a strider of 1 to replace
the fully connected layer. It can be calculated from Table 4 that this adjustment can
reduce 180,635,529 parameters.

(4) The residual shortcut connections are used to effectively accelerate training and
promote CNN’s convergence. Specially, almost every convolution module in MSF-
Net, except conv1_1, uses a shortcut connection, which effectively avoids the problem
of gradient disappearance and speeds up training.

4. Experimental Results and Analysis
4.1. Experimental Setup

The performance indicators and parameters of the experimental platform are shown
in Table 5.

Table 5. Parameters of the experimental platform.

CPU Intel E3-1230 V2*2 (3.30 GHz) RAM 16 GB DDR3 GPU NVIDIA GTX-1080Ti

OS Ubuntu 16.04 LTS Software Visual Studio Code with Python 2.7

4.2. CNNs for Comparison

Inception v3 and ResNet-50 are used as the comparison CNNs for the following reasons:

(1) Inception v3 and ResNet-50 are closer to MSF-Net in terms of the number of convolu-
tional layers and parameters, as shown in Table 6, which makes the comparison of
experimental results fairer.

(2) MSF-Net is deeply influenced by GoogLeNet v3 in terms of the design of feature
extraction modules, the number of modules, and the width and depth of CNN.
Therefore, comparing MSF-Net with Inception v3 can more accurately assess the
impact of CNN’s structure on classification performance.

(3) Except conv1_1, all feature extraction modules of MSF-Net use residual shortcut connections.

Therefore, it is also essential to conduct comparative experiments with ResNet-50,
which is similar in size.
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Table 6. Comparison of the number of convolutional layers and parameters of three CNNs.

CNNs Convolution Layers Parameters

Inception v3 48 24,734,048
ResNet-50 50 ~25.5 × 106

MSF-Net 56 11,371,616

4.3. Training Efficiency Evaluation of CNNs

Figure 13 shows the comparison of the time and number of iterations required to
reach convergence when the three CNN models are trained on two multi-scale surface
defect data sets. It can be seen from Figure 13a that MSF-Net achieves convergence in the
shortest time on the training performance of the two multi-scale surface defect data sets.
Specifically, the convergence time of MSF-Net is shortened by at least 25% compared with
that of ResNet-50, and it is also shortened by nearly 10% compared with that of Inception
v3. Figure 13b shows the comparison of the number of epochs for the three models to reach
convergence. Through the comparative analysis of three CNNs, it can be seen that the
efficient training performance of MSF-Net mainly comes from the following two aspects:

(1) Compared with ResNet-50 and Inception v3, MSF-Net’s parameters is reduced by
more than 54%, which greatly reduces the computational cost, the most intuitive man-
ifestation is that the number of epochs required for MSF-Net to achieve convergence
is greatly reduced;

(2) Compared with the Inception modules fully used by Inception v3, MSF-Net uses
the optimized CReLU module in the early stage of feature extraction, the opti-
mized CReLU module has outstanding performance in reducing computational costs,
which effectively shortens the time consumption of forward back propagation and
improves the training performance of MSF-Net.

Figure 13. Comparison of the time and the number of epochs required for three CNNs to reach convergence.

4.4. Classification Performance Evaluation on Two Multi-Scale Defect Data Sets

Table 7 and Figure 14 respectively show the classification performance of ResNet-50,
Inception v3, and MSF-Net on the test of the surface defect data set of roller. It can be seen
from Table 7 that the three CNNs have excellent performance in the defect categories of
CI, CSs, CSt, EFI, EFSc, and EFSt, with an accuracy rate of 100%. In the remaining five
categories, CQ and EFQ are non-defective samples; CC and EFC are small-size defects,
and the appearance of the samples is very close to CQ and EFQ respectively, EFSF represents
larger defect samples. Therefore, the roller surface defect data set is very suitable for the
evaluation and verification of multi-scale feature learning capabilities of CNNs. ResNet-50
and Inception v3 achieved the highest recall rates in the EFC and EFSF defect categories,
respectively, while MSF-Net performed better than the other two CNNs in the CC defect
category. In addition, MSF-Net has an outstanding performance in the accuracy rate of CQ
and EFQ, which has important application value in actual production. Overall, the average
recall rate of MSF-Net on the roller defect set is 99.29%, while the recall rates of ResNet-50
and Inception v3 are 98.44% and 99.06%, respectively; at the same time, MSF-Net has the
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smallest standard deviation in recall rate, showing a more balanced expression and learning
ability for defects of different scales. Similarly, compared with ResNet-50 and Inception v3,
MSF-Net also achieves the best performance in precision, micro-F1 and macro-F1 indicators,
which verified its superiority.

