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Abstract: In order to achieve the safe and efficient navigation of mobile robots, it is essential to
consider both the environmental geometry and kinodynamic constraints of robots. We propose a
trajectory planner for car-like robots on the basis of the Dual-Tree RRT (DT-RRT). DT-RRT utilizes
two tree structures in order to generate fast-growing trajectories under the kinodynamic constraints
of robots. A local trajectory generator has been newly designed for car-like robots. The proposed
scheme of searching a parent node enables the efficient generation of safe trajectories in cluttered
environments. The presented simulation results clearly show the usefulness and the advantage of
the proposed trajectory planner in various environments.

Keywords: mobile robot; motion control; trajectory generation; path planning; laser scanner; wheel
odometry

1. Introduction

Recently, outdoor mobile robots have been receiving much attention because of the
increased demand in the field of delivery and transportation. There are various wheel
structures built according to target applications and environments. Two-wheel differential
robots have been widely used owing to their simple structures. However, two-wheel
robots have a lot of limitations in outdoor applications because it is difficult to over-
come uneven ground conditions. Car-like robots are preferred in outdoor applications.
The major drawback of car-like robots is that control problems become difficult due to
nonholonomic constraints.

Path planning schemes are divided into two major groups. The first group includes
search-based schemes and the second group includes sampling-based approaches. The
search-based planner divides a space into small units such as grid-like graph structures
or state lattice space as presented in [1]. Then, various search algorithms, including the
Dijkstra’s algorithm, A* in [2] and D* in [3], can be applied to find solutions. Optimality can
be obtained at the price of high computational cost. The search-based planner for various
types of robots was proposed in [4,5]. The state lattice-based motion planning was applied
not only to ground vehicles in [6], but also to aerial vehicles in [7].

The sampling-based planner extends trees or graph structures as shown in [8,9],
respectively. Rapidly exploring Random Tree (RRT), shown in [10], is widely used because
RRT may efficiently find feasible paths in high dimensional spaces with low computational
cost as shown in [11–13]. Recently, RRT solutions in high dimensional spaces, such as
temporal logic specifications, were proposed in [14].

Conventional RRTs showed many limitations mainly because the resultant RRT paths
were generated without reflecting nonholonomic constraints. Recently, RRTs under the
consideration of kinodynamic constraints have been proposed, as in [15–19].

There are two main issues in kinodynamic planning on the basis of RRTs. The first
issue is to design proper sampling methods for the fast extension of random trees. In [20,21],
sampling methods for RRT were proposed. The second issue is to define an appropriate
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distance metric for evaluating candidate paths. As Lavalle pointed out in [22], the distance
metric considerably affects the performance of RRT planners. Euclidian distances in
planes are commonly used when the fast expansion of the tree is significant. However,
the consideration of kinodynamic constraints is essential in order to obtain efficient and
feasible paths. Sampling in the control input space in [23] is one useful candidate. The
planner in [23] requires an additional search algorithm in order to find the nearest neighbor
nodes. The cost metric for informed RRT was proposed in [24].

As one of the outcomes of the Defense Advanced Research Projects Agency Urban
Challenge, the closed loop Rapidly exploring Random Tree (CL-RRT) [25] was proposed.
The CL-RRT generated reference guidelines through random sampling. CL-RRT generated
feasible trajectories in the finite road region with the guidelines. CL-RRT mainly focused
on autonomous vehicles in the road environment. A sampling technique was especially
designed for roadways and parking lots.

The RRT* algorithm in [26] was proposed towards optimal path planning. A rewiring
procedure of RRT* guaranteed asymptotic convergence to optimal solutions with a proper
nearest range limit. Various planners based on RRT* were proposed in [27,28]. An RRT*-
based planner was proposed for the high-speed maneuvering of autonomous vehicles
in [23]. The scheme in [23] considered dynamic constraints including slip conditions. The
distance metrics in [23] were designed for a relatively simple roadway without obstacles.

