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Abstract: Conventional ultrasonic coherent plane-wave (PW) compounding corresponds to Delay-
and-Sum (DAS) beamforming of low-resolution images from distinct PW transmit angles. Nonethe-
less, the trade-off between the level of clutter artifacts and the number of PW transmit angle may
compromise the image quality in ultrafast acquisition. Delay-Multiply-and-Sum (DMAS) beamform-
ing in the dimension of PW transmit angle is capable of suppressing clutter interference and is readily
compatible with the conventional method. In DMAS, a tunable p value is used to modulate the signal
coherence estimated from the low-resolution images to produce the final high-resolution output and
does not require huge memory allocation to record all the received channel data in multi-angle PW
imaging. In this study, DMAS beamforming is used to construct a novel coherence-based power
Doppler detection together with the complementary subset transmit (CST) technique to further
reduce the noise level. For p = 2.0 as an example, simulation results indicate that the DMAS beam-
forming alone can improve the Doppler SNR by 8.2 dB compared to DAS counterpart. Another
6-dB increase in Doppler SNR can be further obtained when the CST technique is combined with
DMAS beamforming with sufficient ensemble averaging. The CST technique can also be performed
with DAS beamforming, though the improvement in Doppler SNR and CNR is relatively minor.
Experimental results also agree with the simulations. Nonetheless, since the DMAS beamforming
involves multiplicative operation, clutter filtering in the ensemble direction has to be performed on
the low-resolution images before DMAS to remove the stationary tissue without coupling from the
flow signal.

Keywords: delay-and-sum (DAS); delay-multiply-and-sum (DMAS); signal coherence; power doppler
detection; plane-wave (PW) imaging; complementary subset transmit (CST); coherent plane-wave
compounding (CPWC)

1. Background

Delay-and-Sum (DAS) beamforming is routinely adopted to produce image output in
medical ultrasound imaging by compensating the time delay of the received echo according
to the geometric path of propagation before coherent summation [1]. However, it suffers
from intrinsic limitations such as insufficient image resolution and noticeable off-axis
clutter. For plane-wave (PW) imaging which depends on the unfocused transmit wave
to illuminate a wide field-of-view [2], these limitations are notably evident. In single-
angle PW imaging, the received backscattered echoes from one PW transmit event are
processed using DAS beamforming in the direction of receiving channel to generate the
corresponding low-resolution image at frame rate on the order of kHz. Therefore, PW
imaging is also referred as ultrafast imaging. The image quality of PW imaging can be
improved by coherent plane wave compounding (CPWC) in which synthetic transmit
focusing is achieved from multi-angle PW transmit [3,4]. Specifically, low-resolution
images are firstly acquired from several PW transmit angles and then coherently combined
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to achieve the final high-resolution CPWC image. Considering an imaging depth of 75 mm,
the pulse-repetition-interval (PRI) for pulse-echo imaging will be 100 µs with the sound
velocity of 1.5 mm/µs. This corresponds to a frame rate of 10 kHz for low-resolution PW
imaging. Assuming that every 10 low-resolution images is coherently combined to improve
the image quality, the resultant high-resolution CPWC images will be produced at a frame
rate of 1 kHz. With this high frame rate, CPWC imaging has been utilized to detect the
motion of imaged objects in transient elastography [4,5] and Doppler flow imaging [6–13].
However, it should be noted that the image quality in CPWC imaging relies on the number
of low-resolution images involved in the compounding, and thus an inevitable trade-off
between the image quality and the frame rate exists. In other words, with just a few PW
transmit angles, the image quality in CPWC imaging is generally unsatisfactory due to the
presence of high clutter artifacts.

Note that the aforementioned CPWC imaging for each image pixel is actually per-
formed by coherently summing all the received channel data from all the PW transmit
angles. These data can be represented as an echo matrix comprising two dimensions of
the PW transmit angle and the receiving channel. Thus, the CPWC imaging is actually
constructed using two-dimensional DAS beamforming. Note that the signal coherence of
the two-dimensional echo matrix can be used to reject low-coherence clutters and thermal
noises to further improve the multi-angle PW image quality. One particular example is
Delay-Multiply-and-Sum (DMAS) beamforming. Originally, DMAS beamforming is devel-
oped to extract the signal coherence in the dimension of receiving channel by multiplying
the received echoes between every possible channel pair after time compensation [14].
In order to improve the computational efficiency of the original DMAS beamforming,
alternative high-order versions of DMAS beamforming have been recently proposed with
flexibly tunable image quality in [15,16]. Take the BB-DMAS [16] as an example, where a
rational p value is used to represent the order of DMAS beamforming. Note that a higher
image quality can be achieved by adopting a higher p value to emphasize more spatial co-
herence in DMAS beamforming. The implementation of BB-DMAS beamforming involves
the magnitude scaling of time-delayed channel signal by p-th root and the subsequent
p-th power after channel sum. DMAS beamforming has also been extended to multi-angle
PW imaging by extracting the signal coherence of two-dimensional echo matrix. In [17],
DMAS beamforming is applied in the dimension of receiving channel to exploit the spatial
coherence of synthesized echoes in different channels. The synthesized channel data is
produced by summing the echo matrix in the dimension of PW transmit angle for synthetic
transmit focusing as in CPWC imaging [17]. On the contrary, the two-dimensional spatial
coherence can be also derived directly from the entire echo matrix using echoes in both
dimensions [18].

