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Abstract: The compressive sensing (CS)-based sparse channel estimator is recognized as the most
effective solution to the excessive pilot overhead in massive MIMO systems. However, due to the
complex signal processing in the wireless communication systems, the measurement matrix in the
CS-based channel estimation is sometimes “unfriendly” to the channel recovery. To overcome this
problem, in this paper, the state-of-the-art sparse Bayesian learning using approximate message
passing with unitary transformation (UTAMP-SBL), which is robust to various measurement matrices,
is leveraged to address the multi-user uplink channel estimation for hybrid architecture millimeter
wave massive MIMO systems. Specifically, the sparsity of channels in the angular domain is exploited
to reduce the pilot overhead. Simulation results demonstrate that the UTAMP-SBL is able to achieve
effective performance improvement than other competitors with low pilot overhead.

Keywords: millimeter-wave massive MIMO; channel estimation; sparse Bayesian learning; compres-
sive sensing

1. Introduction

Massive MIMO is a key technology for the fifth-generation (5G) communication sys-
tems [1]. Thanks to the shorter wavelength of the millimeter wave (mmWave) signal, the
numerous antennas are packed into a compact-size array, which facilitates the commer-
cial deployment of massive MIMO systems [2], but under the consideration of the high
power consumption of Analog-to-Digital Converters (ADCs), the hybrid beamforming
architecture, that divides the precoder and the combiner into the analog and digital do-
mains, is developed to solve it and regarded as an effective alternative [3,4]. In this hybrid
architecture system, the precoding is crucial and dependent on the acquisition of accurate
channel state information (CSI). However, the number of pilots used for channel estimation
will increase linearly with that of antennas and users in the wireless systems. As a result,
the channel estimation with fewer pilots is a significant challenge in the hybrid mmWave
massive MIMO systems [3].

The compressive sensing (CS)-based channel estimator is capable of exploiting the
sparsity of channels to reduce the pilot overhead greatly and a lot of studies on this
topic have been done. Some studies focus on the sparsity in the delay domain. In [5],
the orthogonal matching pursuit (OMP) algorithm is utilized to estimate the wideband
mmWave delay-domain sparse channels. In [6], an adaptive structured subspace pursuit
algorithm at the user is proposed to estimate the delay-domain MIMO channels with the
spatio-temporal common sparsity. The authors of [7] propose a sparse channel recovery
algorithm based on the vector approximate message passing (VAMP) for the massive
MIMO delay-domain channels. Some works concentrate on the sparsity in the angular
domain. For example, a distributed sparsity adaptive matching pursuit (DSAMP) algorithm
is proposed in [8], whereby the spatially common sparsity is exploited. In [9], a novel sparse
Bayesian learning (SBL) approach is utilized to recover the angular-domain block-sparse
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channels. In [10], a structured turbo-CS algorithm is proposed to estimate the angular-
domain massive MIMO channels which are modeled by a Markov chain prior. Furthermore,
the work [11] even jointly exploits the 3-D clustered structure of channels in the angular-
delay domain and proposes an approximate message passing (AMP)-based estimation
algorithm. However, all of above angular-domain sparse channel estimation schemes are
based on the assumption that the angles exactly lie on the grids, or ignore the power leakage
caused by grid mismatch. Recently, there are many off-grid channel estimation techniques.
In [12], the authors utilize the low-rank structure along with the sparsity in angular domain
to improve the channel estimation performance, and the off-grid angles can be recovered
with their algorithm successfully. In [13], the angles are treated as random parameters
and the grid-less quantized variational Bayesian channel estimation algorithm is proposed
for antenna array systems with low resolution ADCs. Besides, the multi-dimensional
variational line spectral estimation algorithm proposed in [14] can be effectively applied
for multi-dimensional off-grid angle estimation. In addition, a novel super-resolution
downlink channel estimation approach developed from the SBL is provided in [15], where
the sampled angular grid points are treated as the underlying parameters.

The performance of these CS-based algorithms is affected by the measurement ma-
trix which is usually associated with the signal processing operations in the system. If
these operations are not carefully designed, the measurement matrix perhaps becomes
detrimental to channel recovery. Recently, a CS algorithm, termed the SBL using approx-
imate message passing with unitary transformation (UTAMP-SBL), is proposed by Luo
et al. and it outperforms the state-of-the-art AMP-based SBL algorithms, the Gaussian
generalized AMP-based SBL (GGAMP-SBL), in terms of robustness, speed and recovery
accuracy for difficult measurement matrices [16]. In this paper, we apply UTAMP-SBL
to the sparse channel estimation to improve the performance. Specifically, the multi-user
uplink channel estimation for hybrid architecture mmWave massive MIMO systems is
studied as an example. And the angular-domain sparsity of the mmWave channels is fully
exploited in our estimation. Additionally, this algorithm can be extended to other sparse
channel estimation for the performance improvement. Simulation results verify that the
UTAMP-SBL outperforms the other competitors.