The Dual-Tree Rapidly exploring Random Tree (DT-RRT) was proposed for two-wheel
differential mobile robots in [29]. DT-RRT utilized two separate trees with different distance
metrics. DT-RRT efficiently generated feasible trajectories and local control inputs. A re-
planning algorithm and tree updating process support real-time trajectory generation by
reflecting the latest sensor information.

This paper aims to generate a feasible trajectory for car-like mobile robots in cluttered
environments. Various planners were proposed for handling kinodynamic constraints
or the fast extension of RRT. However, it is difficult to find the existing controller that is
appropriate for a car-like robot in cluttered environments. Since the target application is
the outdoor delivery robots, target environments are different from the environments of
autonomous vehicles. Therefore, we propose the new path planning and motion control
scheme CDT-RRT*, which is especially designed for car-like mobile robots. CDT-RRT*
provides feasible trajectories and control inputs. CDT-RRT* can generate a kinodynamically
feasible and goal-reachable trajectory with low computational cost. We propose a new
parent searching algorithm of the dual-tree structure. The proposed replanning procedure
includes re-propagation and tree-branching. Owing to the new searching algorithm, CDT-
RRT* shows an outstanding performance in cluttered and narrow environments. The
presented simulation results clearly demonstrate advantages over prior works.

The rest of this paper is organized as follows: Section 2 introduces the kinematic
model and DT-RRT in [29]. The proposed CDT-RRT* scheme is presented in Section 3. The
simulation results are presented in Section 4. Some concluding remarks are illustrated in
Section 5.

2. The Kinematic Model and Dual-Tree RRT
2.1. Kinematic Model of a Car-Like Robot

The kinematic model of a car-like robot is shown in Figure 1. The reference point of
the robot pose is on the center of the rear axle.
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ẋ
ẏ
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Figure 1. Geometry of the car-like mobile robot model.

Equation (1) is the kinematic model of car-like robots. The state vector x = (x, y, θ, δ, v)T

is a five-tuple that is composed of a robot pose, steering angle δ and translational velocity
v. Control inputs are subject to the conditions u1 ∈ [−amax, amax] and u2 ∈ [−δmax, δmax].

The workspace is defined by q ∈ R2 where q = (x, y). It is assumed that maps and
obstacles are updated in real-time. The objective of the controller is to generate feasible
trajectories τ : [0, T] → C f ree in finite time. The initial and goal conditions are given by
τ(0) = x(0) and τ(T) ∈ Bgoal , respectively, whereas Bgoal = {x|‖qgoal − x‖ < ε}. L f w, lfw
and η are control parameters that will be explained in Section 3.1. The target point implies
the desired target point for forward simulations.

2.2. Dual-Tree RRT

The Dual-Tree RRT (DT-RRT) was proposed in [29]. The dual-tree signifies the
workspace tree and the state tree. The workspace tree is generated in 2D space q = (x, y).
The distance metric is the Euclidean distance in a 2D plane. The workspace tree can be
quickly extended by the node sampling technique that is similar to the conventional RRT.
The state tree is generated in the state space x = (x, y, θ, δ, v)T. The cost is defined as
the travel time of a candidate trajectory that is generated by reflecting the kinodynamic
constraints of a robot. Therefore, smooth trajectories can be quickly generated by DT-RRT.

The workspace tree is extended by sampling new nodes. The state tree is extended by
the utilization of newly created workspace tree nodes. During the extension, the lowest
cost trajectory is selected out of many candidates. The quality of a trajectory is remarkably
improved through the proposed parent node search and the reconnecting process.

The state node of DT-RRT has two node types including a stop state and a moving
state. The stop state represents the state in which the robot has zero velocity, and a moving
state represents the non-zero velocity. Four edge types of state trees generate a sequence
of discrete motions, including turn-on-the-spot in cluttered environments. With the four
edge types of DT-RRT, holonomic trajectories can be generated, and the probabilistic
completeness of DT-RRT is guaranteed.
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3. Car-like DT-RRT* (CDT-RRT*)
3.1. Motion Controller for Trajectory Generations

The major scope of this paper is to propose CDT-RRT* (Car-like DT-RRT*), which
computes the control inputs of car-like mobile robots towards smooth and efficient mo-
tions. Two motion controllers in [30,31] were adopted in DT-RRT. Since the kinodynamic
characteristics of car-like robots are completely different, motion controllers should be
carefully redesigned.