In this study, a novel coherence-based DMAS power Doppler detection together with
complementary subset transmit (CST) is proposed for multi-angle PW imaging. Power
Doppler provides essential information of the backscattered power of flow signal and gener-
ally has higher sensitivity to small vessels than color Doppler [19,20]. This is because these
small vessels may not be detectable using velocity estimation in color Doppler due to noises.
The proposed method firstly adopts DMAS beamforming in the dimension of PW transmit
angle to suppress the background noise and clutter. Then, the CST technique is used to
further reduce the noise level in power Doppler detection by correlation of two complemen-
tary DMAS signals. Unlike the coherent flow power Doppler (CFPD) method [21,22] that
relies on short-lag spatial coherence [23] to extract the coherence of blood flow signal in the
dimension of receiving channel, the proposed DMAS beamforming is based on the signal
coherence among low-resolution images from distinct PW transmit angles. It is compatible
with current CPWC imaging and does not require huge memory allocation to retain the
entire channel data in the echo matrix. In other words, the delayed channel data is firstly
summed to one low-resolution image pixel. Then, DMAS beamforming in the dimension
of PW transmit angle can be performed by magnitude-scaling these low-resolution images
from distinct PW transmit angles before restoring the signal dimensionality to produce
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the high-resolution image after coherent compounding. Section 2 introduces the basics of
DMAS beamforming in the dimension of PW transmit angle for power Doppler detection
and the subsequent implementation of CST technique. Simulation methods in this study
are described in detail in Section 3, together with experimental setups. In Section 4, image
quality of the proposed DMAS-based power Doppler detection is quantitatively presented.
Section 5 concludes our results with discussions.

2. Theory
2.1. Basics of Power Doppler Detection

In Doppler ultrasound imaging, the motion of red blood cells in the vessel is detected
by repetitive pulse transmissions to observe the temporal variations of backscattered signals.
For each image pixel, the recorded signal corresponding to the f -th pulse transmission is
generally referred to as the f -th Doppler ensemble where f is the index of ensemble (f = 1, 2,
. . . , F). In other words, there are a total of F ensembles available for velocity estimation in
color Doppler and/or power estimation in power Doppler. Note that, in order to separate
the blood flow signal from the stationary tissue signal and the thermal noises, a temporal
clutter filter has to be applied to the Doppler ensembles to extract signal components with
frequencies within a low-order threshold and a high-order threshold. In other words,
the Doppler ensembles is band-pass filtered in the ensemble direction which is also called
the slow-time direction. In this study, the band-pass clutter filtering is implemented using
singular-value decomposition (SVD) [24,25] whose low-order and high-order thresholds
are both adaptively determined.

Conventionally, the blood flow estimation can be achieved by autocorrelation of these
Doppler ensembles as proposed in [26]. Specifically, the Doppler power is represented
using the zero-lag autocorrelation as

PD =
F

∑
f=1

∣∣∣y f
∣∣∣2 (1)

where y f is the f -th Doppler ensemble after beamforming. Note that the Doppler power in
Equation (1) is simply the summation of the squared magnitude of each Doppler ensemble.

In multi-angle PW imaging, the DAS beamforming (i.e., CPWC image) is the coherent
summation of low-resolution image pixels from distinct PW transmit angles. Therefore,
given the low-resolution image pixel as xm where m is the index of PW transmit angle
(m = 1, 2, . . . , M), the output of DAS beamforming is represented as

yDAS =
M

∑
m=1

xm (2)

Note that the summation in Equation (2) is to produce the high-resolution CPWC
image. After substituting Equation (2) into Equation (1), the conventional power Doppler
detection of DAS beamforming in CPWC imaging is calculated as

PDDAS =
F

∑
f=1

∣∣∣∣∣ M

∑
m=1

xm

∣∣∣∣∣
2
 (3)

In other words, the power of the high-resolution image is summed among ensembles
to provide the final power Doppler estimation of DAS beamforming.

2.2. Power Doppler Detection of DMAS Beamforming

The DMAS beamforming in this study is implemented using baseband data to elimi-
nate the need for oversampling of radio-frequency waveform [16]. Specifically, when the
baseband data for low-resolution image pixel from the m-th PW transmit angle (i.e., xm
in Equation (2)) is represented as xm = amejφm , DMAS beamforming in the dimension of
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PW transmit angle is performed by first maintaining the phase of low-resolution pixel but

adopting the p-th root to scale the pixel magnitude as
∧
xm = p

√
amejφm . Then, the p-th power

of the summation of magnitude-scaled low-resolution image pixels from all the available
PW transmit angles is performed to produce the final high-resolution image pixel. In other
words, DMAS beamforming in the dimension of PW transmit angle can be defined as

yDMAS =

(
M

∑
m=1

∧
xm

)p

=
(

wH∧x
)p

(4)

where
w = [ 1 1 1 . . . 1 ]

T
= 1

∧
x = [ ∧x1

∧
x2

∧
x3 . . .

∧
xM ]

T

Here, the symbol H represents Hermitian transpose and the real-valued weighting
vector w is actually a unity vector 1 to equally emphasize the contribution from all the
available PW transmit angles. For power Doppler detection, the magnitude of DMAS
image is averaged among consecutive ensembles before the calculation of image power. In
other words, the power Doppler of DMAS beamforming in this study is formulated as

PDDMAS =

(
F

∑
f=1

∣∣yDMAS

∣∣)2

(5)

Though the proposed DMAS beamforming is also applicable to B-mode imaging,
it should be noted that the DMAS beamforming in this study is calculated from low-
resolution images after SVD clutter filtering in order to remove both stationary tissue and
noises for power Doppler estimation.

2.3. Power Doppler Detection of DMAS Beamforming with CST (DMAS-CST)

DMAS beamforming with CST technique depends on DMAS signals from two subsets
of PW transmit angles. The idea of complementary subset is similar to that in [27–29] but
is defined in the dimension of PW transmit angle instead of receiving channel. Specifically,
DMAS beamforming is performed using the available PW transmit angles in each transmit
subset and the beamforming output is denoted as yDMAS1 and yDMAS2, respectively, for
subset 1 and subset 2:

yDMAS1 =
(

wH
1
∧
x
)p

yDMAS2 =
(

wH
2
∧
x
)p

where the weighting vector w1 for subset 1 is related to the weighting vector w2 for subset
2 by w1 = 1−w2 to ensure the complementary property. Note that, when the total number
of available PW transmit angle is odd-valued, the subset 1 and 2 can share one specific PW
transmit angle to equalize the number of PW transmit angle in each subset. For example,
when there are totally seven PW angles in the transmit sequence, w1 and w2 can be
respectively defined as [1 1 1 0.5 0 0 0] and [0 0 0 0.5 1 1 1] so that each subset comprises half
of the total PW transmit angles. For even number of PW transmit angle, on the other hand,
any PW transmit angle should belong to either one of the two complementary subsets. The
two DMAS signals are then correlated to reduce the noise level and a square root of the
correlation is performed to restore the dimensionality of DMAS signal. In other words, the
DMAS-CST beamforming can be formulated as

yDMAS−CST =
√

yDMAS1 y∗DMAS2 =
(

wH
1 R w2

) p
2 (6)
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where the symbol * is for complex conjugate and R =
∧
x
∧
x