The remainder of this paper is organized as follows. In Section 2, the hybrid mil-
limeter wave massive MIMO system model is introduced. In Section 3, the uplink sparse
channel estimation with UTAMP-SBL is described. In Section 4, the Cramér-Rao bound
(CRB) is provided as a performance benchmark. Simulation results are provided and the
performance is discussed in Section 5. Conclusions are given in Section 6.

Notations: H and ⊗ denote the conjugate transpose operation and the Kronecker prod-
uct. � and � represent the componentwise vector multiplication and the componentwise
vector division. vec(A) denotes vectorizing the matrix A as a vector. I, 1 and 0 denote
the identity matrix, the all-one column vector and the all-zero column vector, respectively.
diag(a) returns a diagonal matrix with the elements of vector a on its main diagonal.
NC(x; µx, Σx) represents the Gaussian distribution of the complex vector x with mean µx
and covariance matrix Σx. Ga(γ; ε, η) denotes a Gamma distribution with shape parameter
ε and rate parameter η. Eb(x)[ f (x)] denotes the expectation of the function f (x) with respect
to probability density b(x). Finally, ∝ denotes equality up to a constant scale factor.

2. System Model
2.1. Millimeter Wave MIMO Channel Model

We consider a mmWave MIMO-OFDM system where the base station (BS) is equipped
with NBS antennas and serves K multi-antenna user equipments (UEs), and each UE has
NUE antennas. The frequency-domain channel between the BS and the kth UE at the pth
(p = 1, 2, · · · , P) subcarrier can be modeled as [17]

Hp,k =
L

∑
l=1

αl,kaBS(θl,k)a
H
UE(φl,k)e−j2π fsτl,k p/P, (1)
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where L is the number of physical paths, αl,k is the complex path gain, fs is the sampling
rate, τl,k is the path delay, aBS(θl,k) and aUE(φl,k) are the steering vectors at the BS and the
UE, respectively, θl,k and φl,k are the azimuth angles of departure and arrival (AoD/AoA)
uniformly distributed in [0, 2π).

For each UE in the system, we generate one line of sight (LoS) path and L− 1 non-LoS
(NLoS) paths. The path gains follow the complex Gaussian distribution and the ratio
of the power of LOS path to that of NLoS path is 10 dB [18]. In the OFDM system, the
cyclic prefix (CP) is introduced to mitigate the inter-symbol interference and we have
τmax fs ≤ Ncp, where τmax is the maximum path delay and Ncp is the length of CP. So we
generate τ1,k fs = 1 and τl,k fs ∈ {2, 3, · · · , Ncp}, l 6= 1. For the steering vectors, assuming
the uniform linear arrays are adopted at the BS and the UE, they can be shown as

aBS(θl,k) = [1, ej 2π
λ d sin(θl,k), · · · , ej(NBS−1) 2π

λ d sin(θl,k)]T

aUE(φl,k) = [1, ej 2π
λ d sin(φl,k), · · · , ej(NUE−1) 2π

λ d sin(φl,k)]T,
(2)

where λ is the wavelength and d = λ/2 is the antenna spacing.

2.2. Uplink Pilot Transmission

We consider the typical hybrid analog digital precoding and combining architecture in
the mmWave massive MIMO systems, where the BS and each UE are assumed to have NRF

BS

RF chains and NRF
UE RF chains, respectively. We focus on the uplink pilot training. The kth

UE transmits the pilot sp,t,k ∈ CNs×1 at the pth pilot subcarrier and the tth OFDM symbol
to the BS, where Ns is the number of data streams. At the BS, the receiver receives pilots
from all UEs in the same time-frequency resources and the received signal can be written as

yp,t = (ZRF
t ZBB

p,t )
H

(
K

∑
k=1

Hp,kFRF
t,k FBB

p,t,ksp,t,k + np,t

)
, (3)

where FBB
p,t,k ∈ CNRF

UE×Ns and FRF
t,k ∈ CNUE×NRF

UE are the digital precoder and the analog

precoder of the kth user, ZBB
p,t ∈ CNRF

BS×Ns and ZRF
t ∈ CNBS×NRF

BS are the digital combiner
and the analog combiner of the BS and np,t ∈ CNBS×1 is the additive white Gaussian noise
(AWGN). Note that the analog precoder and the analog combiner are frequency-flat, while
the digital precoder and the digital combiner are different for each subcarrier. This is
because the RF phase shifters can provide constant response over the wide frequency band
when the fully connected network is used.