The Pure-Pursuit Controller (PPC) in [32] was exploited as a local motion controller
for CDT-RRT*. PPC has been widely used for the trajectory tracking of car-like robots and
vehicles as shown in [25]. PPC does not guarantee that a robot can be steered to the desired
target pose. Therefore, it is important to investigate whether PPC can be a useful local
controller when target positions are given from the workspace tree. The control input of
PPC in CDT-RRT* is redesigned as follows.

δ = −tan−1

 L sinη
L f w

2 + lfwcosη

 (2)

v = min(vre f − vc, amax · tcycle) (3)

δ denotes a steering angle input. L f w is a look ahead distance. lfw is the distance from the
rear axle to the forward anchor point. η is the heading of the look-ahead point from the
forward anchor point [25].

v denotes a velocity input of car-like robots. vre f is a reference linear velocity. Max-
imum speed trajectories will be generated when vre f = vmax. tcycle is the cycle time of
the controller.

The local controller computes control inputs through forward simulations. A local
controller should satisfy three requirements. Firstly, the local controller should be able
to cope with the changes in path length and velocity through appropriate parameter
adjustment. The second requirement is that the final positioning error should be acceptably
small. Finally, the positioning errors should converge through iterations.

In order to investigate whether PPC satisfies three requirements, simulations are
carried out. Figure 2 shows the simulation results. The robot is driven to 35 target positions
from the origin through the PPC. If the final positioning error is smaller than 10 cm, then
the positioning is successful. We assume that the proposed method will be applied to
outdoor delivery robots. The positioning accuracy of 10 cm is sufficient for an outdoor
delivery robot because the human will handle the loading and unloading procedures.
From Figure 2, it is clear that smooth trajectories are generated with small final positioning
errors. Final positioning errors at all positions did not exceed 10 cm. The mean of the final
positioning errors was 8.58 cm.

Figure 2. Trajectory generation results using Pure-pursuit controller.
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The state node of CDT-RRT* has two node types including a stop node and a moving
node. The stop node is generated around the neighborhood of obstacles. The move node is
generated in collision-free space. An edge type between two nodes is defined by the node
type of a parent node and a child node.

There are four edge types in CDT-RRT*, including stop-move, stop-stop, move-move
and move-stop. At each node, various different motion primitives can be selected according
to the node types. By the selection of stop-move or stop-stop, CDT-RRT* generates a variety
of trajectories that include stopping motions. This fact implies that rich behavior can be
obtained by the sequential combination of piecewise smooth motions.

3.2. Dual-Tree Structure of CDT-RRT*

Tree extension puts an emphasis on fast-growing and tree restructuring plays a signifi-
cant role in improving performance. Restructuring is composed of the parent node search
and reconnect processes. The parent node search of the conventional DT-RRT started from
the closest node to the newly created node qnew. Then the least cost trajectory was selected
out of multiple candidate trajectories that were generated from parent nodes to qnew.

Figure 3 illustrates the difference between the conventional DT-RRT and the proposed
CDT-RRT*. Black trees are workspace trees. Dashed red lines show state trees. Once new
node qnew is created, the conventional DT-RRT connects between qnew and parent nodes of
closest node qn1 as shown in Figure 3a. Nodes with blue circles in Figure 3a correspond to
parent nodes. Figure 3b shows that the trajectory from qn3 to qnew was selected because of
the lowest cost.

Although DT-RRT showed excellent performances in many practical applications,
there are also limitations. One of the drawbacks is its limited restructuring capability. Since
DT-RRT only selects the closest parent node, a better solution can be found according to
the strategy of the parent node selection.

The proposed CDT-RRT* adopts multiple parent node candidates. As shown in
Figure 3c, Qnearlist is defined as the close neighborhood of qnew in the range of Br. Then
all nodes Qnearlist = {qn1, qn2} in Figure 3c become parent node candidates. Finally, the
minimum cost trajectory is selected out of all candidate trajectories from all parent nodes
to qnew.