H
is the autocorrelation matrix of

magnitude-scaled low-resolution image pixels from different PW transmit angles (i.e.,
∧
x in

Equation (4)). Note that the power Doppler detection of DMAS-CST beamforming is also
implemented by ensemble averaging of yDMAS−CST before power estimation as

PDDMAS−CST =

(
F

∑
f=1

yDMAS−CST

)(
F

∑
f=1

yDMAS−CST

)∗
(7)

The signal flowchart of DMAS-CST beamforming for power Doppler estimation is
schematically represented in Figure 1. It should be noted that, when both w1 and w2
are replaced with the unity vector 1, power Doppler of DMAS-CST beamforming in
Equation (7) will degenerate to that of DMAS beamforming in Equation (5). In other
words, the original DMAS beamforming can be understood as a special case of DMAS-CST
beamforming. Moreover, it is expected that the achievable noise reduction in DMAS-CST
beamforming should rely on the number of ensembles. Note that the complementary
weighting vectors w1 and w2 can effectively eliminate the uncorrelated noise only when
the noise component in the autocorrelation matrix R is diagonal. However, this statistically
demands sufficient ensemble averaging for the noise component to converge to σ2

NI where
I is the identity matrix and σ2

N is the noise variance of magnitude-scaled low-resolution
image.
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Figure 1. Schematic diagram of DMAS-CST beamforming for power Doppler detection in multi-angle PW imaging. Note
that the wall filtering is performed on low-resolution images of each PW transmit angle before DMAS beamforming.

3. Methods
3.1. Simulation Setup

The Field II program [30,31] has been used for all simulations. The simulation
schematic is shown in Figure 2. A flow channel with a radius of 2 mm is embedded
in the speckle-generating tissue phantom to simulate the blood vessel with an inclined
angle of 45◦. The scatterers inside the flow channel are assumed to move according to
a parabolic velocity distribution (i.e., laminar flow) with the peak velocity at the center
of 15 mm/s. The scatterer density is set to contain about 10 scatterers per resolution cell
and the scattering magnitude of the tissue is assumed to be 60 dB higher than that of
the blood flow in the flow channel. White Gaussian noises are included into the simu-
lated channel waveforms before beamforming to achieve a channel signal-to-noise ratio
of 0 dB for the blood flow signal. A 128-elements linear array transducer was used for
both transmission and reception in the simulations. The transmit frequency is set to be
5 MHz. A total of 7 plane waves evenly spanning an azimuthal angular range of −7.5◦

to +7.5◦ are sequentially transmitted with a pulse-repetition-frequency (PRF) of 3.9 kHz
to produce low-resolution images of size 375 × 128 from distinct PW angles. Therefore,
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the compounded high-resolution imaging has a frame rate of approximately 556 Hz. Note
that the low-resolution images are constructed using baseband DAS beamforming in the
direction of receiving channels as conventional CPWC imaging. The PW transmit sequence
is repeated 15 times to provide an ensemble number of 15. Other detailed parameters
are shown in Table 1. For each PW transmit angle, the corresponding low-resolution
images from different ensembles are clustered in the ensemble direction to form a three-
dimensional matrix of 375 × 128 × 15 for SVD clutter filtering to eliminate high-frequency
noise and stationary tissue. In the simulation, the low-order and high-order thresholds of
SVD clutter filter are set to 2 and 10, respectively. Finally, the filtered low-resolution images
of different PW transmit angles were compounded using either DAS or DMAS processing
to produce the high-resolution power Doppler image with ensemble averaging.
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intersection of the image plane of the array transducer and the cylindrical vessel will be an ellipse.

Table 1. The imaging parameter of Field II simulations.

Imaging System

Transducer Linear Array
Pitch 0.3 mm

Number of elements 128
Elevation focus 30 mm

Sampling frequency 20 MHz
Image size in pixels 375 (axial) × 128 (lateral)

Transmit Pulse

Center frequency 5.0 MHz
Excitation 3 cycles

PW transmit angle 7 (−7.5◦~+7.5◦)
Ensemble 15

PRF 3.9 kHz

Phantom

Speed of Sound 1540 m/s
Scattering magnitude 60 dB (tissue clutter)

0 dB (blood flow)
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3.2. In Vivo Experimental Setup

The animal data was provided by the S-Sharp Corporation (New Taipei, Taiwan).
The data was collected from a 6-month-old female New Zealand white rabbit. The rabbit
was anesthetized with an intramuscular injection of Zoletil® 50 according to its body
weight and placed on a warming pad to maintain its body temperature at 37 ◦C. The
L154BH linear array with a center frequency of 6.4 MHz was used in the experiment. The
experimental PW transmit sequence comprises 6 PW angles which equidistantly increasing
from −5◦ to +5◦ with a PRF of 4 kHz. The corresponding low-resolution images were
beamformed by Prodigy ultrasonic imaging system (S-sharp, New Taipei City, Taiwan)
and then processed offline using Matlab (The MathWorks, Natick, MA, USA) for SVD
clutter filtering. Therefore, the effective high-resolution frame rate is about 667 Hz. A total
of 64 ensembles were acquired and each ensemble is compounded from low-resolution
images from 6 angles. The detailed imaging parameters are shown in Table 2. In the in vivo
experiment, the low-order and high-order thresholds of SVD clutter filter are set to be 10
and 40, respectively. These thresholds are determined using the descendent magnitude
of each singular value. One typical example in Figure 3 demonstrates that the low-order
threshold is regarded as the turning point at which the curve of singular value has a slope
of −1 to indicate the beginning of the flattened curve. On the other hand, the high-order
threshold corresponds to where the curve of singular value is about to decrease linearly.
This is because the high-order singular value of white Gaussian noise should follow a linear
distribution under the logarithm scale [32]. Similar to the simulations, the SVD clutter
filter is also individually applied to the low-resolution images of each PW transmit angle.
Then, these filtered low-resolution images are coherently compounded using either DAS
or DMAS beamforming to produce the final high-resolution power Doppler image.
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Figure 3. The curve of singular value of the in vivo experimental data and the corresponding
low-order and high-order threshold for SVD clutter filtering.