Table 7. Classification performance of three CNNs on the surface defect data set of roller (%).

CQ CC CI CSc CSt Precision micro-F1

ResNet-50 93.75 96.25 100.00 100.00 100.00 98.46 ± 0.017 98.381
Inception v3 97.50 96.88 100.00 100.00 100.00 99.09 ± 0.008 99.055

MSF-Net 98.13 98.75 100.00 100.00 100.00 99.29 ± 0.006 99.301

EFQ EFC EFI EFSc EFSt EFSF Recall macro-F1

ResNet-50 95.42 97.71 100.00 100.00 100.00 98.96 98.44 ± 0.022 98.367
Inception v3 97.92 97.29 100.00 100.00 100.00 99.79 99.06 ± 0.013 99.051

MSF-Net 98.33 97.50 100.00 100.00 100.00 99.58 99.29 ± 0.009 99.298

Figure 14. Confusion matrix of three CNNs on the surface defect data set of roller (unit: %).

Table 8 and Figure 15 show the classification performance of ResNet-50, Inception v3,
and MSF-Net on the test set of surface defect data set of magnetic tile. It can be seen
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from Table 8 that the three CNNs have excellent performance in the categories of fracture
defects and good products. MSF-Net has the highest accuracy rate for stomatal and uneven
defects, and Inception v3 has the best performance on the gap and wear defect categories.
In general, the average recall rate of MSF-Net on the magnetic tile defect set reached 98.93%,
while the recall rate of ResNet-50 and Inception v3 were 98.69% and 98.89% respectively; at
the same time, among the three CNNs, MSF-Net has the smallest standard deviation in
recall rate. Similarly, MSF-Net performs better on precision, micro-F1 and macro-F1 than
ResNet-50 and Inception v3.

Table 8. Classification performance of three CNNs on the surface defect data set of magnetic tile (%).

Stomatal Gap Fracture Precision Micro-F1

ResNet-50 98.26% 97.67% 100.00% 98.70 ± 0.008 98.70
Inception v3 97.97% 99.13% 99.71% 98.90 ± 0.010 98.90

MSF-Net 98.55% 98.26% 100.00% 98.94 ± 0.007 98.94

Wear Uneven Good Recall Macro-F1

ResNet-50 98.55% 97.67% 100.00% 98.69 ± 0.009 98.69
Inception v3 99.42% 97.09% 100.00% 98.89 ± 0.010 98.89

MSF-Net 98.84% 97.97% 100.00% 98.93 ± 0.008 98.93

Figure 15. Confusion matrix of three CNNs on the surface defect data set of magnetic tile (Abbreviation description—stom:
stomatal; frac: fracture; unev: uneven).
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5. Conclusions

Aiming at the problem that the commonly used CNNs are not ideal for detecting small
and local defects on the products’ surface, the multi-scale feature extraction mechanism
involved in several mainstream CNNs in the current deep learning field is analyzed, and a
multi-scale feature learning network based on dual module feature extractor is proposed,
named MSF-Net, the design of the dual module feature extractor, the specific architecture
and parameters of MSF-Net, and the optimization to improve training efficiency are
introduced in detail. The proposed MSF-Net was trained and tested on two multi-scale
surface defect data sets, which verified the advancement and effectiveness in multi-scale
defect detection. Future work will focus on exploring the generalization of MSF-Net in more
research fields, such as radar image classification and remote sensing image classification.
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