Algorithm 1 shows the proposed tree extension scheme. TW and TX are the workspace
tree and the state tree. RANDOMSAMPLE() randomly picks a single point in 2D workspace
(x,y). EXTWORKSPACE(TW, qrand) finds Qnear, which is a nearest neighbor of qrand.
EXTWORKSPACE(TW, qrand) connects Qnear to Qnew. Qnew is generated by qrand and has
a position qnew = (xnew, ynew). The position of qnew can be different from qrand, be-
cause qnew moved towards Qnear by the maximum length of the tree extension. The
subroutine NEARNODELIST(Qnew, Br) finds the near nodes of Qnew in the range of Br.
TW.Add(Qnear, Qnew) implies that the workspace tree obtains a new child node Qnew. The
parent node of Qnew is Qnear. TX.Add(Xp, Xmin) implies that the state tree acquires new
child node Xmin. The parent node of Xmin is Xp. RECONNECTTREES(Qnew, Xmin) restruc-
tures the state tree after the addition of new nodes. Existing state nodes nearby Xmin are
temporarily connected from Xmin, while RECONNECTTREES(Qnew, Xmin) operates. If the
cost of a temporarily connected path is lower than the original cost, the existing state node
will be reconnected as a child of Xmin.

Algorithm 2 describes the proposed strategy of selecting parent nodes for restructuring.
Algorithm 2 returns minimum cost parent node Xp after computing all trajectory costs from
candidate nodes to qnew. GETSTATENODE(Qnear) returns the state node that is derived
from the workspace node Qnear. EXTENDSTATE(qnew, Xcur, type) generates a trajectory
from Xcur to qnew in the range of er. The proposed motion controller in Section 3.1 is
employed for trajectory generation. qnew is the target point of the forward simulation in
Figure 1.
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(a) DT-RRT (b) DT-RRT

(c) CDT-RRT*(proposed method) (d) CDT-RRT*(proposed method)

Figure 3. Finding parent node process in tree expansion.

Algorithm 1 BUILDTREE*(q0, x0, goal)

TW.INIT(q0, goal);
TX.INIT(x0, goal);
while tlimit do

qrand ← RANDOMSAMPLE();
[Qnew, Qnear, type]← EXTWORKSPACE(TW, qrand);
Qnearlist ← NEARNODELIST(Qnew, Br)
[Xp, Xmin]← FINDPARENTSTATE*(Qnearlist, qnew, type);
if Xp = nil then

continue;
end if
TW.Add(Qnear, Qnew);
TX.Add(Xp, Xmin);
RECONNECTTREES(Qnew, Xmin);

end while
return;

Br is a boundary of near nodes. It affects path quality and planning time. Large Br
increases the number of candidate nodes. Therefore, the path quality can be improved and
the computational cost of planning increases with the increase of Br. Small Br may save
planning time at the sacrifice of the path quality. In RRT* [26], a scheme that dynamically
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decreased Br was proposed. The asymptotic optimality of RRT-based planning with
decreasing Br was shown in [26]. The determination of Br in CDT-RRT* exploited a similar
approach of the conventional RRT*.

Br = min{γRRT∗(log(card(V))/card(V))1/d, η}
γRRT∗ = 2(1 + 1/d)1/d(µ(X f ree)/ζd)

1/d
(4)

Algorithm 2 FINDINGPARENTSTATE*{Qnearlist, qnew, type}
Xp, Xmin ← nil;
costmin ← in f ;
for all Qnear ∈ Qnearlist do

Xcur ← GETSTATENODE(Qnear);
[Xnew, er, cost]← EXTENDSTATE(qnew, Xcur, type)
if er ≤ Br and cost ≤ costmin then
[Xp, Xmin, costmin]← [Xcur, Xnew, cost];

end if
end for
return Xp, Xmin;

As described in [26], card(V) is a cardinal number of workspace tree size. d is a
dimension of the workspace, which is two in CDT-RRT*. µ(X f ree) denotes the Lebesgue
measure of the obstacle-free space, and ζd is the volume of the unit ball in the d-dimensional
Euclidean space. η is provided by the local steering function, which is EXTENDSTATE in
CDT-RRT*. η of CDT-RRT* is 3 × the maximum length of the tree extension (which is 3 m).

