
sensors

Communication

OutlierNets: Highly Compact Deep Autoencoder Network
Architectures for On-Device Acoustic Anomaly Detection

Saad Abbasi 1, Mahmoud Famouri 2 and Mohammad Javad Shafiee 1,2,3 and Alexander Wong 1,2,3,*

����������
�������

Citation: Abbasi, S.; Famouri, M.;

Shafiee, M.; Wong, A OutlierNets:

Highly Compact Deep Autoencoder

Network Architectures for On-Device

Acoustic Anomaly Detection. Sensors

2021, 21, 4805. https://doi.org/

10.3390/s21144805

Academic Editor: Roberto Teti

Received: 21 May 2021

Accepted: 9 July 2021

Published: 14 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Systems Design Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
srabbasi@uwaterloo.ca (S.A.); mjshafiee@uwaterloo.ca (M.J.S.)

2 DarwinAI Corp., Waterloo, ON N2V 1K4, Canada; mahmoud@darwinai.ca
3 Waterloo Artificial Intelligence Institute, Waterloo, ON N2L 3G1, Canada
* Correspondence: alexander.wong@uwaterloo.ca

Abstract: Human operators often diagnose industrial machinery via anomalous sounds. Given the
new advances in the field of machine learning, automated acoustic anomaly detection can lead to
reliable maintenance of machinery. However, deep learning-driven anomaly detection methods
often require an extensive amount of computational resources prohibiting their deployment in
factories. Here we explore a machine-driven design exploration strategy to create OutlierNets, a
family of highly compact deep convolutional autoencoder network architectures featuring as few as
686 parameters, model sizes as small as 2.7 KB, and as low as 2.8 million FLOPs, with a detection
accuracy matching or exceeding published architectures with as many as 4 million parameters. The
architectures are deployed on an Intel Core i5 as well as a ARM Cortex A72 to assess performance on
hardware that is likely to be used in industry. Experimental results on the model’s latency show that
the OutlierNet architectures can achieve as much as 30× lower latency than published networks.

Keywords: acoustic anomaly detection; embedded machine learning; deep learning; unsupervised
learning

1. Introduction

Acoustic anomalies are one of the primary ways through which malfunctioning
machinery or industrial processes are monitored. However, this detection of abnormal
sounds is typically done subjectively via human operators who need prior experience.
This is an important problem as automatic detection of acoustic abnormalities can lead
to more reliable predictive maintenance and potentially eliminate the need for manual
monitoring. More importantly, interconnected intelligent monitoring systems are also a
primary enabling technology for Industry 4.0 (AI-based factory automation).

A variety of deep learning-driven techniques have been introduced for acoustic
anomaly detection (AAD) in recent years, including dense autoencoders [1,2], convolutional
autoencoders [2], and pre-trained convolutional neural networks [3]. Although deep
learning-driven methods have demonstrated excellent accuracy in detecting anomalous
sounds, the widespread adoption of these methods remains limited. One of the primary
reasons for the slow adoption is the prohibitive computational resources required by many
deep learning-driven anomaly detection methods, which often have high architectural and
computational complexities, as well as high memory footprints. This results in methods
that cannot be deployed on resource-constrained edge computing devices such as CPUs or
microcontrollers. Moreover, since such methods are typically designed without resource
constraints, the on-device prediction latency is typically not an important design parameter.
However, for industry deployment, AAD must exhibit real-time latency to be successful,
as a quick shutdown of an abnormal sounding machine could be crucial for safety.

Motivated by this challenge, we explore a machine-driven design exploration strat-
egy to create optimal macro-architecture and micro-architecture designs tailored specif-

Sensors 2021, 21, 4805. https://doi.org/10.3390/s21144805 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21144805
https://doi.org/10.3390/s21144805
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21144805
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21144805?type=check_update&version=2


Sensors 2021, 21, 4805 2 of 12

ically for on-device AAD tasks. Through this strategy, we introduce OutlierNets, a set
of highly compact deep convolutional autoencoder network architectures optimized for
memory-constrained devices as well as applications where low-latency inference is a key
requirement. OutlierNets provide high architectural and computational efficiency while
providing high unsupervised AAD accuracy. In addition to assessing area under the receiver
operating curve (AUC) performance, we further assess the on-device latency of OutlierNet
architectures on a variety of devices. These devices include an ARM Cortex A-72 embedded
CPU and a desktop class Intel Core i5-7600 K CPU. In the case of the Intel CPU, we leverage
domain-specific compilation in the form of the OpenVINO platform for optimal execution.

The remainder of this study as organized as follows. Section 2 provides an overview
of existing acoustic anomaly techniques. In Section 3 we discuss the human-driven proto-
typing, as well as the machine-driven parameter exploration. In Section 3, we include a
description of the dataset, mel-spectrograms and the evaluation strategy for the architec-
tures. Section 4 presents architecture results, including parameter count, FLOPs, size in
memory, on-device latency and finally the AUC of each network architecture. We finally
draw conclusions and discuss potential future directions in Section 5.

2. Related Work

A significant amount of attention has been devoted to acoustic anomaly detection
over the past decade [4–7]. Classical techniques such as One-Class Support Vector Ma-
chines (OC-SVM) and Gaussian Mixture Models in particular, have been the most popular
algorithms in this area. However, classical machine learning techniques generally require
feature extraction as an independent step prior to training or inference. For example,
Aurino et al. (2014) train OC-SVMs with different types of audio features such as num-
ber of zero crossings, auto correlation and Mel-Frequency Cepstral Coefficients (MFCC)
to compare their efficacy in detecting anomalous events such as gun-shots and broken
glasses. However, such feature extraction can potentially miss the subtle differences be-
tween ambient and anomalous sound. In contrast, deep learning based acoustic anomaly
detection or deep anomaly detection enables end-to-end learning with automatic extraction
of discriminatory features from the audio directly or alternatively from spectrograms.