2.3. Sparse Channel Estimation Formulation

In the multi-user uplink channel estimation, the channels of K users, Hp,k ∈ CNBS×NUE ,
k = 1, 2, . . . , K, need to be estimated from the received signal yp,t. It is clear that there
are KNBSNUE non-zero elements in these K channel matrices. Because there are only
Ns elements in yp,t, we have to arrange KNBSNUE/Ns pilots for channel estimation and
the pilot overhead is unacceptable. Fortunately, we benefit from the inherent sparse
characteristic of millimeter wave channels and apply the CS algorithms in the channel
estimation to reduce the pilot overhead.

In order to formulate the sparse channel estimation problem, we first rewrite the
frequency-domain channel matrix Hp,k ∈ CNBS×NUE as

Hp,k = ABSHω
p,kAH

UE, (4)

where Hω
p,k ∈ CGBS×GUE is the virtual angle-domain channel matrix, ABS ∈ CNBS×GBS

and AUE ∈ CNUE×GUE are the partial discrete Fourier transform (DFT) matrices, GBS and
GUE are the numbers of grids at the BS and the UE. Because of the domination of the
LOS path in the multipath channel, the virtual angle-domain mmWave channel appears
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the sparsity, i.e., there are only a few non-zero elements in the channel matrix Hω
p,k and

other components are zero. Actually, these zeros are not strictly equal to zero but are only
close to zero owing to the power leakage problem [19], which is ignored in this paper
for simplification and it will be disscussed in the future research. The frequency-domain
channel Hp,k and the transformed virtual angle-domain channel Hω

p,k are shown in Figure 1,
where the frequency-domain channel is generated according to (1) and the virtual angle-
domain channel is derived from (4). Obviously, from Figure 1b, the power of the channel is
concentrated in a few virtual angles and these channel components can be estimated from
the low-overhead pilot.

Figure 1. The illustration of the frequency-domain channel and the virtual angle-domain channel.

Substituting (4) in (3), we have

yp,t = ZH
p,t

K

∑
k=1

ABSHω
p,kAH

UExp,t,k + n̄p,t, (5)

where Zp,t = ZRF
t ZBB

p,t ∈ CNBS×Ns is the combiner at the BS, xp,t,k = FRF
t,k FBB

p,t,ksp,t,k ∈ CNUE×1

is the pilot after precoding at the UE and n̄p,t = ZH
p,tnp,t ∈ CNs×1 is the noise after

combining at the BS. Note that usually the channel Hω
p,k is invariant in some successive

OFDM symbols. Rewrite (5) in matrix form as

yp,t = ZH
p,tABSH̄ω

p ĀH
UEx̄p,t + n̄p,t, (6)

where H̄ω
p =

[
Hω

p,1, Hω
p,2, · · · , Hω

p,K

]
∈ CGBS×KGUE , ĀH

UE = diag
(

AH
UE, AH

UE, · · · , AH
UE

)
∈

CKGUE×KNUE , and x̄p,t =
[
xTp,t,1, xTp,t,2, · · · , xTp,t,K

]T
∈ CKNUE×1. Using the result vec(ABC)

=
(

CT ⊗A
)

vec(B), (6) can be equivalently expressed as

yp,t = vec
(

ZH
p,tABSH̄ω

p ĀH
UEx̄p,t

)
+ n̄p,t

=
(
(ĀH

UEx̄p,t)
T ⊗ (ZH

p,tABS)
)

vec
(

H̄ω
p

)
+ n̄p,t

= Φp,thω
p + n̄p,t,

(7)

where Φp,t =
(
(ĀH

UEx̄p,t)T ⊗ (ZH
p,tABS)

)
∈ CNs×KGBSGUE , hω

p = vec
(

H̄ω
p

)
∈ CKGBSGUE×1.

We stack the received signals that are transmited on G successive symbols, and we have

yp = Φphω
p + n̄p, (8)
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where yp =
[
yT

p,1, yT
p,2, · · · , yT

p,G

]T
∈ CGNs×1, Φp =

[
ΦT

p,1, ΦT
p,2, · · · , ΦT

p,G

]T
∈ CGNs×KGBS

GUE and n̄p =
[
nT

p,1, nT
p,2, · · · , nT

p,G

]T
∈ CGNs×1.

As shown above, in the channel estimation, the measurement matrix Φp derives from
pilots, precoders, combiners and the partial DFT matrices, so it is a difficult matrix in all
probability. With the difficult measurement matrix, the existing sparse channel estimation
algorithms can fail to recover channels. As a result, the UTAMP-SBL which is robust to
difficult measurement matrix is a wise choice.

