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Abstract: Scour around bridge piers remains the leading cause of bridge failure induced in flood.
Floods and torrential rains erode riverbeds and damage cross-river structures, causing bridge collapse
and a severe threat to property and life. Reductions in bridge-safety capacity need to be monitored
during flood periods to protect the traveling public. In the present study, a scour monitoring
system designed with vibration-based arrayed sensors consisting of a combination of Internet of
Things (IoT) and artificial intelligence (AI) is developed and implemented to obtain real-time scour
depth measurements. These vibration-based micro-electro-mechanical systems (MEMS) sensors are
packaged in a waterproof stainless steel ball within a rebar cage to resist a harsh environment in
floods. The floodwater-level changes around the bridge pier are performed using real-time CCTV
images by the Mask R-CNN deep learning model. The scour-depth evolution is simulated using the
hydrodynamic model with the selected local scour formulas and the sediment transport equation.
The laboratory and field measurement results demonstrated the success of the early warning system
for monitoring the real-time bridge scour-depth evolution.

Keywords: bridge failure; scour monitoring; flood; MEMS; deep learning

1. Introduction

The collapse of bridges due to foundation scour is a worldwide concern to the public.
Between the 1960s and 1990s in the United States, more than 1000 bridges collapsed, among
which more than 60% were damaged by scouring [1]. Similar problems exist in East Asian
countries, especially in areas subject to floods. For instance, in Taiwan, there are over
20,000 bridges crossing rivers. During Typhoon Morakot in 2009, an extreme amount of
rainfall triggered severe flooding throughout southern Taiwan, resulting in approximately
150 bridges collapsing in this single flood event [2]. Several bridge failure cases in Typhoon
Sinlaku (2008) that occurred during floods in Taiwan are shown in Figure 1. Causing
reduction of structural capacity during a flood, scour failure of the bridge pier structure
tends to occur suddenly and without prior warning. It is crucial to monitor real-time scour-
depth variations and avoid catastrophic failure that brings about significant operational
disruption or loss of life [3,4]. A real-time bridge scour monitoring system should monitor
the recorded scour depth during times of flooding. Maximum scour may occur at the
highest flood discharge, at which the scour hole tends to be refilled as floodwater recedes.
The scour monitoring information helps assist engineers in designing safer and more
cost-effective bridges.
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tures, making the scour processes extremely complicated [3]. Many formulas for estimat-
ing scour depth at bridge piers can be found in the literature [4]. Most of the scour studies 
derived from experimental flume results mainly focus on the maximum scour depth by 
empirical regression formulas. Moreover, most of the data used in scour formulations 
were obtained from the laboratory rather than from the field. However, field data are lim-
ited due to observational difficulties [5]. These empirical formulas may not be accurate 
enough for field applications without sufficient field-measured data as inputs. Therefore, 
it is necessary to develop a field-based real-time monitoring system to observe and iden-
tify the scour-depth evolution at the bridge pier. 

A scour hole is generally backfilled as flood flow recedes. Bridge inspections after the 
flood are not sufficient to fully determine the deepest extent of scouring damage at the 
time of the highest flood discharge. It is difficult and dangerous to acquire in situ scour-
depth information by inserting a heavy object or the like into the riverbed for direct meas-
urements in flood. Therefore, critical bridges are subject to scour, and safety monitoring 
is required. A real-time scour monitoring system can monitor bridge safety and avoid 
unnecessary maintenance. Nevertheless, the development of measuring instruments with 
data acquisition systems generally faces difficulties in surviving, particularly the bumping 
of floating debris or large-sized sediments during flood events (Figure 2). Therefore, reli-
ability and robustness are important design concerns for effective and long-term monitor-
ing in the system, especially when installed sensors must be buried deep in the riverbed 
filled with water under pressure. Under the impact of rapid floods and drifting objects, 
the scour monitoring system may be vulnerable if it is not adequately protected. In addi-
tion, the complicated turbulent flow with floating debris and sediments surrounding the 
bridge pier may also affect the reception and accuracy of signals. 

Figure 1. Bridge failure cases occurred during floods in Typhoon Sinlaku (2008).

The combined effects of complex flow vortex systems around piers involve time-
dependent flow patterns, sediment transport mechanisms, and the interaction of pier
structures, making the scour processes extremely complicated [3]. Many formulas for
estimating scour depth at bridge piers can be found in the literature [4]. Most of the scour
studies derived from experimental flume results mainly focus on the maximum scour depth
by empirical regression formulas. Moreover, most of the data used in scour formulations
were obtained from the laboratory rather than from the field. However, field data are
limited due to observational difficulties [5]. These empirical formulas may not be accurate
enough for field applications without sufficient field-measured data as inputs. Therefore, it
is necessary to develop a field-based real-time monitoring system to observe and identify
the scour-depth evolution at the bridge pier.