Until recently, the area of deep learning-driven AAD has been relatively underrep-
resented in the research literature. This has primarily been due to the lack of publicly
available datasets. However, this situation has improved significantly in recent years
with the release of AAD datasets such as MIMII [1], and ToyADMOS [8]. Traditionally,
autoencoders have been the cornerstone for anomaly detection [2,9–11]. In the context
of AAD, autoencoders are typically trained in an unsupervised manner on the normal
operating sounds of machines. The key idea here is that an autoencoder will learn to
reconstruct a machine’s normal sounds with the minimum possible reconstruction error.
If the autoencoder is fed with an unseen (anomalous) sound, the reconstruction error
would be significantly high, leading to the detection of anomalous events. As a result,
the reconstruction error of anomalous sounds would have a different distribution than for
normal or ambient sounds.

Autoencoders are typically trained on the features extracted from raw audio signals,
with spectral features such as MFCCs [2] and Mel-spectrograms [2,9,10] amongst the most
popular. A Mel-spectogram is similar to a conventional spectogram, with the major dif-
ference being that the sound is represented on the Mel-scale, which measures the pitch as
perceived by humans. The advantage offered by a Mel-spectrogram is that it transforms
the time-series representation of the acoustic signal into a rich higher-dimensional rep-
resentation of frequency, time, and intensity (power), which makes them well-suited for
convolutional autoencoder architectures.

Muller et al. [3] proposed the use of ImageNet pre-trained CNNs (e.g., ResNet-18 [12]
and AlexNet [13]) for automatic feature extraction from Mel-spectrograms. The extracted
features are subsequently fed to traditional machine learning methods such as Gaussian
Mixture Models and Support Vector Machines for inference. Although the aforementioned



Sensors 2021, 21, 4805 3 of 12

deep learning-driven methods have demonstrated excellent accuracy, the resulting systems
require a large amount of computational and memory resources to operate. For example,
a ResNet-18 based feature extractor would require 1.8 billion FLOPs for inference and
exhibits a memory footprint of over 500 MB. To address the high complexity of such
pre-trained CNN architectures, Ribeiro et al. [2] proposed a tailored deep convolutional
autonencoder architecture for AAD with a much lower architectural complexity at 4M
parameters and a memory footprint of 15 MB. Banbury et al. [14] leveraged a differentiable
neural architecture search strategy [15] to design neural network architectures for micro-
controllers, the smallest of which is a dense autoencoder architecture with an impressive
size of 270 KB and the AUC of 84.7%.

3. Methods

In this study, we present OutlierNets, a family of highly compact deep convolutional
autoencoder architectures tailored for real-time detection of acoustic anomalies. We include
two variants of OutlierNets, OutlierNetsα and OutlierNetsβ. OutlierNetsα is tailored for
memory constrained devices whereas OutlierNetsβ is intended for low latency applications
where speed of inference is a priority. These networks were designed with a machine-
driven design exploration strategy which was guided by constraints designed to optimize
either memory or latency. Human expertise was leveraged to design operational constraints
and initial design prototype while the machine-driven design exploration process traverses
the architectural search space for optimal network design.

3.1. Dataset

To evaluate the OutlierNet designs, we employ the MIMII dataset [1]. The dataset
consists of normal and malfunctioning sounds of industrial fans, valves, sliders, and pumps.
In this study, we focus on the slider and fan machine types. Each machine type is comprised
of recordings from four different machines. For example, for the slider machine type,
recordings of four distinct slider machines are provided. Furthermore, the dataset provides
recordings with three distinct levels of SNR, 6 dB, 0 dB and −6 dB. We employs all three
SNR levels in this study. This combination of SNR levels, machine IDs and machine types
results in 24 independent datasets. The training set for each dataset comprises of normal
recordings exclusively, whereas the test set is an even mix of malfunctioning and normal
sounds. To quantify our detection accuracy, we use the commonly used area under the
receiver operating curve (AUC) metric.

3.2. Mel-Spectrograms

Similar to [2,10], we train OutlierNets on Mel-spectrograms of acoustic recordings
rather than time-series representations. Figure 1 provides an overview of Mel-spectrogram
processing. Similar to conventional spectrograms, Mel-spectrograms are a time-frequency
representation of audio. A conventional spectrogram employs a linear frequency axis to
represent the different frequencies in audio. In contrast, a Mel-spectrogram represents the
frequency axis in terms of Mel-scales, which mimics human hearing. Humans are able to
differentiate lower frequencies with significantly more precision than higher frequencies.
For example, the difference between a 250 Hz and a 750 Hz tone will be quite apparent to a
typical listener. However, the difference between a 10 kHz and a 10.5 kHz signal will be
much more difficult to perceive. The Mel-scale was designed such that equal distances in
pitch, sounded equally distant to the typical listener. To transform the linear frequency axis
to the Mel-scale, the following expression is employed

m = 2595 log10(1 +
f

700
)

where m is the mel band and f is the frequency to be mapped. We employ 128 Mel bands
with a hop length of 512, with the Fourier window set to 1024, resulting in 313× 128 Mel-
spectrograms. The resulting Mel-spectrogram is then cropped into 32× 128 windows with



Sensors 2021, 21, 4805 4 of 12

no overlap. Each window represents approximately one second of audio. This is crucial for
two reasons. First, shorter windows would extract a relatively homogeneous part of the
Mel-spectrogram, making it easier for the autoencoder to learn the latent representation.
Second, a shorter window facilitates the proposed system to detect anomalous sound with
only one second of recorded audio. This is an important consideration for real-time AAD.
A system that requires a considerably longer recording would have an inherent lag built
into the system and would not be real-time, even if the prediction itself is rapid.