Table 2. The imaging parameter of in vivo experiment.

Prodigy Imaging System

Transducer L154BH
Pitch 0.3 mm

Number of elements 128
Elevation focus 20 mm

Sampling frequency 25.6 MHz
Image size in pixels 520 (axial) × 128 (lateral)
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Table 2. Cont.

Transmit Pulse

Center frequency 6.4 MHz
Excitation 5 cycles

PW transmit angle 6 (−5◦~+5◦)
Ensemble 64

PRF 4 kHz

3.3. Quantitative Analysis

In order to quantitatively compare the image quality among different beamforming
methods in power Doppler imaging, two region-of-interests (ROIs) are defined in the
power Doppler image to respectively represent the blood flow area and the background
area. The calculation of Doppler signal-to-noise ratio (SNR) and contrast-to-noise ratio
(CNR) are defined as follows [33]:

SNR = 10 · log10

(
Mblood

Mbackground

)
CNR = 10 · log10

(
|Mblood − Mbackground|

σbackground

)
where Mblood and Mbackground are the mean power of blood flow and background signals,
respectively, and σbackground represent the standard deviation of background signals. For
each power Doppler image in this study, its leftmost upper panel shows the corresponding
ROIs for the blood flow region (blue box) and the background region (white box).

4. Results
4.1. Simulations

Power Doppler images of the simulated flow phantom in DMAS beamforming and
DMAS-CST beamforming are respectively provided in the upper and lower panels of
Figure 4. Seven PW transmit angles are used for coherent compounding (i.e., [−7.5◦ −5◦

−2.5◦ 0◦ +2.5◦ +5◦ +7.5◦]). The flow velocity in the simulation is 15 mm/s and the ensemble
number for averaging is 15. The power Doppler images from left to right correspond to
different p values of 1.5, 2.0 and 2.5 in both DMAS and DMAS-CST beamforming while
DAS beamforming is also provided as a reference in the leftmost panels. Note that the
power level of Doppler image is represented using the brightness as shown in the color
bar. A brighter image pixel means that the Doppler power in this spatial location is
higher than that in other pixels. The background region (i.e., the white box) does not
enclose any flow vessel and thus its power only comes from the random noises. Since the
background region of DMAS image appears to be darker than that of DAS image, visual
observations indicate that the power Doppler images with DMAS beamforming alone
generally have a lower noise level in the background than that with DAS beamforming.
Specifically, the Doppler SNR increases from 17.1 dB in DAS to 21.8 dB, 25.3 dB, and 28.4 dB
in DMAS, respectively, with the p value of 1.5, 2.0, and 2.5. Take the p value of 2.0 in DMAS
beamforming as an example, the improvement in Doppler SNR is 8.2 dB compared to the
DAS counterpart. On the other hand, when DMAS beamforming is performed together
with the CST technique, it is also apparent in Figure 4 that the background noise can
be further suppressed to a lower level in DMAS-CST beamforming. The corresponding
Doppler SNR improves by another 6.4 dB, 6.0 dB, and 4.5 dB, respectively, for the p value
of 1.5, 2.0, and 2.5. Note that the improvement in Doppler SNR due to the CST technique
appears to decrease with the p value in DMAS beamforming. This observation will be
discussed later. Note that DAS beamforming with CST technique can also improve the
Doppler SNR but only by 3.4 dB.
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The Doppler SNR and CNR are also provided as a function of ensemble number
ranging from 1 to 15 in Figures 5 and 6. In Figure 5, it should be noted that the Doppler
SNR without the CST technique generally remains unchanged with the ensemble number
in both DAS and DMAS beamforming. This is because the incoherent summation of power
Doppler ensembles only helps to smooth the noise variation in the background but is not
able to suppress the noise level. With the CST technique, on the contrary, the achievable
Doppler SNR in both DAS-CST and DMAS-CST beamforming appears to consistently
increase with the ensemble number. This is as expected since the CST technique depends
on a diagonal autocorrelation matrix among PW transmit angles (i.e., R in Equation (6)) to
remove the uncorrelated random noises. Nonetheless, for random noises, it takes sufficient
realizations (i.e., sufficient power Doppler ensembles) for the autocorrelation matrix to
converge to the diagonal form. This is why the SNR improvement due to the CST technique
would increase with the ensemble number. Take DMAS beamforming with p value of
2.0 as an example, the CST technique improves the Doppler SNR by 2.9 dB and 6.0 dB,
respectively, when the ensemble number is 6 and 15. Similarly, the Doppler SNR in DAS
beamforming also improves by 1.7 dB and 3.4 dB due to the CST technique, respectively for
the ensemble number of 6 and 15. On the contrary, the Doppler CNR appears to increase
with the ensemble number no matter whether the CST technique is performed or not. This
comes from the reduction of noise variation in the process of ensemble averaging. For DAS
beamforming, however, the Doppler CNR without and with the CST technique almost
overlap with each other. In other words, the CST technique barely improves the Doppler
CNR in DAS beamforming. For DMAS beamforming, on the other hand, the Doppler CNR
markedly increases due to the CST technique for all p values considered here. Take the
p value of 2.0 as an example, the CST technique improves the Doppler CNR in DMAS
beamforming by 0.9 dB and 3.2 dB, respectively when the ensemble number is 6 and 15.
Nonetheless, it should be noted that the CST technique could adversely lead to the decrease
of Doppler SNR and CNR when the ensemble number is small (e.g., smaller than three in
the simulation as shown in Figures 5 and 6).
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Since the DMAS-based power Doppler detection in this study relies on the signal
coherence among low-resolution images from different PW transmit angles, the effect of
the number of PW transmit angle should be considered. Figure 7 shows that the simulated
power Doppler images when the number of PW transmit angle is reduced to 5 (i.e., [−5◦