A scour hole is generally backfilled as flood flow recedes. Bridge inspections after the
flood are not sufficient to fully determine the deepest extent of scouring damage at the time
of the highest flood discharge. It is difficult and dangerous to acquire in situ scour-depth
information by inserting a heavy object or the like into the riverbed for direct measurements
in flood. Therefore, critical bridges are subject to scour, and safety monitoring is required.
A real-time scour monitoring system can monitor bridge safety and avoid unnecessary
maintenance. Nevertheless, the development of measuring instruments with data acquisi-
tion systems generally faces difficulties in surviving, particularly the bumping of floating
debris or large-sized sediments during flood events (Figure 2). Therefore, reliability and
robustness are important design concerns for effective and long-term monitoring in the
system, especially when installed sensors must be buried deep in the riverbed filled with
water under pressure. Under the impact of rapid floods and drifting objects, the scour
monitoring system may be vulnerable if it is not adequately protected. In addition, the
complicated turbulent flow with floating debris and sediments surrounding the bridge
pier may also affect the reception and accuracy of signals.

Recently, researchers have paid more attention to bridge-scour monitoring technology
development. Most approaches directly attach the sensory system to the pier or embed
sensors in the riverbed. When the sensor is exposed from the riverbed, the scour depth
is then detected through the corresponding signal from the sensor. From the literature,
the most used approaches for scour monitoring or counter measurement include methods
such as fiber optics sensors [6–15], micro-electro-mechanical systems (MEMS) sensors [16],
acoustic emission (AE) sensors [17], the vibration-based method [18–21], the sonic echo ap-
proach [22], time-domain reflectometry (TDR) [23–29], piezoelectric sensors [30,31], temper-
ature sensors [32], smart rocks [33], image sensors [34], strain sensors [35], and bridge/pier
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nature frequency variation [36–41]. Prendergast and Gavin (2014) reviewed and reported a
broad range of instrumentation techniques for scour-depth measurement [38]. The scour
monitoring is sensitive to environmental conditions, such as temperature, salinity, turbidity,
air, sediments, and debris. For example, both sonar and radar can receive large amounts of
noise caused by flow turbidity and suspended granular particles, making these systems
unreliable for real-time monitoring of the scour progress. The electrical resistance effect
has been widely used, such as time-domain reflectometry (TDR) and piezoelectric sensors
for scour detection and vortex-induced vibration monitoring to observe its changes in the
permittivity of the medium around bridge foundations. TDR works by generating electro-
magnetic pulses that can attenuate and disperse their signals due to the transmission line
or the magnetic conduction problems of the monitoring environment. This shortcoming of
TDR reduces its ability to detect subtle changes in the scour process. A vibration-based
sensor for scour measurement was developed recently, which may have a greater potential
for environmental and operational sensitivities than TDR and sonar devices. However,
an extreme flow condition with heavy debris impact would result in bridge failure in
flood. Instrument development with data acquisition systems usually faces challenges
in surviving the flood event. Hence, the vibration-based arrayed sensors proposed in
the present study are housed in stainless steel balls and provided adequate protection by
filling the ball with resin for long-term waterproofing performance as they are buried in
the riverbed.
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Figure 2. Photos at Da-Chia Bridge on National Highway No. 3 facing harsh environments with
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Wireless sensor network (WSN) systems with the Internet of Things (IoT) and artificial
intelligence (AI) technologies used as promising technologies in civil engineering, smart
city, and industrial applications in recent years have greatly improved the approaches of
structural health monitoring. The Internet of Things and big data analytics have been
proposed and applied for many applications. They provide spatial data over large areas
over time and are suitable for many monitoring applications. Intelligent and wireless
networking sensors collect and process large amounts of data, including monitoring and
analyzing structural damage, traffic conditions, and weather and flood conditions, etc.
In the present study, a monitoring system that consists of a combination of IoT and AI
is developed and utilized to obtain real-time measurements in the scour processes at the
bridge pier. In recent years, with the rise of deep learning (DL) technology, especially in
image recognition and classification applications, scientific fields have made impressive
breakthroughs [42–47]. The significant difference between convolutional neural networks
of deep learning and conventional machine learning (ML) methods is that the traditional
ML methods rely on humans to design and select the image features for classification
where the corresponding results are deeply affected. In particular, image features designed
are often straightforward and limited to human judgment, which is difficult for complex
and changeable image applications. In contrast, the convolutional neural network (CNN)
covers the image features generated by DL in its network architecture and generates many
specific features, which suit all types of diverse image scales through a magnificent amount
of image training. In general, machine learning requires engineers to define the model
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features and classify the data in advance, while deep learning alternately uses neural
networks to discover new models and continue improving themselves. These trained
specific features and characteristics summarized from actual life photos are far more
versatile than those designed by human experiences. On the other hand, the multi-layer
structure in the training–recognition network also contains the complexity contents for
image description. Moreover, image recognition and classification problems are the most
successful applications of deep learning. In the present study, the water levels as time-series
variables during flood events are critical for hydrological measurement, analyzed by image
recognition through deep learning technologies [48–50].