An example of a Mel-spectrogram is given in Figure 1 along with the cropping
boxes. Note that the small window would not deteriorate the autoencoder’s ability to
detect anomalous sound, even if the duration of the acoustic anomaly is longer than one
second. This is because if an acoustic anomaly completely encompasses a 32× 128 window,
the autoencoder would still exhibit a substantially high reconstruction error, assuming that
the anomalous sound is different from the normal operating sounds of the machine.

Conversion
to Mel-spectrogram

Window
Extraction

32 × 128313 × 128

32
×
12
8
×
1

32
×
12
8
×
1

Autoencoder

Audio

Figure 1. Overview of Mel-spectrogram processing. A given audio signal is transformed to a Mel-
spectrogram with 128 Mel bands, hop length of 512 and a Fourier window of 1024. With 10 s of
audio, this results in Mel-spectrograms with a size of 313 × 128. Subsequently, we extract nine
32 × 128 pixed sized non-overlapping windows from each Mel-spectrogram. These windows are
then fed to an autoencoder for training or for inference. This has the advantage of providing a larger
training set and also a smaller image for the autoencoder to encode.

3.3. Network Architecture Prototyping

The first step in the human-machine collaborative design strategy involves imple-
menting a prototype network that is subsequently optimized via generative synthesis.
Our initial experiments showed that anomaly detection for the slider machine was more
difficult than for the fan. Keeping this in mind, we implement two distinct convolutional
autoencoders as prototypes, with the one intended for the slider machine featuring an
extra convolution layer in the encoder and decoder. Both autoencoders are fed with the
32× 128 Mel-spectrogram window without any additional preprocessing. Additionally,
both models use a 3× 3 convolutional kernel. Our initial experiments also showed that
despite the relatively shallow depth of the autoencoders, the results benefited from the use
of batch normalization after each convolutional layer.

The larger autoencoder features approximately 133,000 parameters and 5 MFLOPs.
The encoder comprises four convolutional layers with filter banks of 4, 8, 16, and 32.
The latent space features a dense layer with 40 nodes. The decoder is a mirror of the
encoder, yielding 8 convolutional layers and 1 dense layer. The smaller network has an
encoder with three convolutional layers with filter banks of 8, 16, and 32. The decoder,
again, is a mirrored version of the encoder with transposed convolution. This smaller
autoencoder exhibits approximately 20,000 parameters.



Sensors 2021, 21, 4805 5 of 12

3.4. Machine-Driven Design Exploration

Prior to advances in machine-driven exploration of architectural search spaces, the de-
sign of neural network architectures was a very challenging and time-consuming process.
Moreover, the required resource constraints necessary for real-time edge scenarios (e.g.,
architectural and computational complexities, memory footprint, etc.) makes this process
even more challenging. Given the number of design hyperparameters involved, the archi-
tectural search space of even simple neural networks is often extremely large. This led to
the great recent interest in machine-driven methods for exploring the architectural search
space to find the optimal network given a set of constraints or design objectives.

The problem of traversing the architectural search space for an optimal neural network
can be generally framed in two different ways. The first category of approaches [14,16,17]
formulates the search as a multi-objective optimization problem. The objectives can include
criteria such as network size, inference latency, accuracy or FLOPs. In these approaches,
optimization is performed via reinforcement learning, evolutionary algorithms, or gradient
descent. The second category of approaches [18] leverages a constrained optimization
problem formulation, which consists of an objective function (e.g., [19]) as well as a set of
operational constraints such as accuracy, computational and architectural requirements.

In this investigation, we leverage the second approach via generative synthesis [18] to
automatically explore the architecture design space and obtain optimal network designs
for on-device real-time AAD. Generative synthesis can be formulated as a constrained opti-
mization problem, where the goal is to obtain a tailored deep neural network architecture
as determined by an optimal generator G which, given seeds S , generates neural network
architectures that maximize a performance function U while satisfying the constraints
defined in an indicator function 1r(·),

G = max
G
U (G(s)) subject to 1r(G(s)) = 1, ∀ ∈ S . (1)

Given an initial design prototype ϕ, U , and 1r(·), the approximate solution to this
constrained optimization problem can be found in an iterative fashion. We leverage
human expertise and define a convolutional autoencoder design as the initial prototype
ϕ. The prototype has an input of a 32× 128 pixel Mel-spectrogram, with convolutional
kernel sizes defined as 3× 3. Since this study aims to design architectures optimized for
memory and latency, we employ two indicator functions, 1α

r and 1β
r , both of which impose

constraints on parameter count and AUC to yield efficient and accurate designs. We refer to
architectures obtained via 1α

r and 1β
r as OutlierNetsα and OutlierNetsβ, respectively. Recall

that OutlierNetsα is optimized for memory footprint whereas OutlierNetsβ is optimized

for low latency. To this end, 1β
r prohibits the use of depthwise convolution and forces