−2.5◦ 0◦ +2.5◦ +5◦]). All other imaging parameters remain the same as those in Figure 4.
Compared to its 7-angle counterpart in Figure 4, it should be noted that the 5-angle power
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Doppler images in Figure 7 exhibit higher background noise level and the resultant Doppler
SNR and CNR also decrease relative to those in Figure 4. For example, the Doppler SNR in
DMAS beamforming without CST technique decreases from 21.8 dB, 25.3 dB, and 28.4 dB
in Figure 4 to 19.8 dB, 22.6 dB, and 25.1 dB in Figure 7, respectively, with the p value
of 1.5, 2.0, and 2.5. In other words, when a smaller number of PW transmit angle is
used to construct the final high-resolution power Doppler image for a higher frame rate,
the Doppler SNR and CNR may decrease in DMAS beamforming. This implies that the
coherence-based suppression of random noises performs better when more realizations of
noise are available from distinct PW transmit angles. In DMAS-CST beamforming, on the
other hand, the Doppler SNR also decreases from 28.2 dB, 31.3 dB, and 32.9 dB in Figure 4 to
26.2 dB, 28.3 dB, and 29.4 dB in Figure 7. Note that the Doppler SNR in DAS beamforming
also decreases from 17.1 in Figure 4 to 15.7 in Figure 7. However, it should be taken
into considerations that the ensemble number of power Doppler image is fixed to 15 for
both 5-angle and 7-angle transmit sequences in this comparison. In practical applications,
DMAS-CST beamforming may be expected to suffer less from a smaller number of PW
transmit angle and will be discussed later.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 20 
 

 
Figure 7. Simulated power Doppler images of flow phantom for DAS beamforming, DMAS beamforming with the p value 
of 1.5, 2.0 and 2.5, respectively from left to right. Five PW transmit angles are used (i.e., [−5° −2.5° 0° +2.5° +5°]). Upper 
panels: without the CST technique. Lower panels: with the CST technique. 

It has been clearly indicated in the theory section that the DMAS-based power Dop-
pler in this study is performed by averaging the magnitude of Doppler signal among dif-
ferent ensembles and then the power of the averaged Doppler signal is estimated as in 
Equation (5). This is different from the conventional approach in which the power of Dop-
pler signal is averaged among ensembles as in Equation (1). The reason for performing 
ensemble averaging of signal magnitude instead of signal power can be justified by the 
power Doppler images as shown in Figure 8. In the upper panels, the power Doppler 
images are constructed using ensemble averaging of signal magnitude for both DAS 
beamforming and DMAS beamforming with the p value of 1.5, 2.0, and 2.5, respectively, 
from left to right. In the lower panels, however, the power Doppler images are constructed 
using ensemble averaging of signal power as in the conventional approach. Therefore, 
some of the panels in Figure 8 are just duplicates of those in Figure 4. It is apparent that 
the power Doppler images in the upper panels consistently have a lower noise level than 
their counterpart in the lower panels, especially for DMAS beamforming. Specifically, the 
Doppler SNR in DMAS beamforming improves by 1.3 dB, 2.0 dB, and 2.8 dB, respectively 
for p values of 1.5, 2.0, and 2.5 when the ensemble averaging is switched from power to 
magnitude. Note that the Doppler SNR in DAS beamforming also improves by 0.5 dB but 
this minor change in noise level is not visually detectable in the corresponding power 
Doppler images. 

Figure 7. Simulated power Doppler images of flow phantom for DAS beamforming, DMAS beamforming with the p value
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It has been clearly indicated in the theory section that the DMAS-based power Doppler
in this study is performed by averaging the magnitude of Doppler signal among different
ensembles and then the power of the averaged Doppler signal is estimated as in Equa-
tion (5). This is different from the conventional approach in which the power of Doppler
signal is averaged among ensembles as in Equation (1). The reason for performing ensem-
ble averaging of signal magnitude instead of signal power can be justified by the power
Doppler images as shown in Figure 8. In the upper panels, the power Doppler images are
constructed using ensemble averaging of signal magnitude for both DAS beamforming
and DMAS beamforming with the p value of 1.5, 2.0, and 2.5, respectively, from left to right.
In the lower panels, however, the power Doppler images are constructed using ensemble
averaging of signal power as in the conventional approach. Therefore, some of the panels
in Figure 8 are just duplicates of those in Figure 4. It is apparent that the power Doppler
images in the upper panels consistently have a lower noise level than their counterpart
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in the lower panels, especially for DMAS beamforming. Specifically, the Doppler SNR in
DMAS beamforming improves by 1.3 dB, 2.0 dB, and 2.8 dB, respectively for p values of
1.5, 2.0, and 2.5 when the ensemble averaging is switched from power to magnitude. Note
that the Doppler SNR in DAS beamforming also improves by 0.5 dB but this minor change
in noise level is not visually detectable in the corresponding power Doppler images.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 20 
 

 
Figure 8. Simulated power Doppler images of flow phantom for DAS beamforming, DMAS beamforming with the p value 
of 1.5, 2.0, and 2.5, respectively, from left to right. Seven PW transmit angles are used (i.e., [−7.5° −5° −2.5° 0° +2.5° +5° 
+7.5°]). Upper panels: ensemble averaging of signal magnitude. Lower panels: ensemble averaging of signal power. 