Although many types of research focused on bridge scour have been reported in the
literature, numerical simulations of scour-depth variations with in situ measurements
during floods are limited. Proper prediction of temporal scour-depth changes by the
numerical hydrodynamic model can deliver helpful early warning information for bridge
failure. To predict riverbed changes is vital to recognizing any possible aggravation
and degradation of the riverbed level in response to river morphology, typically around
the bridge piers. Regarding the phenomena of a mobile riverbed in floods, sediment
transport can simulate the flow field and pattern by a numerical hydrodynamic model
to assess the time variation of the total scour depth of the pier. The sedimentation and
river hydraulics two-dimensional (SRH-2D) model is a depth-averaged 2D hydraulic and
sediment model, simulating flows in fluvial rivers with hydraulic structures such as bridge
piers [51]. The model is suitable for modeling riverbed migration, such as the general
scour of the riverbed. However, the numerical hydrodynamic model cannot compute
the local scour depth directly. With commonly used empirical formulas, the local scour
depth is calculated using the simulated outcomes of water level and velocity from the
SRH-2D model. For practical engineering purposes, the total scour depth is the sum of the
general scour from the numerical hydrodynamic model and the local scour calculated by
the empirical formulas. The predictive information of scour-depth variations can provide
valuable data for early warning in bridge failure.

In this article, the primary purpose is to develop a scour monitoring system for early
warning in highway bridge failure that includes field-monitoring sensors and scour-depth
simulation. By adopting IoT sensing and wireless communication technology, the system is
proposed and designed with vibration-based arrayed MEMS sensors that are implemented
in situ to obtain real-time scour-depth measurements of scour and deposition processes.
The sensors are conceptually demonstrated in the laboratory flume before they are installed
on the study site. The real-time floodwater-level changes around the bridge pier are
performed using CCTV images by the Mask R-CNN deep learning model. The total scour-
depth evolution is simulated using the hydrodynamic model with the selected local scour
formulas and the sediment transport equation. The predictive information of scour-depth
variations can provide valuable data for early warning in bridge failure.

2. Scour Monitoring System
2.1. Laboratory Conceptual Validations

The experimental test is to validate the newly designed bridge-scour sensory device
consisting of serial arrayed cantilever beams with MEMS accelerometers. The cantilever
beam sensing principle was widely used to measure the vibration of MEMS sensors. The
proposed monitoring system was verified to evaluate the responses of bed-level variations
in a laboratory flume. The experiments were conducted in a 12 m-long, 0.3 m-wide, and
0.6 m-deep flume with glass sidewalls at the Hydrotech Research Institute of National
Taiwan University, Taipei, Taiwan. As shown in Figure 3a, the bridge pier with the arrayed
cantilevered beams is placed in the middle of the sand paved flume. The prescribed
discharge and its corresponding water depth were controlled by adjusting the inlet valve
and tailgate. Before the test began, all the sensors were buried by uniform sand of 0.9 mm
in diameter and then slightly compacted by a plate hammer. The experiment was carried
out at a steady flow rate with a fixed water level.
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At the beginning stage shown in Figure 3b, water flowing from the inlet gradually
seeped into the paved layer, which became saturated and led to a disturbance of the paved
layer, thus causing the signals of Sensors S1 and S2 to be larger than those of Sensors S3
and S4. From the signal of Sensor S1, it was found that scour started at time t1 because the
sand bed was eroded around Sensor S1, and the cantilever beam was gradually exposed to
the flowing water. The fluctuated signal obtained from Sensor S1 combined the dynamic
drag force and flowing water turbulence around the bridge pier. Due to dynamic flowing
water impact, the cantilever beam with Sensor S1 vibrated at a slightly backward position.
More significant vibration signal fluctuations were also observed because of coarse sands
hitting the cantilever beam. The signal recovered a smaller vibration signal due to fewer
suspended particles with an equilibrium state scour progress at time t2 subject to the steady
water drag force. In order to observe the cantilever beam signal of the sensing system in
the deposition process, sand was added at the upstream side of the pier at t3. As Sensor
S1 was covered by sand to diminish dynamic drag force, the cantilever beam gradually
reverted to its original position. This deposition process was observed from the voltage of
the decreased vibrated signal and revealed that this cantilever beam is then buried in the
bed. The unexpected scouring signals observed at t4 were suddenly adding some sand
in front of the pier. At time t5, scouring occurred again. As mentioned above, the signal
caused a sharp reciprocating signal due to the suspended particles acting on the cantilever
beam, acting by the flowing water at t6, similar to t2. The tailgate was opened at t7 to drain
flume water. This experimental test was conducted in a steady-state flow rate, in which the
velocity and the discharge of flowing water are insufficient to wash out Sensors S3 and S4.
Evidently, the steady-state flow scour experiment verified that the conceptually designed
cantilever beam sensing system can be used to measure the scour and deposition processes.

2.2. Vibration-Based MEMS Sensor

Measuring vibration is critical for detecting and diagnosing any deviation from nor-
mal situations. Vibration measurements by the use of conventional accelerometers are well
known and accepted. Recent advances in IoT system technologies with MEMS sensors
offer great promise for the future of smart monitoring. MEMS accelerometers are one of
the simplest and most suitable MEMS systems, which are indeed a mature sensing tech-
nology. The technology and applications behind MEMS accelerometers have been widely
investigated, with MEMS accelerometers being sensors that detect linear acceleration.