OutlierNetsβ to rely solely on standard convolution. Although depthwise convolution
typically requires far fewer FLOPS and parameters, it also exhibits poor arithmetic intensity
(ratio of computation to memory access) and is typically memory bound when compared
with standard convolution. The poor arithmetic intensity results in potentially worse real
world architectural latency in hardware architectures that do not fully accelerate depthwise
convolution. Therefore, prohibiting depthwise convolution in OutlierNetsβ results in faster,
lower latency architectures whereas allowing depthwise convolutions in OutlierNetsα

yields in memory and storage efficient architectures.
We emphasize that the generative-synthesis process is entirely automatic, yielding

an architecture during each step of the iteration which is evaluated for a given perfor-
mance metric (e.g., validation accuracy, AUC etc.), parameter count and FLOPS. The final
selection network is based upon these metrics. Examples of the final OutlierNetsα and
OutlierNetsβ architectures are shown in Figure 2. A number of observations can be made
about the designed OutlierNet architectures. First, the designed OutlierNetsα possess very
lightweight macro-architecture comprised largely of depthwise convolutions, pointwise
convolutions, and replicators, all contributing to a low parameter count network architec-
ture. Second, the designed OutlierNet architectures exhibit high micro-architecture design



Sensors 2021, 21, 4805 6 of 12

diversity to further reinforce a strong balance between AAD accuracy and efficiency. Third,
the OutlierNet architectures exhibit macro-architecture differences between architectures
tailored for fan AAD tasks and architectures for slider AAD tasks, with architecture designs
for slider ADD tasks being more complex (e.g., additional standard convolution layers
and a dense latent space) given that slider ADD is a tougher task. Finally, we can note
that the imposition of 1β

r yields network architectures with only standard convolution
(Figure 2c,d).

12
/4

48

32
×
12

8
/1

/4

32
×
64

/4
/8

32
×
12

8
/4

/1

32
×
32

/8
/5

32
×
64

/4
/4

16
×
16

/5
/1

6

8
×
8

/1
6
/1

2

4
×
4
×
28

8
×
8
/2

8
/2

0

16
×
16

/2
0
/8

32
×
32

/8
/4

OutlierNet β Architecture for Fan Machine

32
×
12

8
/2

/4

32
×
12

8
/2

/2

32
×
12

8
/1

/2

32
x
64

/4
/8

32
x
64

/8
/8

32
x
64

/8
/5

32
×
32

/5
/1

0

32
×
32

/1
0
/1

0

32
×
32

/1
0
/5

32
×
12

8
/6

/1

32
×
12

8
/6

/6

32
×
12

8
/3

/6

32
x
64

/3
/6

32
x
64

/6
/6

32
x
64

/6
/3

32
×
32

/4
/8

32
×
32

/8
/8

32
×
32

/8
/3

8
×
8
/5

/1
0

8
×
8
/1

0
/1

0

8
×
8
/1

0
/4

OutlierNet ɑ Architecture for Fan Machine

c)

48
/4

48

32
×
12

8
/1

/4

32
×
64

/4
/8

32
×
12

8
/4

/1

32
×
32

/8
/5

32
×
64

/4
/4

16
×
16

/5
/2

4

8
×
8

/2
4
/4

8

4
×
4
×
28

8
×
8
/2

8
/2

4

16
×
16

/2
4
/8

32
×
32

/8
/4

OutlierNet β Architecture for Slider Machine

d)

32
×
64

/1
6
/8

32
×
64

/1
6
/1

6

32
×
64

/4
/8

32
x
32

/8
/1

6

32
x
32

/1
6
/1

6

32
x
32

/1
6
/1

6

32
x
64

/8
/1

6

32
x
64

/3
2
/3

2

32
x
64

/3
2
/4

16
×
16

/1
6
/3

2

16
×
16

/3
2
/3

2

16
×
16

/3
2
/2

0

32
×
32

/1
6
/3

2

32
×
32

/3
2
/3

2

32
×
32

/3
2
/8

32
×
12

8
/1

/4

32
×
12

8
/8

/1

32
×
12

8
/8

/8

32
×
12

8
/4

/8

4
×
4
/2

4
/4

8

4
×
4
/4

8
/4

8

4
×
4
/4

8
/1

6

8
×
8
/6

4
/1

28

8
×
8
/1

28
/1

28

8
×
8
/1

28
/1

6

16
/1

02
4

8
×
8
/2

0
/4

0

8
×
8
/4

0
/4

0

8
×
8
/4

0
/2

4

16
×
16

/1
6
/3

2

16
×
16

/3
2
/3

2

16
×
16

/3
2
/1

6

OutlierNet ɑ Architecture for Slider Machine
4
×
4
×
64

Pointwise
Convolution

Depthwise
Convolution

Standard
Convolution

Replicator ReshapeDense

32 × 128 / 1 / 4

a)

b)

Output Channels
Input Channels
Input Size

Legend:

Figure 2. (a) Example of an OutlierNetsα autoencoder architecture for fan AAD tasks (ID: 06, SNR:
6 dB) (b) Example of an OutlierNetsα autoencoder architecture for slider AAD tasks (ID: 00, SNR:
−6 dB). (c) Example of OutlierNetsβID: 02, SNR: 0 dB architecture for fan AAD tasks (ID: 04, SNR:
6 dB). (d) Example of OutlierNetsβ architecture for slider AAD tasks (ID: 04, SNR: 6 dB)

3.5. Deployment Hardware

To assess real world performance, this study deploys OutlierNet architectures on two
different devices, a 3.8 GHz Intel Core i5-7600 K CPU and an ARM Cortex A72 embedded
CPU. To establish a baseline for our performance, we deploy CPU-accelerated models on
the desktop class Intel chip. The OutlierNet network architectures are passed through a
domain-specific compiler built for Intel CPUs (i.e., OpenVINO [20]) for CPU-accelerated
latency experiments. This compiler optimizes the inference in two key ways. The first is
that it optimizes cache access such that the CPU does not have to fetch data continuously
from the much slower main memory. This alone yields significant gains in efficiency.
Additionally, OpenVINO optimizes the network graph such that sequential operations,
like convolution and subsequent activation, are fused together. This domain-specific
compilation thus yields CPU-accelerated models that feature a significantly lower inference
latency and demonstrate efficiency of the proposed OutlierNet architectures.