In Figure 3c, the proposed CDT-RRT* selects qn2 in addition to qn1 as the parent
node candidates. DT-RRT selected only qn1 and parent nodes of qn1 under the same
condition as shown in Figure 3a. Figure 3d shows the completely different trajectory of
the proposed CDT-RRT*. The resultant trajectory cost of CDT-RRT* is significantly lower
than the cost of the DT-RRT trajectory in Figure 3b. The major advantage of CDT-RRT*
is that restructuring is carried out with a wide variety of diverse candidate trajectories.
Therefore, CDT-RRT* shows superior performances over prior works, especially in narrow
and cluttered environments, because the minimum cost trajectory can be efficiently found
from many trajectories with different homotopy.

CDT-RRT* includes replanning procedures for practical trajectory following. The
replanning algorithm carries out translation of the existing tree to deal with localization
error and disturbance of the controller. After translation of the whole tree, the lowest cost
trajectory to the goal is selected. Then, collision checking for the lowest cost trajectory
is carried out. If any collision occurs due to a map update or translation of the tree,
unreachable nodes due to the collision are deleted. Then, the remaining orphan nodes are
reconstructed based on the workspace tree. This reconstruction possibly saves planning
time owing to the conservation of orphan nodes. The branching tree sequence is carried
out after reconstruction. While branching the tree, the root node of the tree is generated as
the robot moves forward.

Table 1 shows the qualitative comparison among kinodynamic planners. Six significant
considerations are summarized towards kinodynamic planning in cluttered environments.
Table 1 clearly visualizes unsolved problems and the differences among controllers. It
is clear that the proposed CDT-RRT* is advantageous from a variety of aspects. CDT-
RRT* can handle the kinodynamic constraints of car-like robots and generate piecewise
smooth motions. By sampling in the R2 configuration space, CDT-RRT* could extend the
tree rapidly with goal bias. The proposed parent node selection and re-connect scheme
greatly contribute to finding asymptotic optimal trajectories in cluttered environments. The
proposed replanning scheme can maintain the dual-tree structure by conserving orphan
nodes while robots keep moving and updating sensor information.
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Table 1. The comparison of kinodyamic trajectory planners.

RRT [10] CL-RRT
[25]

High Speed
RRT* [23]

DT-RRT
[29] CDT-RRT*

Car-like
model None Good Good None Good

Piecewise
motion None None None Good Good

Goal-biased
sampling Good Fair Fair Good Good

Cluttered En-
vironments Good Fair Fair Fair Good

Replanning None Fair Fair Good Good

Saving
orphan
nodes

None None None Good Good

4. Simulation Results

Seven simulations are carried out for verification. Simulation conditions are listed in
Table 2.

Table 2. The simulation conditions.

Parameters Values Specifications

vmax 2.7 m/s CPU Intel i7-2620M 2.7 Ghz
amax 1.8 m/s2 RAM 4 GB (1333 MHz)

L 2.8 m OS Ubuntu 11.04
[δmin, δmax] [−30◦, 30◦] Middleware Robot Operating System

δ̇max 20◦/s2 Language C++

Figure 4 shows the result of simulation 1. Boundary conditions of simulation 1 were
initial condition xs = (10, 10, 0, 0, 0) and goal qg = (40, 40). The environment was free of
obstacles. Three schemes were tested for comparison. One was the conventional RRT, the
second was the conventional DT-RRT and the third was the proposed CDT-RRT*. Each
scheme tried to generate 100 trajectories. If a trajectory could not be generated in 30 s, the
trial was counted as a failure. In Table 3, the computing time indicates the required time to
compute a single trajectory. The travel time indicates the moving time along the trajectory
from the start to the goal. The failure count signifies the number of the failed trials out of
100 trajectory generations.

Table 3. Summary of Planning Results from simulation 1.