Due to the widespread adoption of MEMS accelerometers in smartphone devices,
there are many types of accelerometers available in the market today. In this paper, the
vibration-based sensor of LSM303DLH, STMicroelectronics is used as a scour positioning
indicator. The LSM303DLH is a digital 3-axis accelerometer. As shown in Figure 4, the
LSM303DLH accelerometer sensor is housed in a stainless steel ball with Recommended-
Standard-485 (RS-485) signal line and protected in a full-fill resin that isolates short-circuits
or signal loss caused by flood and debris impacts. Appropriate packaging to resist harsh
environments was the main long-term robustness issue for bridge-scour measurements.
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Herein, these enhanced scour-sensor assemblies in a rebar cage were used for measuring the
vibration signals as they emerged out of the riverbed and vibrated due to the flowing water.
These packaged LSM303DLH accelerometers for bridge-scour measurement were tested
with different flow velocities in the laboratory to ensure their performance, particularly the
long-term waterproof characteristics and the WSN function, before they were deployed in
the field.
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Figure 4. The vibration-based MEMS scour monitoring system: (a) sensor chip with integrated circuit
(IC) and printed circuit board (PCB); (b) packaged scour sensors with stainless steel ball; (c) arrayed
sensor alignment in a rebar cage at 0.5m interval; (d) a finished scour monitoring system.

3. Field Deployment and Results
3.1. Site Description and System Installation

The Da-Chia Bridge on National Highway No. 3 in central Taiwan spans the Da-Chia
River between two major areas (Figure 5): Miaoli County (northbound) and Taichung
County (southbound). As a major transportation route with heavy traffic, the 1.2 km-long
bridge with 38 spans was constructed in 2003 using cylindrical columns as piers (2.7 m
in diameter). It is located 6.57 km away from the estuary of the Da-Chia River, flowing
westward into the Taiwan Strait. According to hydrological data, the natural drainage
area of the upper reaches of the Da-Chia River is 1981 square kilometers. The bed slope
of the river reach around the bridge is about 1%. According to the data provided by the
Water Resources Agency, Taiwan, the peak discharge of the 100-year return-period flood as
the design flood for levee protection is estimated as 21,000 m3s−1 based on the frequency
analysis. The mean annual discharge at the Da-Chia Bridge is around 116 m3s−1. The
mainstream flows underneath the Da-Chia Bridge between pier P26 and pier P28. The scour
monitoring system was installed on the bridge pier P28, as shown in Figure 6. With five
vibration-based MEMS sensors, the scour monitoring system was designed for measuring
the bridge scour-depth variations. Packaging the sensors in a waterproof stainless steel
ball to embed into the riverbed can be proved to resist a harsh environment in floods for
long-term operational purposes. These sensors were tested in the laboratory for durability
and reliability before being deployed in the field. Moreover, the wireless station contained
the wireless sensor network (WSN) systems and the CCTV camera with a night infrared
light source focusing on the water flow around the pier. Hence, the system design is
robust and efficient to withstand debris impact, sustain long-term service, and survive
flooding events.
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Bridge.

In the present study case, the flood event occurred on 19 May 2014 with heavy rainfall
generated in the watershed. The study domain for the numerical hydrodynamic modeling
is located between two surveyed cross-sections imposed as the upstream inflow boundary
at 3285m away from the bridge and the downstream boundary condition (BC) at the
railroad bridge shown in Figure 7. The bed elevations in the simulation domain ranged
from EL. 51.89 m to EL. 97.50 m above sea level. The median size of riverbed sediments
was 91.5 mm. The upstream inflow discharge was provided by the Shigang Reservoir
Management Center, Taiwan. The flood hydrographs plotted in Figure 7 have multiple
peak discharges and water levels with three flood peaks of 839 m3s−1, 885 m3s−1, and
1011 m3s−1, sequentially. The water level started rising on 19 May, and approximately after
2 days, the highest flood peak arrived at the bridge on 21 May. The monitoring data of
scour-depth evolution at P28 were adopted for numerical modeling verification. The main
objective of the present study was to evaluate the applicability of scour-depth simulation
for developing an early warning system at the Da-Chia Bridge on National Highway No. 3.
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3.2. Mask R-CNN Object Detections and Recognitions

Due to the complexity of the floodwater flow, the water levels as time-series variables
are critical for hydrological measurement, which can be analyzed by image recognition
through deep learning technologies. For recognizing objects in images, computer vision
technologies have a wide range of human portrait recognition, object detection, and human
posture prediction derived from object recognition. Typically, visual sensors such as CCTV
are employed for non-contact, remote telemetry, and long-term monitoring [52], e.g., water-
level monitoring [53]. The training models of image automatic identification to the water
level around the bridge piers are carried out herein. The corresponding deep learning
models are then used for image verification and water level recognition. As well known,
following the deep learning in Convolutional Neural Network (CNN) development [54,55],
another practical Region-based Convolutional Neural Network (R-CNN) has been applied
to recognizing and detecting multiple objects [56]. Mask R-CNN is one of the Region-based
CNN family (R-CNN) [56], Fast R-CNN [57], and Faster R-CNN [58], which has the highest
accuracy in the Microsoft Common Objects in Context (COCO) segmentation challenge, and
it is being used extensively for different instance segmentation applications [59]. Microsoft
COCO is a large-scale dataset that aims to enable future research for object detection,
instance segmentation, image captioning, and person key points localization. It is usually
used as the performance benchmark for model evaluation [60]. The object detection
approaches take advantage of CNN-like technologies coupling with multi-region in multi-
resolution parallel recognition capabilities and are popularly used image object detection
methods [61]. These algorithms have been applied to many machine vision-related fields,
such as the visual recognition of robots and autopilot cars, the defect recognition of online
products, and automatic recognition of security systems, etc. [62–64]. Mask R-CNN is
an extension of Faster R-CNN, which detects the mask at the pixel level for each object
detected rather than the bounding box. This method has advantages when calculating
pixel-level contours, such as the boundaries of water bodies and bridges. Previous research
has shown that using the segmentation network to detect floods and calculate the flood
depth is a practical approach [65–67].