Sensors 2021, 21, 4805 7 of 12

Additionally, in order to test performance on devices that are likely to be deployed in
industry for machine learning tasks, we employ an ARM Cortex A72 with 4 GB of RAM.
The ARM Cortex A72 was chosen due to its widespread usage in industry already.

4. Results and Discussion

To evaluate the efficacy of the OutlierNet architecture designs, we compare their AUC,
parameter counts, model sizes, FLOPs, and on-device latencies with the state-of-the-art
deep convolutional autoencoder architecture introduced in [2]. Similar to our approach, [2]
employ small overlapping Mel-spectrograms to classify anomalous sounds. For brevity,
we refer to their proposed architecture as CAE-MCS as a shorthand for convolutional
autoencoder for machine condition sounds for the remainder of this study. To provide
a fair comparison, we implement and evaluate CAE-MCS on the fan and slider datasets
from the MIMII dataset. We found this architecture to achieve high AAD performance,
reporting an average AUC of 89.1% for slider AAD tasks and 83.5% for fan AAD tasks
while only having 4 M parameters. As an additional experiment, we scale down the
CAE-MCS architecture to create a more efficient architecture (which we will refer to as
CAE-MCS-S) such that it features a similar number of parameters (72,807) as the largest
OutlierNet network (69,877). Similar to CAE-MCS, we train the smaller CAE-MCS-S model
on the fan and slider datasets to evaluate if scaling down a state-of-the-art architecture is
sufficient to yield an optimal balance between efficiency and accuracy. The remainder of
this section provides in-depth assessment of the architectural complexity (Table 1), model
performance (Table 2) and overall detection accuracy (AUC) of the found architectures
(Table 3).

Table 1. Size comparison between OutlierNet architectures with the convolutional autoencoder architecture introduced
in [2] (CAE-MCS) as well as a reduced baseline (CAE-MCS-S) in terms of parameter count and memory footprint.

Type SNR ID
OutlierNetsα OutlierNetsβ CAE-MCS-S CAE-MCS

Params Size (KB) Params Size (KB)

Fan Machine

6 dB

00 2028 7.9 12,533 49.0

72,252 Params
282.2 KB

4M Params
15 MB

02 907 3.5 13,391 52.3
04 3055 11.9 12,620 49.3
06 686 2.7 13,631 53.2

0 dB

00 2992 11.7 13,699 53.5
02 1067 4.2 64,856 253.3
04 1025 4.0 21,235 282.2
06 861 3.4 16,491 64.4

−6 dB

00 6840 26.7 64,856 253.3
02 2892 11.3 14,404 56.3
04 1826 7.1 12,546 49.0
06 2919 11.4 72,252 282.2

Slider Machine

6 dB

00 21,781 85.1 12,427 48.5
02 69,877 273.0 20,960 81.9
04 58,729 229.4 21,755 85.0
06 53,705 209.8 44,620 174.3

0 dB

00 21,781 85.1 25,006 97.7
02 69,877 273.0 65,211 254.7
04 42,377 165.5 37,652 147.1
06 58,157 227.2 65,016 254.0

−6 dB

00 27,229 106.4 38,007 148.6
02 27,229 106.4 43,578 170.2
04 57,497 224.6 65,271 254.9
06 58,157 227.2 65,016 254.0

Average 24,729 96.6 31,784 124.2



Sensors 2021, 21, 4805 8 of 12

Table 1 lists the parameter count and model size of OutlierNetsα, OutlierNetsβ, CAE-
MCS and CAE-MCS-S. We observe that the proposed OutlierNetsα architectures exhibit
very diverse architecture and computational complexities for each of the 24 AAD tasks
tested in this study, all tailored around the complexity of the task at hand. Specifically, CAE-
MCS has a parameter count of approximately 4 million, whereas the smallest and largest
OutlierNets in comparison have 686 parameters (5800× fewer) and 70,000 parameters
(57× fewer). The CAE-MCS architecture translates to a model size of ∼15 MB, which
may be impractical to deploy for certain on-device edge scenarios, particularly those
leveraging microcontrollers. In contrast, the smallest OutlierNet (at 2.7 KB) can fit within
the Static RAM of most microcontrollers whereas the larger OutlierNets are within reach
of most higher-end microcontrollers such as the STM32F7 series. Here we can see the
clear advantage of allowing depthwise convolutions in OutlierNetsα via the 1α

r indicator
function, yielding extremely small architectures. In contrast, the 1β

r indicator function yields
comparatively larger architectures but still significantly smaller than CAE-MCS and CAE-
MCS-S. Specifically, we note that the smallest OutlierNetsβ architecture features 12,533
parameters, approximately 320× fewer than CAE-MCS and 5.76× fewer than CAE-MCS-S.