4.2. Experiments 
Experimentally acquired power Doppler images of the rabbit’s kidney are provided 

in Figure 9 for DAS and DMAS beamforming without and with CST technique. Visual 
observations also demonstrate that the power Doppler images with DMAS beamforming 
generally has a lower noise level in the background than that with DAS beamforming. 
These observations on experimental images are in agreement with those on simulations. 
Specifically, the experimental Doppler SNR without CST technique increases from 25.6 
dB in DAS to 28.5 dB, 30.9 dB, and 33.0 dB in DMAS, respectively, with the p value of 1.5, 
2.0, and 2.5. Take the p value of 2.0 in DMAS beamforming as an example, the improve-
ment in experimental Doppler SNR is 5.3 dB compared to the DAS counterpart. On the 
other hand, when DMAS beamforming is performed together with CST technique, it is 
also apparent in Figure 9 that the background noise can be further suppressed to a lower 
level in DMAS-CST beamforming. Specifically, the experimental Doppler SNR in DMAS-
CST beamforming improves by 6.5 dB, 5.9 dB, and 5.0 dB, respectively, with the p value 
of 1.5, 2.0, and 2.5, compared to those in DMAS beamforming alone. The efficacy of CTS 
technique on alleviating uncorrelated noises is also consistent between the experimental 
and the simulation results. Besides, though the CST technique in the experiments does 
help to further boost the Doppler SNR, the achievable improvement also decreases with 
the p value in DMAS beamforming. 

Figure 8. Simulated power Doppler images of flow phantom for DAS beamforming, DMAS beamforming with the p value
of 1.5, 2.0, and 2.5, respectively, from left to right. Seven PW transmit angles are used (i.e., [−7.5◦ −5◦ −2.5◦ 0◦ +2.5◦ +5◦

+7.5◦]). Upper panels: ensemble averaging of signal magnitude. Lower panels: ensemble averaging of signal power.

4.2. Experiments

Experimentally acquired power Doppler images of the rabbit’s kidney are provided
in Figure 9 for DAS and DMAS beamforming without and with CST technique. Visual
observations also demonstrate that the power Doppler images with DMAS beamforming
generally has a lower noise level in the background than that with DAS beamforming.
These observations on experimental images are in agreement with those on simulations.
Specifically, the experimental Doppler SNR without CST technique increases from 25.6 dB
in DAS to 28.5 dB, 30.9 dB, and 33.0 dB in DMAS, respectively, with the p value of 1.5, 2.0,
and 2.5. Take the p value of 2.0 in DMAS beamforming as an example, the improvement
in experimental Doppler SNR is 5.3 dB compared to the DAS counterpart. On the other
hand, when DMAS beamforming is performed together with CST technique, it is also
apparent in Figure 9 that the background noise can be further suppressed to a lower level
in DMAS-CST beamforming. Specifically, the experimental Doppler SNR in DMAS-CST
beamforming improves by 6.5 dB, 5.9 dB, and 5.0 dB, respectively, with the p value of
1.5, 2.0, and 2.5, compared to those in DMAS beamforming alone. The efficacy of CTS
technique on alleviating uncorrelated noises is also consistent between the experimental
and the simulation results. Besides, though the CST technique in the experiments does
help to further boost the Doppler SNR, the achievable improvement also decreases with
the p value in DMAS beamforming.
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Upper panels: without the CST technique. Lower panels: with the CST technique.

The experimental Doppler SNR and CNR are quantitatively provided as a function
of ensemble number ranging from 1 to 64 in Figures 10 and 11. It should be noted that
the experimental Doppler SNR without the CST technique in Figure 10 generally remains
unchanged with the ensemble number for both DAS and DMAS beamforming. This
phenomenon agrees with the simulation results in Figure 5. In contrast, when the CST
technique is performed together with either DAS or DMAS beamforming, the experimental
Doppler SNR increases with the ensemble number. This is also consistent with that in the
simulations because sufficient power Doppler ensembles would allow the autocorrelation
matrix to be diagonal for the CST technique to remove uncorrelated noises. With the
p value of 2.0, the experimental Doppler SNR improves from 30 dB, 30.3 dB, and 30.9 dB in
DMAS beamforming alone to 31.6 dB, 34.5 dB, and 36.8 dB in DMAS-CST beamforming,
respectively, when the ensemble number increases from 16, 32, and 64. When the ensemble
number is small, however, it should be noted that the CST technique may adversely
compromise both Doppler SNR and Doppler CNR. For example, with the p value of
2.0, the Doppler SNR with only one ensemble actually decreases from 26.8 dB in DMAS
beamforming to 24.3 dB in DMAS-CST beamforming. This observation also agrees with
that in simulations. Actually, Figure 10 shows that the CST technique demands an ensemble
number larger than eight in the experiments to provided improvement in Doppler SNR for
both DAS and DMAS beamforming.
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In contrast, the Doppler CNR in Figure 11 increases with the ensemble number due
to the reduced variation of noise no matter whether the CST technique is performed or
not for both DAS and DMAS beamforming. For DAS beamforming, however, the CST
technique appears to barely improve the Doppler CNR for all number of ensembles. For
DMAS beamforming, on the other hand, the CST technique with sufficient ensembles could
provide noticeable improvement in Doppler CNR due to the suppressed noise background.
For example, the CST technique improves the Doppler CNR in DMAS beamforming by
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1.2 dB and 1.6 dB, respectively, with the ensemble number of 32 and 64 when the p value
is 2.0.