The Mask R-CNN is adopted herein to identify and analyze images taken from the
CCTV camera, focusing on the water surface around the pier to map the water level due to
the complexity of the flood. The architecture framework of segmentation shown in Figure 8
is mainly based on the Faster R-CNN expanding method for object detection, and the Mask
R-CNN is retaining the RPN (Region Proposal Network) layer of the original architecture.
For the practice of transfer learning, the Mask R-CNN is implemented by using Keras with
a TensorFlow backend and based on pre-trained weights of the COCO dataset [66]. The
convolutional backbone architecture (Conv in Figure 8) is the ResNet-101 [60] employed for
feature extraction over an entire image. The image pixels in CNN are essential and are used
in classification algorithms to classify or segment the regions of interest (ROI). The purpose
of this pixel-level classification algorithm is used to pool the ROI into the Faster R-CNN.
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The ROI-Align algorithm also replaces the algorithm to generate a fixed-size feature map.
The instance segmentation is used to classify the background/foreground regions and
FC (Fully Connected layer) objects and the difference of bounding boxes. These methods
are used as semantic segmentation by adopting FCN (Fully Convolutional Network) as a
pixel-level classifier, combining the classification results of the two parties as to the output.
The so-called two-stage segmentation uses the bounding box of FC to narrow down the
candidate area of FCN. The advantage of the segmentation network is that both flooded
and non-flooded instances can be used to train the network to learn the features of the
pier. Generally, the presence of non-flooded images is more frequent and accessible to
collect rather than flooded images. Moreover, this method can be applied to estimate
the water level based on the reference object with a known height. The output images
are converted from the perspective transformation and map the water level (white dash
line) by normalizing the scale in the range [0,1]. Then, the actual water level based on the
exposed bridge piers is estimated.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 18 
 

 

using Keras with a TensorFlow backend and based on pre-trained weights of the COCO 
dataset [66]. The convolutional backbone architecture (Conv in Figure 8) is the ResNet-
101 [60] employed for feature extraction over an entire image. The image pixels in CNN 
are essential and are used in classification algorithms to classify or segment the regions of 
interest (ROI). The purpose of this pixel-level classification algorithm is used to pool the 
ROI into the Faster R-CNN. The ROI-Align algorithm also replaces the algorithm to gen-
erate a fixed-size feature map. The instance segmentation is used to classify the back-
ground/foreground regions and FC (Fully Connected layer) objects and the difference of 
bounding boxes. These methods are used as semantic segmentation by adopting FCN 
(Fully Convolutional Network) as a pixel-level classifier, combining the classification re-
sults of the two parties as to the output. The so-called two-stage segmentation uses the 
bounding box of FC to narrow down the candidate area of FCN. The advantage of the 
segmentation network is that both flooded and non-flooded instances can be used to train 
the network to learn the features of the pier. Generally, the presence of non-flooded im-
ages is more frequent and accessible to collect rather than flooded images. Moreover, this 
method can be applied to estimate the water level based on the reference object with a 
known height. The output images are converted from the perspective transformation and 
map the water level (white dash line) by normalizing the scale in the range [0,1]. Then, the 
actual water level based on the exposed bridge piers is estimated. 

 
Figure 8. The Mask R-CNN framework of segmentation and water level estimation. 

The CCTV images during flood events were recorded every minute in real-time mon-
itoring and selected in the study case during flood at pier P28 by daily images. The images 
displayed in Figure 9a for the demonstration were obtained from 19 May to 24 May 2014 
with the recorded time on the top, each image representing the various floodwater-level 
situations. The Mask R-CNN deep learning model automatically performs the turbulent 
rush water around the bridge pier from real-time video images. Figure 9b shows that the 
flowing water is marked in cyan, while the pile cap or stones on the river bed are marked 
in red. It is noted that the foundation of the pier is not displayed to highlight the range of 
the rush flood flow by recognizing the rising or falling edge of the water surface. 

  

Figure 8. The Mask R-CNN framework of segmentation and water level estimation.