Table 2. Efficiency comparison between OutlierNet architectures with the convolutional autoencoder architecture in [2] in
terms of FLOPS and on-device latency with an ARM Cortex-A72 embedded CPU and an Intel Core i5-7600K desktop CPU.
These measurements are included in the columns ARM (µs) and Intel (µs).

Machine SNR ID OutlierNetsα OutlierNetsβ CAE-MCS-S CAE-MCS
FLOPS ARM (µs) Intel (µs) FLOPS ARM (µs) Intel (µs)

Fan

6 dB

00 7.3 M 11.16 0.53 1.8 M 6.51 0.26

6.5 µs ARM
1.1 µs Intel

78.2 µs ARM
7.7 µs Intel

02 3.6 M 7.16 0.38 1.8 M 6.62 0.28
04 10.6 M 12.45 0.62 1.7 M 6.65 0.28
06 2.8 M 7.60 0.37 1.9 M 6.48 0.28

0 dB

00 10.3 M 18.15 0.57 1.8 M 6.68 0.28
02 4.1 M 12.31 0.41 2.0 M 6.92 0.28
04 4.1 M 12.78 0.43 2.4 M 6.97 0.28
06 3.3 M 12.85 0.38 1.9 M 6.67 0.27

−6 dB

00 22.9 M 15.64 0.75 2.0 M 6.64 0.28
02 10.5 M 19.07 0.62 1.9 M 6.68 0.26
04 6.4 M 16.37 0.48 1.7 M 6.72 0.28
06 10.1 M 17.72 0.58 2.4 M 6.87 0.28

Slider

6 dB

00 4.6 M 10.51 0.47 1.7 M 6.67 0.26
02 5.3 M 10.99 0.50 1.7 M 6.67 0.28
04 5.1 M 10.84 0.49 1.8 M 6.64 0.28
06 5.1 M 10.89 0.49 1.9 M 6.51 0.28

0 dB

00 4.6 M 10.57 0.46 1.8 M 8.93 0.28
02 5.3 M 10.93 0.50 1.9 M 6.44 0.28
04 4.9 M 10.60 0.47 1.9M 6.52 0.26
06 5.2 M 10.76 0.49 2.0 M 6.68 0.28

−6 dB

00 4.7 M 10.73 0.48 1.8 M 6.73 0.27
02 4.6 M 10.73 0.46 1.9 M 6.81 0.28
04 5.1 M 10.75 0.48 2.0 M 6.62 0.28
06 5.1 M 10.90 0.49 2.0 M 6.71 0.28



Sensors 2021, 21, 4805 9 of 12

Table 3. Anomaly detection accuracy (AUC) comparison between OutlierNetsα, OutlierNetsβ archi-
tectures, CAE-MCS-S and CAE-MCS [2]. The models are evaluated on the Fan Machine and Slider
Machine from the MIMII Dataset.

Type SNR ID OutlierNetsα OutlierNetsβ CAE-MCS-S CAE-MCS

Fan

6 dB

00 0.87 0.84 0.76 0.84
02 0.99 0.99 0.99 0.99
04 0.97 0.94 0.88 0.94
06 1.00 1.00 1.00 1.00

0 dB

00 0.62 0.63 0.57 0.63
02 0.92 0.93 0.89 0.93
04 0.80 0.79 0.78 0.82
06 1.00 1.00 0.99 0.99

−6 dB

00 0.52 0.53 0.51 0.55
02 0.71 0.73 0.75 0.77
04 0.61 0.60 0.60 0.64
06 0.97 0.95 0.95 0.93

Average 0.83 0.83 0.81 0.83

Slider

6 dB

00 0.99 1.00 0.99 1.00
02 0.97 0.95 0.97 1.00
04 0.98 0.96 0.96 1.00
06 0.91 0.90 0.87 0.90

0 dB

00 0.99 0.99 0.99 0.99
02 0.88 0.85 0.85 0.93
04 0.94 0.88 0.91 0.93
06 0.75 0.71 0.68 0.73

−6 dB

00 0.96 0.97 0.94 0.96
02 0.79 0.76 0.78 0.81
04 0.87 0.88 0.83 0.85
06 0.62 0.60 0.59 0.64

Average 0.89 0.87 0.86 0.89

Next, we investigate the on-device latency of OutlierNets, CAE-MCS-S and CAE-MCS
on a Intel Core i5-7600K CPU and an ARM Cortex A72 embedded CPU (Table 2). The de-
tails of these devices are described in Section 3.5. To assess the performance of OutlierNets,
we measure the latency of each architecture as well as CAE-MCS and CAE-MCS-S on each
of the aforementioned devices. We employ a batch size of 1 for each measurement and
close all user processes to ensure minimal CPU overhead. It is important to note that any
error in the measurements, either due to background processes or even thermal throttling,
would increase the latency (i.e., the error is positive). Additionally, background processes
and thermal throttling would introduce some variable in measurements. To mitigate this in-
consistency in measurements, we record the latency of each architecture one hundred times
and report the minimum time recorded. These results are shown in Table 2 which compares
the on-device latency between OutlierNetsα, OutlierNetsβ, CAE-MCS-S and CAE-MCS.