5. Discussion and Conclusions

In this study, DMAS beamforming of low-resolution images from distinct PW transmit
angles is used to construct a novel coherence-based power Doppler detection in multi-angle
PW imaging. Moreover, the CST technique is also developed to further reduce the noise
level in power Doppler detection by correlation of two DMAS signals from complementary
subset transmit. Since the proposed method is based on signal coherence of the echo matrix
in the dimension of PW transmit angle, it can be readily applied to boost the performance
of conventional CPWC imaging by replacing DAS beamforming of low-resolution images
with DMAS beamforming. Note that the proposed DMAS beamforming of low-resolution
images does not require the raw channel data and thus is relatively free from huge memory
allocation to record the entire echo matrix in multi-angle PW imaging. Specifically, DMAS
beamforming in the dimension of PW transmit angle is performed by first maintaining
the phase of low-resolution pixel but adopting the p-th root to scale the pixel magnitude.
After the summation of magnitude-scaled low-resolution image pixels from available PW
transmit angles, the p-th power is performed to produce the final high-resolution image
pixel. Here, the p value represents the degree of signal coherence considered in DMAS
beamforming and thus a higher p value generally produces higher-quality images. For
the implementation of CST technique, complementary transmit subsets can be defined
from the available PW transmit angles to produce the corresponding signals in DMAS
beamforming. Then, the two DMAS signals can be correlated to reduce the noise level in
the final power Doppler imaging. Note that the CST technique is also applicable to DAS
beamforming by correlating two complementary DAS signals from conventional CPWC
imaging.

It should be emphasized that both the DMAS beamforming and the CST technique
improve the quality of power Doppler image by including the signal coherence into the
image output. They are intrinsically different from a simple nonlinear mapping of the
pixel value which would darken any low-intensity pixel regardless of whether the pixel
belongs to noise or blood flow and thus degrade the image contrast. In order to validate
this, a weaker flow is simulated as shown in Figure 12 by reducing the peak velocity to only
5 mm/s while all other simulation parameters and signal processing remain unchanged
to those in Figure 4. Note that the weaker flow intensity is demonstrated both by the
lower brightness of the flow region and the corresponding Doppler SNR in Figure 12 than
its counterpart in Figure 4 for each panel. With the same noise level in the simulation
of both Figures 4 and 12, their difference in Doppler SNR actually represents the image
contrast of power Doppler detection between the stronger and the weaker flow signals.
Take the DMAS-CST beamforming in the lower panels as an example, the Doppler SNR
decreases from 28.2 dB, 31.3 dB, and 32.9 dB in Figure 4 to 23.6 dB, 26.5 dB, and 27.8 dB in
Figure 12, respectively, with the p value of 1.5, 2.0, and 2.5. Therefore, the image contrast
of DMAS-CST beamforming between Figures 4 and 12 is respectively 4.6 dB, 4.8 dB, and
5.1 dB. Compared to the DAS reference whose image contrast is 4.3 dB (i.e., 17.1–12.8),
DMAS-CST beamforming exhibits no significant change in image contrast with marked
suppression in background noises. In other words, the proposed DMAS-CST beamforming
can preserve the image contrast of conventional DAS beamforming while improving the
Doppler SNR significantly.



Sensors 2021, 21, 4856 16 of 19Sensors 2021, 21, x FOR PEER REVIEW 17 of 20 
 

 
Figure 12. Simulated power Doppler images of flow phantom for DAS beamforming, DMAS beamforming with the p 
value of 1.5, 2.0, and 2.5, respectively from left to right. Upper panels: without the CST technique. Lower panels: with the 
CST technique. All simulation parameters and signal processing remain the same as those in Figure 4 except that the peak 
flow velocity is reduced from 15 mm/s to 5 mm/s to produce a weaker flow after clutter filtering. Note that the brightness 
of each panel is normalized to that of its counterpart in Figure 4. 

Moreover, in the proposed DMAS and DMAS-CST beamforming, the Doppler power 
is estimated using a square-of-sum approach as defined in Equations (5) and (7). Com-
pared to the conventional sum-of-square power estimation in Equations (1) and (3), the 
square-of-sum approach additionally includes the cross-correlation among ensembles 
into the estimated Doppler power. Therefore, the square-of-sum power can be understood 
as the sum-of-square power compensated by the cross-correlation among ensembles. Note 
that, with a sufficient number of ensembles, the cross-correlation term will statistically 
approach zero for uncorrelated thermal noises but will remain large for true flow signal. 
This is exactly why the averaging of signal magnitude before taking power (i.e., square of 
sum) in upper panels of Figure 8 always provides higher Doppler SNR and CNR than the 
averaging of signal power (i.e., sum of square) in the corresponding lower panels. This 
observation is also similar to that reported in [34] which uses larger lag of autocorrelation 
to represent the Doppler power. 

Both simulations and experiments have been performed to validate the DMAS-based 
power Doppler imaging. Results indicate that, since the random noises have a low coher-
ence among low-resolution images, the proposed DMAS beamforming is capable of pro-
ducing a lower background noise level than the DAS counterpart and thus the achievable 
Doppler SNR increases with the p value in DMAS beamforming. Besides, when the CST 
technique is integrated with DMAS beamforming, the corresponding Doppler SNR fur-
ther improves by another 6.4 dB, 6.0 dB, and 4.5 dB in the simulations for DMAS-CST 
beamforming with the p value of 1.5, 2.0, and 2.5, respectively. Note that the improvement 
in Doppler SNR due to the CST technique decreases with the p value. Our experimental 
results also confirm the decrease of achievable improvement in Doppler SNR with the p 
value in DMAS-CST beamforming. This is because the DMAS beamforming without CST 
technique already helps to suppress not only the low-coherence image clutter but also the 
uncorrelated random noises. Consequently, when the random noises have been largely 
suppressed by adopting a higher p value in DMAS beamforming, there will be fewer re-
sidual noises left for the CST technique to remove. This is probably why the efficacy of 

Figure 12. Simulated power Doppler images of flow phantom for DAS beamforming, DMAS beamforming with the p value
of 1.5, 2.0, and 2.5, respectively from left to right. Upper panels: without the CST technique. Lower panels: with the CST
technique. All simulation parameters and signal processing remain the same as those in Figure 4 except that the peak flow
velocity is reduced from 15 mm/s to 5 mm/s to produce a weaker flow after clutter filtering. Note that the brightness of
each panel is normalized to that of its counterpart in Figure 4.