The CCTV images during flood events were recorded every minute in real-time moni-
toring and selected in the study case during flood at pier P28 by daily images. The images
displayed in Figure 9a for the demonstration were obtained from 19 May to 24 May 2014
with the recorded time on the top, each image representing the various floodwater-level
situations. The Mask R-CNN deep learning model automatically performs the turbulent
rush water around the bridge pier from real-time video images. Figure 9b shows that the
flowing water is marked in cyan, while the pile cap or stones on the river bed are marked
in red. It is noted that the foundation of the pier is not displayed to highlight the range of
the rush flood flow by recognizing the rising or falling edge of the water surface.
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The floodwater surface images were recorded and transmitted through the wireless
station with a CCTV camera at pier P28 in real-time monitoring. The layout of the scour
monitoring system is illustrated in Figure 10a, which indicates the setup locations of scour
sensors and the target region of the image taken. Figure 10b shows that the bridge pier
is marked in green, and the flowing water is marked in cyan. Each image obtained is
transformed to make the pier straight and normalize scale in the range [0,1] as a water
level ruler. The amount of these green pixels reflects the water level along the pier. In
Figure 10b, at time t, a white dash line is recognized and marked to identify the edge of
the water surface on the normalized figure of the pier, and similarly, the water surface
edge marked by a white dash line is also recognized as shown in Figure 10c at time t+∆t to
reveal water level rising. Hence, the water levels can be obtained from the scale multiplied
by the height of the pier automatically. Based on the Mask R-CNN deep learning model
framework, the recognized water levels in hourly time series are plotted in Figure 11,
which are important as the field measurements to provide data for hydrodynamic model
calibration and validation. The image recognition data validate the simulated water levels
obtained from the hydrodynamic model. The water level and velocity hydrographs are
synchronized with each other.
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Figure 10. The layout of scour monitoring system corresponding to image recognitions: (a) in-
stallation locations of the scour sensors and the wireless station with CCTV camera at pier P28;
(b) segmentation results of water level at time t; (c) water level rising at time t+∆t.
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3.3. Scour Monitoring Results and Analysis

The scour monitoring system was installed on bridge pier P28 in the mainstream of the
Da-Chia River (Figure 6). All the systems, including the wireless station, were fabricated in
the laboratory. The scour monitoring system was subject to floating debris impact. Before
being used in the field, all the sensors with waterproof package were tested and analyzed
for long-term durability and performance.

The sensor signal data were collected at P28 from 19 May through 23 May in 2014, as
shown in Figure 12. To assess the safety of the bridge foundation, the duration of the flood
event is herein separated into three periods: T1 is the time before scouring, T2 presents the
vital scour/deposition processes, and T3 is the period of flood recession. The zero initial
scour-depth level set to its corresponding level of the riverbed at P28 was EL.70.90 m, at
which Sensor S1 was placed. The five vibration-based sensors were denoted as Sensor S1
(position at EL.70.90 m) through Sensor S5 (at EL.68.90 m). The distance between each
sensor was 0.5 m. Each sensor was packaged within a waterproof stainless steel ball used
as a scour positioning indicator. They were protected in a steel reinforcement cage and
deployed on the side of the pile cap at the pier foundation (Figure 6). Once the scour
monitoring sensor emerges from the riverbed, it sends vibration signals as it vibrates due to
the turbulent flow. In Figure 12, Sensors S1 and S2 are gradually eroded out after 10:00 on
19 May as the water level starts rising, and then they detect flow turbulence to reveal signal
fluctuations. The strong signal fluctuations from Sensors S1 and S2 were observed after the
T1 period, which is induced by the fast-rising water level in flood. At the early stage of
the T2 period, around 14:00 on 19 May, the signal readings from Sensor S3 were found to
receive minor vibration, presenting an evident erosive impact reaching S3. The scour depth
at this moment was estimated at 1.0 m. At 19:00 on 19 May, the signal readings from Sensor
S3 displayed strong vibration by powerful erosive impact at the first flood peak discharge
(Figure 12). Substantial fluctuations in reading due to turbulence around the pier indicate a
strong interaction between sensor and water current. If the output voltage value is larger
than 1.2 or less than 0.8, it is assumed that the scouring force may extend down to a depth
of 0.25 m, presenting stronger vibration signals. Thus, the scouring process reached S3,
while the scour depth was estimated to be 1.25 m due to more vital readings delivered by
Sensor S3. At the same time, the signals received by Sensor S2 showed relatively weak
fluctuations compared with Sensors S1 and S3, which perhaps has a little stone jammed
inside the rebar cage that reduces the freedom of the stainless steel ball.