The CPU-accelerated latency experiments on an Intel Core i5-7600K showed that
CAE-MCS-S and CAE-MCS achieved an on-chip runtime latency of 1.1 µ and 7.7 µs,
respectively. The fastest and slowest OutlierNetsα in comparison achieved an on-chip
latency of 0.366 µs (21× faster) and 0.746 µs (∼10.3× faster), respectively. This difference
in inference latency holds even when the models are deployed on an ARM Cortex A-72,
a significantly slower and power constrained device when compared to the desktop class
Intel Core i5. Specifically, we note that the CAE-MCS model now has an on-device latency
of 78 µs while the fastest and slowest OutlierNetsα achieve 7.2 µs (10.8 × faster) and
19.1 µs (∼4.1 × faster). The fastest OutlierNetsα, in contrast, reports a latency of 6.044 µs



Sensors 2021, 21, 4805 10 of 12

(5 × faster) while the slowest exhibits a latency of 13.575 µs (2.33 × faster). Next, we
observe the benefit of prohibiting depthwise convolution by the 1β

r indicator function. We
note that, on average, OutlierNetsβ are twice as fast as OutlierNetsα on the Intel CPU and
as well the ARM Cortex A72. As explained in Section 3.4, this difference in performance is
due to the arithmetic density of standard convolution over depthwise convolution. This
improvement in performance enables OutlierNetsβ to be 30× faster than CAE-MCS and
4.4× faster than CAE-MCS-S.

Finally, in Table 3 we compare the AUC of OutlierNets with CAE-MCS and CAE-MCS-
S. Most importantly, we observe that there is almost no difference between the AUC of
OutlierNetsα and OutlierNetsβ, despite the difference in model sizes. This is due to the
machine-driven exploration of the architectural search space, enabling an optimal balance to
be found between the AUC and the latency/memory-footprint. Secondly, it can be observed
that the proposed OutlierNet architectures achieved AUC scores matching or exceeding the
much larger CAE-MCS deep convolutional autoencoder architecture for both the slider and
the fan datasets despite being orders of magnitude lower in architectural and computational
complexities. In particular, OutlierNets achieve 88.8% average AUC, across all slider
machines and SNRs, whereas CAE-MCS achieves 89.1%. Similarly, the proposed OutlierNet
architectures achieve 83.0% average AUC for fans while CAE-MCS achieves 83.5%. Perhaps
most importantly, we note that CAE-MCS-S architecture has an average AUC of 0.84,
approximately 3% lower than OutlierNets. This demonstrates that simply scaling down
a larger architecture does not yield an accurate or efficient model. In contrast, when the
network architecture is tailored for a specific task (e.g., to optimize AUC and latency), we
observe improvements in AUC, model size and latency as the tailored architecture strikes
an optimal balance between AUC and memory or latency. Notably in some experiments
for the slider task (ID:00-04, SNR:6db), OutlierNetsβ are able to provide smaller memory
footpring and a lower latency than OutlierNetsα.

The aforementioned results demonstrate the efficacy of a machine-driven design ex-
ploration strategy in constructing deep neural network architectures that strikes a strong
balance between accuracy and efficiency. The resulting OutlierNet architectures achieved
AUC scores matching or exceeding the much larger CAE-MCS deep convolutional autoen-
coder architecture for both the slider and the fan datasets despite being orders of magnitude
lower in architectural and computational complexities. The resulting architectures are
simple enough to fit within the SRAM of most microcontrollers while exhibiting real-time
on-device latency. The low memory requirements and the demonstrated microsecond level
on-chip latency on embedded hardware results in systems that can be deployed on factory
floors for automated AAD.

5. Conclusions

We explored a machine-driven design exploration approach that leverages both human
experience and knowledge with the speed and meticulousness of a machine to produce
highly compact deep convolutional autoencoder architectures tailored for the purpose of
AAD on embedded devices. The resulting OutlierNets possess parameter counts ranging
from 686 to 69,877, which translate to model sizes of 2.7 KB to 273 KB. With such low
resource requirements, these models can fit within the SRAM of many microcontrollers
available today. Despite extremely low complexities, OutlierNets match or exceed the AUC
of a much larger convolutional autoencoder architecture while exhibiting microsecond scale
latency on embedded hardware. As future work, we aim to study the types of architectures
that can be created using machine-driven design exploration with other machine operating
sound types, and study design exploration considerations tailored for even lower-power
microcontrollers to facilitate compact and real-time AAD on edge devices.



Sensors 2021, 21, 4805 11 of 12

Author Contributions: S.A., M.F. and A.W. contributed to the conception and design of the study.
S.A. conducted the experiments. S.A., M.J.S., and A.W. analysed the results. S.A. contributed most
significantly to the preparation of the manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets were analyzed in this study. This data can
be found at https://zenodo.org/record/3384388, accessed on 13 July 2021.

Acknowledgments: The authors would like to thank James Ren Lee and DarwinAI.

Conflicts of Interest: M.F., M.S. and A.W. are affiliated with DarwinAI. The remaining author
declares that the research was conducted in the absence of any commercial or financial relationships
that could be construed as a potential conflict of interest.

References
1. Purohit, H.; Tanabe, R.; Ichige, K.; Endo, T.; Nikaido, Y.; Suefusa, K.; Kawaguchi, Y. MIMII Dataset: Sound Dataset for

Malfunctioning Industrial Machine Investigation and Inspection. arXiv 2019, arXiv:1909.09347.
2. Ribeiro, A.; Matos, L.M.; Pereira, P.J.; Nunes, E.C.; Ferreira, A.L.; Cortez, P.; Pilastri, A. Deep Dense and Convolutional

Autoencoders for Unsupervised Anomaly Detection in Machine Condition Sounds. arXiv 2020, arXiv:2006.10417.
3. Müller, R.; Ritz, F.; Illium, S.; Linnhoff-Popien, C. Acoustic Anomaly Detection for Machine Sounds based on Image Transfer