Mean (s) σ Min (s) Max (s) Failure Count

RRT Computing time 8.62 7.93 0.02 27.59 66Travel time 35.01 7.15 19.20 49.80

DT-RRT Computing time 0.36 0.20 0.06 1.04 0Travel time 18.67 0.62 17.30 19.30

CDT-RRT* Computing time 0.36 0.52 0.07 5.00 0Travel time 18.87 0.82 17.30 21.70

The conventional RRT was implemented for comparison. The conventional RRT
sampled a random point in the 2-dimensional configuration space. The sampled point and
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the nearest node of the sampled point were connected by EXTENDSTATE of CDT-RRT*. If
the connection fails, the conventional RRT samples another point until finding a feasible
path. The conventional RRT showed a significantly low success rate of node extension.

(a) Conventional RRT (b) DT-RRT (c) CDT-RRT*

Figure 4. Resultant trajectories from simulation 1.

From Table 3, it can be seen that the success rate of RRT trajectory generation was
only 34%. The travel time and computing time were much longer than those of DT-RRT or
CDT-RRT*. In the case of a car-like robot, the limitation of steering angles limits the motion
of the robot. Therefore, most of the newly created RRT nodes become infeasible because
new nodes were generated without consideration of kinematic constraints. It is desirable
to obtain smooth and efficient trajectories from the viewpoint of quality. From Figure 4a,
it is clear that the quality of RRT trajectories is poor. The poor performance of RRT was
caused by the lack of restructuring processes.

Table 3 shows that DT-RRT and CDT-RRT* successfully generated 100 trajectories with-
out any failure. This result was made possible owing to the application of local controllers
where kinodynamic constraints were considered. From the viewpoint of trajectory quality,
there were no significant differences between DT-RRT and CDT-RRT* in the obstacle-free
environment. Figure 4b,c show that the two schemes have similar performances and
provide satisfactory results.

Simulation 2 was carried out to investigate the trajectory expansion of CDT-RRT*.
Figure 5 shows the planning result of CDT-RRT* in simulation 2. The blue lines show
the state tree of CDT-RRT*. The thick red line indicates the solution path. The grey circle
describes the goal region. CDT-RRT* returns the path nearest to the goal until securing
a goal-reachable path as shown in Figure 5a,b. The cost of the solution path increased
during that period as shown in zone (A) of Figure 6. After securing a goal-reachable path
as in Figure 5c, the tree of CDT-RRT* kept extending and searching for a better solution, as
shown in zone (B). If CDT-RRT* finds a lower-cost solution, the cost decreases as shown in
zone (C).

Simulation 3 was carried out in the consecutive U-shaped corridor environment as
shown in Figure 7. In simulation 2, the robot was driven from xs = (3, 40, 0, 0, 0) to
qg = (95, 20). Table 4 shows the quantitative results of the comparison. It can be seen
that RRT could not generate trajectories in most cases. Therefore, RRT is inapplicable in
the cluttered environment, as in Figure 7. It is noteworthy that the success rate of CDT-
RRT* trajectory generation was 100%, while the success rate of DT-RRT was only 74%. In
addition, the computing time of the trajectories can be remarkably saved by the use of
CDT-RRT*. The mean computing time of CDT-RRT* is only 23% of DT-RRT’s computing
time. Figure 8 shows the histograms of the computing times for DT-RRT and CDT-RRT*. It
can be seen that solutions can be obtained in a short time for the case of CDT-RRT*. From
the result, it is evident that the proposed CDT-RRT* shows superior performances in a
cluttered environment owing to its excellent restructuring capability. The high success rate
of trajectory generation and reduced computing cost enable real-time computation and
high-speed obstacle avoidance motions.
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(a) T = 0.1s (b) T = 0.5s

(c) T = 1.1s (d) T = 5.9s
Figure 5. Resultant trajectories of CDT-RRT* from simulation 2.

Figure 6. The cost of the solution path by CDT-RRT* in simulation 2.

Figure 7. Resultant trajectories from simulation 3. Red lines: DT-RRT, Blue lines: CDT-RRT*.
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(a) DT-RRT (b) CDT-RRT*

Figure 8. Histogram of the computing time for the results from simulation 3.