Moreover, in the proposed DMAS and DMAS-CST beamforming, the Doppler power
is estimated using a square-of-sum approach as defined in Equations (5) and (7). Compared
to the conventional sum-of-square power estimation in Equations (1) and (3), the square-
of-sum approach additionally includes the cross-correlation among ensembles into the
estimated Doppler power. Therefore, the square-of-sum power can be understood as the
sum-of-square power compensated by the cross-correlation among ensembles. Note that,
with a sufficient number of ensembles, the cross-correlation term will statistically approach
zero for uncorrelated thermal noises but will remain large for true flow signal. This is
exactly why the averaging of signal magnitude before taking power (i.e., square of sum) in
upper panels of Figure 8 always provides higher Doppler SNR and CNR than the averaging
of signal power (i.e., sum of square) in the corresponding lower panels. This observation is
also similar to that reported in [34] which uses larger lag of autocorrelation to represent the
Doppler power.

Both simulations and experiments have been performed to validate the DMAS-based
power Doppler imaging. Results indicate that, since the random noises have a low co-
herence among low-resolution images, the proposed DMAS beamforming is capable of
producing a lower background noise level than the DAS counterpart and thus the achiev-
able Doppler SNR increases with the p value in DMAS beamforming. Besides, when the
CST technique is integrated with DMAS beamforming, the corresponding Doppler SNR
further improves by another 6.4 dB, 6.0 dB, and 4.5 dB in the simulations for DMAS-CST
beamforming with the p value of 1.5, 2.0, and 2.5, respectively. Note that the improvement
in Doppler SNR due to the CST technique decreases with the p value. Our experimental
results also confirm the decrease of achievable improvement in Doppler SNR with the
p value in DMAS-CST beamforming. This is because the DMAS beamforming without CST
technique already helps to suppress not only the low-coherence image clutter but also the
uncorrelated random noises. Consequently, when the random noises have been largely
suppressed by adopting a higher p value in DMAS beamforming, there will be fewer resid-
ual noises left for the CST technique to remove. This is probably why the efficacy of CST
technique on Doppler SNR appears to degrade with the increasing p value in DMAS-CST
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beamforming. On the other hand, the CST technique in DAS beamforming barely leads to
any improvement in Doppler CNR, as demonstrated by the overlap of Doppler CNR with-
out and with CST technique in both Figures 6a and 11a. This observation is consistent with
that reported in [28] even though their complementary subsets are defined in the receiving
aperture while ours are defined in the PW transmit angle. Nonetheless, it should be noted
that the CST technique in DMAS beamforming does provide a marked improvement in
Doppler CNR. Moreover, in order to remove the random noises effectively, the CST tech-
nique demands sufficient ensembles to ensure the diagonal autocorrelation matrix of noises
from distinct PW transmit angles. Consequently, the CST technique may adversely degrade
the quality of power Doppler detection when the number of ensembles is small. As the two
complementary weighting vectors w1 and w2 are selected to respectively correspond to
the negative and the positive PW transmit angles in this study, it can be generalized to any
complementary pair. Theoretically, the complementary pair with interleaved PW transmit
angles should be preferred to minimize the angle difference between the two subsets. This
is because, when the imaged features have a certain orientation, a large difference in PW
transmit angle between the two subsets could make the imaged features more visible in
one transmit subset than the other. In this case, these particular features will be relatively
suppressed by the correlation of the two complementary DMAS signals as compared to
other features without obvious orientations.

Our results also indicate that the performance of DMAS-based power Doppler imaging
would improve with the number of PW transmit angles. This is because the image clutter
and noises can be better distinguished from the true flow signal by comparing among the
low-resolution image pixels from more PW transmit angles. Nonetheless, it should be noted
that the aforementioned observation is based on the same number of ensemble for two PW
transmit sequences with different number of PW transmit angle. In practical applications,
the number of PW transmit angle is actually related to the achievable number of ensemble
for averaging. For example, with a temporal window of 1 s for Doppler detection and a
PRI of 100 µs, the number of high-resolution ensembles will be 2000 and 2500, respectively
for a PW transmit sequence with 5 angles and 4 angles. For DMAS beamforming without
CST technique, since the corresponding Doppler SNR in both simulations and experiments
generally remains unchanged with the number of ensemble, the 5-angle PW transmit
sequence will be preferred due to its larger number of PW angles for better coherence
estimation in DMAS beamforming. For DMAS-CST beamforming, on the contrary, the
corresponding Doppler SNR noticeably increase with the number of ensemble and thus
the advantage of the 5-angle PW transmit sequence could be compromised by its smaller
number of ensemble compared to that of the 4-angle PW transmit sequence. In other words,
DMAS-CST beamforming may suffer less from the smaller number of PW transmit angle
due to the corresponding increase in the number of ensemble.

One major limitation of DMAS-based power Doppler imaging may be its computa-
tional efficiency. Since the proposed DMAS beamforming involves multiplicative operation
of the low-resolution images from distinct PW transmit angles, the low-resolution images
have to be firstly grouped according to its PW transmit angle and then each group is
individually band-pass filtered in the direction of ensemble using SVD to remove the
stationary tissue before DMAS beamforming. Otherwise, if the band-pass filtering is per-
formed after DMAS beamforming, the multiplicative coupling between the blood flow
and stationary tissue will be no longer removable. Consequently, the band-pass filtering
has to be repetitively performed by M times where M is the total number of PW transmit
angle for DMAS beamforming. For DAS beamforming (i.e., CPWC imaging), on the other
hand, its linear operation allows the band-pass clutter filter to be implemented in the
final high-resolution images to ease the computational burden. Note that, however, the
computational complexity in clutter filtering increases not only for the proposed DMAS
beamforming but also for any nonlinear beamforming such as CFPD in [21]. In this case,
a simpler filter such as Finite Impulse Response may be preferred instead of the SVD filter
in this study for real-time implementation of DMAS-based power Doppler imaging.
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