After the first peak, the flood flow receded and the readings showed weak fluctuations.
The water level and velocity were drawn down to the locally lowest point at 10:00 on 20 May
(Figure 11). The signal readings were received only from Sensors S1 and S2; the scour
depth was estimated to be 0.50 m. They presented almost no fluctuation after this moment,
which may indicate that they were buried in the riverbed again due to sediment deposition.
After the second peak of flood discharge arrived at 21:00 on 20 May, Sensors S1–S3 were
active again and reached the scour depth of 1.00 m. When the water level reached the
third peak at 16:00 on 21 May, Sensors S1–S3 continued to have significant readings as they
sensed the powerful erosive impact by running flow and sediments. Sensor S4 detected
a minor signal at 19:20 on 21 May, which means the flood eroded the riverbed down to
the S4 position, following the highest peak water level or velocity. Sensors S1–S4 were
all active to generate the maximum scour depth of 1.50 m. However, the erosive force
on Sensor S4 only lasted for a short period (about 1–2 h), and then it was buried again.
After the third peak, the flood started to recede, and Sensors S1–S3 kept sensing apparent
water-sediment impacts until 10:00 on 22 May. Afterwards, Sensor S3 was buried under the
riverbed due to sediment deposition, while the flood kept receding. Meanwhile, Sensors
S1 and S2 still detected the weaker signal responses due to the low flow velocity, which
should be exposed in the flowing water to remain with a scour depth of 0.50 m. Therefore,
the maximum scour occurred at EL. 69.40 after the third flood peak discharge at 19:20 on
21 May. Then, the scour hole was backfilled to EL. 70.40 at 10:00 on 22 May, i.e., the riverbed
dropped 1.00 m from the original elevation after this flood event. The maximum scour
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depth at P28 was confirmed by field investigation after the flood, as shown by the photos
in Figure 6. After the T2 period, the continuous flat signal readings indicate that sediment
deposits should have buried the Sensors S3–S5 in the T3 period (Figure 12). The real-time
scour-depth data (with triangle symbol) obtained from the scour monitoring system are
plotted against periods from T1 to T3 in Figure 13.
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4. Scour Depth Simulation for Early Warning
4.1. Hydrodynamic Simulation

Bridge scour around a pier occurs mostly during high water level and velocity. The
scour hole around the pier may be backfilled as the peak flow recedes. Proper prediction
of temporal scour-depth variations by the numerical hydrodynamic model can provide
helpful information of early warning for bridge scour failure. Practically, the total scour
depth at the pier is obtained by the sum of the general scour, contraction scour, and local
scour. While each span between two bridge piers along the Da-Chia Bridge is substantially
longer than that of the pier diameters, the contraction scour could be neglected [68]. Herein,
the total scour depth of the bridge pier is primarily dominated by general scour and local
scour. Considering the bed scour of non-equilibrium sediment migration in floods, a
depth-averaged two-dimensional (2D) hydrodynamic model can be used to estimate the
water depth and flow velocity to assess the time variation of the total scour depth of the
pier. The sedimentation and river hydraulics two-dimensional (SRH-2D) model developed
by the U.S. Bureau of Reclamation is a depth-averaged 2D hydraulic and sediment model
that solves 2D shallow water flow equations through unstructured hybrid meshes [51].
The model can simulate the hydrodynamic flows in fluvial rivers with hydraulic structures
such as bridge piers. Moreover, the model has been tested in several experimental and field
cases for modeling riverbed variations in shallow-water flows. It has been demonstrated
that it is suitable for modeling riverbed aggradation and degradation, such as the general
scour of the riverbed. However, the model cannot be used to compute the local scour
evolution directly. Therefore, four commonly used empirical formulas are adopted to
calculate the local scour depth based on the simulated hydraulic outcomes of water level
and velocity from the SRH-2D model. The total scour depth is merely the arithmetic sum
of the general scour from the numerical model result and the local scour calculated by the
empirical formulas.

Local scour depth at the pier can be calculated by the empirical formulas proposed
by Laursen (1958) [69], Shen et al., (1969) [70], Jain and Fischer(1980) [71], and Froehlich
(1988) [72], etc. These commonly used formulas for local scour-depth calculation were
derived under scour equilibrium conditions. The approaching flow parameters of water
depth and velocity are needed and dependent on the discharge and water level hydro-
graphs. During the flood, the time-dependent local scour-depth calculation is related to
the approaching hydrodynamic parameters such as water depth, velocity, Froude number,
and the geometrical parameters such as bridge noise shape, flow direction, sediment size,
and pier diameter. Among these hydrodynamic parameters, water depth, velocity, flow
direction, and Froude number can be directly obtained or calculated using the SRH-2D
model. These commonly used local scour empirical formulas can calculate the local scour-
depth evolution caused by the change of flow depth and velocity during the flood event.
For practical purposes, one may select a proper formula for a specific bridge pier through a
validation process by comparing the data measured by the scour monitoring system.

The flood event occurred on 19 May 2014 with heavy rainfall generated in the water-
shed. The computational domain for the flow simulation has 6870 computational cells and
is approximately 3285 m long and 1165 m wide between two surveyed cross-sections that
are imposed as the upstream inflow and downstream outflow boundaries, described in
Section 3.1. As shown in Figure 7, this flood event presents multiple-peak discharge and
water level hydrographs. On 21 May, the highest peak discharge arrived at the bridge. In
Figure 11, the hydrographs of the simulated water level and velocity at P28 are plotted in
the flood event.

4.2. Total Scour-Depth Evolution

As described in the previous section, the SRH-2D model is adopted to simulate
hydrodynamic conditions for the approaching flow parameters to calculate local scour
depth. At the same time, general scour is also calculated directly using the sediment
transport equation for riverbed degradation and aggradation in the model. The temporal
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variations of total scour depths are calculated by combining the local scour and general
scour depths to provide helpful early warning information in bridge scour failure.