Table 4. Summary of Planning Results from simulation 3.

Mean (s) σ Min (s) Max (s) Failure Count

RRT Computing time 29.89 1.11 18.90 30.00 99Travel time 85.50 0.00 85.50 85.50

DT-RRT Computing time 12.08 12.19 0.60 30.00 26Travel time 58.79 2.22 55.70 73.30

CDT-RRT* Computing time 2.79 1.47 0.70 8.60 0Travel time 57.91 1.07 55.70 61.30

Simulation 4 was carried out in the cluttered narrow environment as shown in Figure 9.
The robot was driven from xs = (10, 25, 0, 0, 0) to qg = (85, 25). Table 5 shows the result of
a quantitative comparison among the three schemes. It is obvious that RRT fails to generate
feasible trajectories because the success rate of trajectory generation is only 1%. The failure
rate of DT-RRT is 23% and it is much higher than the 3% failure rate of CDT-RRT*. The
computing time of DT-RRT was 50% longer than that of CDT-RRT*. Figure 10 shows the
histograms of the computing times for DT-RRT and CDT-RRT*. It can be seen that we can
expect quick and stable performances for CDT-RRT* in most trials. Although the travel
time of the two schemes did not show a significant difference, the difference in terms
of the computing time and the success rate greatly affects the real-time performance of
robot navigation.

Figure 9. Resultant trajectories from simulation 4. Red lines: DT-RRT, Blue lines: CDT-RRT*.
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(a) DT-RRT (b) CDT-RRT*

Figure 10. Histogram of the computing time for the results from simulation 4.

Table 5. Summary of Planning Results from simulation 4.

Mean (s) σ Min (s) Max (s) Failure Count

RRT Computing time 29.81 1.93 10.71 30.00 99Travel time 62.70 0.00 62.70 62.70

DT-RRT Computing time 10.20 12.30 0.20 30.00 23Travel time 40.56 1.91 35.70 45.20

CDT-RRT* Computing time 6.78 7.03 0.32 30.00 3Travel time 40.71 4.71 35.20 61.30

Simulation 5 was carried out in the maze environment as shown in Figure 11. The
robot was driven from xs = (5, 55, 0, 0, 0) to qg = (85, 5). Table 6 shows the comparative
results among the three schemes. RRT showed complete failure in the long cluttered
environment. The proposed CDT-RRT* did not fail to find the trajectory in any trial, while
the failure rate of DT-RRT was 36%. The mean computing time of DT-RRT was 2.2 times
longer than that of CDT-RRT*. Figure 12 shows the histograms of the computing times
for DT-RRT and CDT-RRT*. It is evident that all CDT-RRT* trajectories were obtained in a
short time, while DT-RRT showed excessive computing time and unstable performances in
many trials. From the viewpoint of the mean travel time, CDT-RRT* took only 66 s, while
DT-RRT took 72 s—10% longer than that of the proposed method.

Figure 11. Resultant trajectories from simulation 5. Red lines: DT-RRT, Blue lines: CDT-RRT*.
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(a) DT-RRT (b) CDT-RRT*

Figure 12. Histogram of the computing time for the results from simulation 5.

Table 6. Summary of Planning Results from simulation 5.

Mean (s) σ Min (s) Max (s) Failure Count

RRT Computing time 30.00 - 30.00 30.00 100Travel time - - - -

DT-RRT Computing time 14.50 12.39 0.98 30.00 36Travel time 72.83 11.60 58.30 102.70

CDT-RRT* Computing time 6.46 3.44 1.60 17.34 0Travel time 66.54 8.52 57.60 86.00

Simulation 6 was carried out in a cluttered environment as shown in Figure 13. The
robot was driven from xs = (5, 25, 0, 0, 0) to qg = (85, 25). Table 7 shows the comparative
results among the three schemes. RRT showed complete failure in the long cluttered
environment. The proposed CDT-RRT* did not fail to find the trajectory at any trial, while
the failure rate of DT-RRT was 14%. The mean computing time of DT-RRT was 1.4 times
longer than that of CDT-RRT*. Figure 14 shows the histograms of the computing times
for DT-RRT and CDT-RRT*. It is evident that all CDT-RRT* trajectories were obtained in a
short time, while DT-RRT showed excessive computing time and unstable performances in
many trials. From the viewpoint of the mean travel time, CDT-RRT* took only 61 s, while
DT-RRT took 62 s. Although the travel time of the two schemes did not show a significant
difference, the difference in terms of the computing time and the success rate greatly affects
the real-time performance of robot navigation.