Learning. arXiv 2020, arXiv:2006.03429.
4. Liu, F.T.; Ting, K.M.; Zhou, Z.H. Isolation forest. In Proceedings of the IEEE International Conference on Data Mining, ICDM,

Pisa, Italy, 15–19 December 2008; pp. 413–422. [CrossRef]
5. Lecomte, S.; Lengellé, R.; Richard, C.; Capman, F.; Ravera, B. Abnormal events detection using unsupervised one-class SVM—

Application to audio surveillance and evaluation. In Proceedings of the 2011 8th IEEE International Conference on Advanced
Video and Signal Based Surveillance, AVSS 2011, Klagenfurt, Austria, 30 August–2 September 2011; pp. 124–129. [CrossRef]

6. Chen, Y.; Qian, J.; Saligrama, V. A new one-class SVM for anomaly detection. In Proceedings of the ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing, Vancouver, BC, Canada, 26–31 May 2013; pp. 3567–3571. [CrossRef]

7. Aurino, F.; Folla, M.; Gargiulo, F.; Moscato, V.; Picariello, A.; Sansone, C. One-class SVM based approach for detecting anomalous
audio events. In Proceedings of the 2014 International Conference on Intelligent Networking and Collaborative Systems, IEEE
INCoS, Salerno, Italy, 10–12 September 2014; Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2014;
pp. 145–151. [CrossRef]

8. Koizumi, Y.; Saito, S.; Uematsu, H.; Harada, N.; Imoto, K. ToyADMOS: A dataset of miniature-machine operating sounds for
anomalous sound detection. In Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics;
Institute of Electrical and Electronics Engineers Inc.: New York, NY, USA, 2019; pp. 313–317. [CrossRef]

9. Duman, T.B.; Bayram, B.; İnce, G. Acoustic Anomaly Detection Using Convolutional Autoencoders in Industrial Processes. In
Advances in Intelligent Systems and Computing; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; Volume 950,
pp. 432–442.

10. Bayram, B.; Duman, T.B.; Ince, G. Real time detection of acoustic anomalies in industrial processes using sequential autoencoders.
Expert Syst. 2021, 38, e12564. [CrossRef]

11. Meire, M.; Karsmakers, P. Comparison of Deep Autoencoder Architectures for Real-time Acoustic Based Anomaly Detection in
Assets. In Proceedings of the 2019 10th IEEE International Conference on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications, IDAACS, Metz, France, 18–21 September 2019; Institute of Electrical and Electronics
Engineers Inc.: New York, NY, USA, 2019; Volume 2, pp. 786–790. [CrossRef]

12. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, Las Vegas, NV, USA, 27–30 June 2016;
pp. 770–778. [CrossRef]

13. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf.
Process. Syst. 2012, 25, 1097–1105. [CrossRef]

14. Banbury, C.; Zhou, C.; Fedorov, I.; Navarro, R.M.; Thakker, U.; Gope, D.; Reddi, V.J.; Mattina, M.; Whatmough, P.N. MicroNets:
Neural Network Architectures for Deploying TinyML Applications on Commodity Microcontrollers. arXiv 2021, arXiv:2010.11267.

15. Liu, H.; Simonyan, K.; Yang, Y. DARTS: Differentiable Architecture Search. In Proceedings of the 7th International Conference on
Learning Representations, ICLR, New Orleans, LA, USA, 6–9 May 2019; arXiv:1806.09055.

16. Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.; Howard, A.; Le, Q.V. MnasNet: Platform-Aware Neural Architecture
Search for Mobile. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
Long Beach, CA, USA, 15–20 June 2019; pp. 2815–2823.

https://zenodo.org/record/3384388
http://doi.org/10.1109/ICDM.2008.17
http://dx.doi.org/10.1109/AVSS.2011.6027306
http://dx.doi.org/10.1109/ICASSP.2013.6638322
http://dx.doi.org/10.1109/INCoS.2014.59
http://dx.doi.org/10.1109/WASPAA.2019.8937164
http://dx.doi.org/10.1111/exsy.12564
http://dx.doi.org/10.1109/IDAACS.2019.8924301
http://dx.doi.org/10.1109/CVPR.2016.90
http://dx.doi.org/10.1145/3065386


Sensors 2021, 21, 4805 12 of 12

17. Elsken, T.; Metzen, J.H.; Hutter, F. Efficient Multi-objective Neural Architecture Search via Lamarckian Evolution. In Proceedings
of the 7th International Conference on Learning Representations, ICLR, New Orleans, LA, USA, 6–9 May 2019; arXiv:1804.09081.

18. Wong, A.; Shafiee, M.J.; Chwyl, B.; Li, F. FermiNets: Learning generative machines to generate efficient neural networks via
generative synthesis. arXiv 2018. arXiv:1809.0598.

19. Wong, A. NetScore: Towards Universal Metrics for Large-scale Performance Analysis of Deep Neural Networks for Practical
Usage. arXiv 2018, arXiv:1806.05512.

20. Gorbachev, Y.; Fedorov, M.; Slavutin, I.; Tugarev, A.; Fatekhov, M.; Tarkan, Y. Openvino deep learning workbench: Comprehensive
analysis and tuning of neural networks inference. In Proceedings of the IEEE/CVF International Conference on Computer Vision
Workshops, Seoul, Korea, 27–28 October 2019.


	Introduction
	Related Work
	Methods
	Dataset
	Mel-Spectrograms
	Network Architecture Prototyping
	Machine-Driven Design Exploration
	Deployment Hardware

	Results and Discussion
	Conclusions
	References