General scour results from sediment material transportation on the riverbed. Based on
the numerical model calibration and verification, the general scour depth was calculated
using the bedload sediment transport equation by Parker (1990) [73]. According to the
sediment size at the study site, Parker’s sediment transport equation is well suited for
rivers composed of coarse sediments and fine sediments. The general scour depth at the
pier front was simulated by the SRH-2D model, considering riverbed aggregation and
degradation. For local scour-depth calculations at P28, the simulated water level and
velocity varying with time, as presented in Figure 11, were used as the approaching flow
parameters. The temporal variations of local scour depths from the four adopted local
scour formulas were estimated and combined with the simulated general scour depths.
Generally speaking, the general scour depths were relatively minor in comparison with
the local scour depths during the scour and deposition processes in this flood event. The
total scour-depth simulated results against time with various local scour formulas are
plotted against time in Figure 13. The real-time scour-depth data obtained from the scour
monitoring system were used to verify numerical modeling.

Based on the simulated results, the total scour depth combines the general scour depth
and the local scour depth from 19 May to 23 May. In this flood event, starting from the
original riverbed elevation, total scour depth increased immediately as the flow discharge
increased while the flow velocity increased and the water level rose. Applying different
local scour formulas, the trend of simulated results coincided with the measured data.
However, the magnitude of the total scour depths did not fit the measured ones well for all
employed formulas. Among the local scour formulas, the Froehlich formula was modified
by replacing its coefficient of 0.32 with 0.50, which can obtain the best trend to fit the
measured scour-depth evolution, as shown in Figure 13. Hence, the modified Froehlich
formula was selected for the calculation of local scour depth in the simulation. For the
first flood peak discharge at 19:00 on 19 May, the simulated scour depth was somehow
overestimated, but the simulated result of the deposition process fit quite well at 10:00
on 20 May before the second flood rising. After the water level reached the third peak
discharge at 16:00 on 21 May, the simulated maximum scour depth was very close to the
measured data at 19:20 on 21 May, which means the flood eroded the riverbed to create
the deepest scour depth of 1.50 m. Although the simulation of total scour-depth evolution
overestimated in the T3 period of flood recession, the overall performance was satisfactory.
The procedure mentioned above to calculate the total scour-depth evolution can provide
predictive information for the early warning system.

5. Conclusions

Scouring at a pier remains a major cause of bridge failure. Without prior warning,
scour failure at the bridge pier structure occurs suddenly and results in public transport
disruption and loss of life, particularly in a flood event. Therefore, it is crucial to monitor in
situ scour-depth evolution to prevent catastrophic bridge failure. A real-time bridge scour
monitoring system is proposed and conceptually demonstrated in the laboratory flume
in this study. The waterproof packaged monitoring technology is more flexible for harsh
environments in flood events and suitable to measure the scour-depth variations during
the scour and deposition processes on the riverbed.

The scour monitoring system consisting of five vibration-based sensors was installed
on pier P28 of the National Highway No. 3 in the Da-Chia River, Taiwan. The system was
subject to severe flooding environments. Each sensor was tested and analyzed for long-
term durability before being used in the field, packaged within a waterproof stainless steel
ball, and protected in a steel-bar-reinforced cage. The system was applied and evaluated
in the flood event on 19 May 2014, with heavy rainfall. This flood event had multiple-
peak discharge and water-level hydrographs. The real-time CCTV images of turbulent
floodwater surface around the bridge pier were automatically recognized and performed by
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the Mask R-CNN deep learning model to estimate water-level variations. The recognized
water levels in time series are essential for the field measurements to provide hydrodynamic
model calibration and validation data.

The scour monitoring data in the scour and deposition processes were recorded and
analyzed. As a scour positioning indicator of the scour monitoring system, the sensor could
detect flow turbulence and summit signal fluctuations while it was exposed to the running
floodwater. A maximum scour depth of 1.5 m was recorded from Sensor S4 vibration
readings after the highest flood peak discharge regarding the original riverbed elevation.
Afterward, in the period of flood recession, the continuous flat signal readings indicated
that the sensors should have been buried again by sediment deposits. The maximum scour
occurred at EL. 69.40 after the highest flood peak discharge; the scour hole was backfilled
to EL. 70.40 afterward. This indicates that the riverbed dropped 1.00 m from the original
elevation after this flood event. This maximum scour depth at P28 was confirmed by field
survey investigation after the flood. Thus, the in situ measurements of total scour-depth
evolution have shown quite reasonable results for the scour and deposition processes.

For early warning, the applicability of scour-depth calculation was evaluated by nu-
merical hydrodynamic simulation at the Da-Chia Bridge. The in situ scour-depth data
measured by the scour monitoring system was adopted for numerical model verification.
In this study, the total scour depth of the bridge pier was mainly dominated by general
scour and local scour. By adopting the SRH-2D hydrodynamic model, the general scour
was calculated directly by the sediment transport equation for riverbed degradation and
aggradation. Applying different local scour formulas, the trend of simulated results coin-
cided with the measured data. Among the local scour formulas, the modified Froehlich
formula resulted in the best trend to fit the measured scour-depth evolution, which was
selected to calculate local scour depth in the model. While the water level reached the high-
est peak flood discharge, the simulated scour depth was very close to the maximum scour
depth of 1.50 m. Based on the procedure mentioned previously, the overall performance of
the hydrodynamic modeling for total scour-depth evolution is satisfactory. It can provide
predictive information of scour-depth variations for early warning in bridge failure.
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