Figure 13. Resultant trajectories from simulation 6. Red lines: DT-RRT, Blue lines: CDT-RRT*.
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(a) DT-RRT (b) CDT-RRT*

Figure 14. Histogram of the computing time for the results from simulation 6.

Table 7. Summary of Planning Results from simulation 6.

Mean (s) σ Min (s) Max (s) Failure Count

RRT Computing time 30.00 - 30.00 30.00 100Travel time - - - -

DT-RRT Computing time 7.61 10.03 0.90 30.00 14Travel time 62.40 3.37 57.50 74.60

CDT-RRT* Computing time 5.25 2.06 2.20 11.10 0Travel time 61.33 4.22 56.00 75.70

Simulation 7 was carried out in a narrow environment as shown in Figure 15. The
robot was driven from xs = (5, 25, 0, 0, 0) to qg = (90, 25). Table 8 shows the comparative
results among the three schemes. RRT showed complete failure in the long cluttered
environment. The proposed CDT-RRT* did not fail to find the trajectory in any trial, while
the failure rate of DT-RRT was 1%. The mean computing time of DT-RRT was 2.0 times
longer than that of CDT-RRT*. Figure 16 shows the histograms of the computing times
for DT-RRT and CDT-RRT*. It is evident that all CDT-RRT* trajectories were obtained in a
short time, while DT-RRT showed excessive computing time and unstable performances
in many trials. From the viewpoint of the mean travel time, CDT-RRT* took 46 s, while
DT-RRT took 47 s. Although the travel time of the two schemes did not show a significant
difference, the difference in terms of the computing time and the success rate greatly affects
the real-time performance of robot navigation.

Figure 15. Resultant trajectories from simulation 7. Red lines: DT-RRT, Blue lines: CDT-RRT*.
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(a) DT-RRT (b) CDT-RRT*

Figure 16. Histogram of the computing time for the results from simulation 7.

Table 8. Summary of Planning Results from simulation 7.

Mean (s) σ Min (s) Max (s) Failure Count

RRT Computing time 30.00 - 30.00 30.00 100Travel time - - - -

DT-RRT Computing time 3.53 3.78 1.23 30.00 1Travel time 47.10 5.19 42.60 66.90

CDT-RRT* Computing time 1.74 0.69 0.60 4.45 0Travel time 46.43 4.29 42.60 61.80

Therefore, it can be concluded that the proposed CDT-RRT* generates feasible trajec-
tories with short travel times. In addition, the proposed parent search algorithm shows
outstanding performances especially in narrow cluttered environments where conventional
schemes show limited performances.

5. Conclusions

This paper proposed a new trajectory planner, CDT-RRT*, for car-like mobile robots.
CDT-RRT* utilizes the workspace tree and the state tree for the fast-growing of trees as
well as for kinodynamically feasible trajectory generation. The proposed restructuring
scheme provides outstanding performances over prior works owing to its superior search
capability out of diverse candidate trajectories. CDT-RRT* is especially useful when the
robot moves in narrow cluttered environments. Owing to the appropriate design of the tree
search algorithm, a high success rate of trajectory generation and a reduced computing time
have been achieved. Those two advantages greatly contribute to real-time applications.
The presented simulation results clearly show the advantage of the proposed CDT-RRT* in
various environments.

Although it is possible to generate the maneuvering, including both forward and
backward motions, CDT-RRT* may fail to generate feasible trajectories in extremely narrow
and cluttered environments. Future works will include the development of different local
controllers or improved node sampling strategies in order to overcome extreme situations.
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