3. Uplink Channel Estimation with UTAMP-SBL

Focus on the channel estimation of the single subcarrier and the subscript p is omitted
for conciseness,

y = Φhω + n̄. (9)

Let M = GNs, N = KGBSGUE, so the sizes of y, Φ and hω are M × 1, M × N and
N× 1, respectively, where M� N. In order to characterize the sparsity of hω , the Gaussian
prior model is adopted, i.e.,

p(hω) =
∫

phω (hω |γ)pγ(γ) dγ, (10)

where phω (hω |γ) = NC(hω; 0, diag(γ)) and pγ(γ) = Ga(γ; ε, η). Define the singular
value decomposition (SVD) of Φ is Φ = UΣV, where U is an orthogonal matrix and
UHU = I. Perform unitary transformation to (9) and we have

UHy = UHΦhω + UHn̄

r = ΣVhω + w,
(11)

where r = UHy ∈ CM×1, w = UHn̄ ∈ CM×1 and w follows NC(w; 0, σI). Define z =
ΣVhω and the likelihood function of z is

pr(r|z; σ) = NC(r; z, σI). (12)

According to the Bayesian rule, the joint probability density function is

p(r, z, hω; σ, ε, η) = pr(r|z; σ)δ(z− ΣVhω)p(hω), (13)

where the Dirac function factor δ(·) is adopted first in [20] to facilitate the derivation of the
algorithm. The factor graph of the factorization (13) is shown in Figure 2. The UTAMP-SBL
algorithm will be derived from message-passing on this graph and applied to the channel
estimation.

Figure 2. The factor graph of uplink sparse channel estimation.

Firstly, we consider the massages between node pr and node z. According to the sum-
product algorithm, the massage from function node pr to variable node z is mpr→z(z) =
pr(r|z; σ) = NC(z; r, σ̂I). The massage from variable node z to function node pr is de-
fined as mz→pr(z) = NC

(
z; µ, diag(τµ)

)
. So the belief b(z) = mz→pr(z)mpr→z(z) can be

calculated as b(z) = NC(z; ẑ, diag(vz)), where the mean and variance are

vz = 1�
(

1� τµ +
1
σ̂

1
)

,

ẑ = vz �
( r

σ̂
+ µ� τµ

)
.

(14)
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Then, we focus on the massages between node phω and node hω. Similarly, the
massage from function node phω to variable node hω is defined as mphω→hω (hω) =
NC(hω; 0, diag(γ̂)). And the massage from variable node hω to function node phω is defined
as mhω→phω (hω) = NC(hω; π, τπI). So the belief b(hω) = mhω→phω (hω)mphω→hω (hω) is
calculated as b(hω) = NC(hω; ĥω, vhω I), where the mean and variance are

vhω =
1
N

1T(1� (1/τπ + 1� γ̂)),

ĥω = π � (1 + τπ1� γ̂).
(15)

For the sparse channel estimation, the mean of the belief b(hω) is the estimated channel.
Next, the variable µ, τµ, π and τπ mentioned above can be updated with the UTAMP

which is derived from the AMP. In the UTAMP, the means and variances are calculated
by [16]

τµ = vhω ΣΣH1,

µ = ΣVĥω − τµ � s,

τπ =

(
1
N

((
ΣΣH1

)H
τs

))−1
,

π = ĥω + τπ

(
(ΣV)Hs

)
,

(16)

where the intermediate variables s and τs are given by [16]

τs = 1�
(
τµ + σ̂1

)
,

s = τs � (r− µ).
(17)

Besides, there are several model parameters need to be learned at each iteration.
For the noise precision σ̂, it can be updated with the expectation-maximization (EM)
algorithm [16]

σ̂ =
1
M

(
‖r− ẑ‖2 + 1Tvz

)
. (18)

For the variable γ, according to the sum-product algorithm, the componentwise
massage from function node phω

n to variable node γn is

mphω
n
→γn(γn) = phω

n (γn)mhω
n→phω

n
(γn)

= NC(hω
n ; 0, γn)NC(hω

n ; πn, τπ)

∝

√
1

γn
exp

{
− 1

2γn

(∣∣∣ĥω
n

∣∣∣2 + vhω

)}
.

(19)

The message from variable node γ to function node phω is mγ→phω (γ) = mpγ→γ(γ) =
Ga(γ; ε, η). Consequently, the belief b(γn) is expressed as

b(γn) = mγn→phω
n
(γn)mphω

n
→γn(γn)

∝ γ
1
2−

1
2 ε̂

n exp
{
− 1

2γn

(∣∣∣ĥω
n

∣∣∣2 + vhω + 2η

)}
.

(20)

So, γ̂n is the mean of this distribution, i.e.,

γ̂n =

∣∣∣ĥω
n

∣∣∣2 + vhω

ε̂ + 1
, (21)
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when we set η = 0. For the parameter ε̂, it is difficult to renewed, but there is an effective
way found in [16] and we use it directly. As a result, ε̂ is calculated by

ε̂ =
1
2

√
log
(

1
N ∑n

1
γ̂n

)
− 1

N ∑nlog
1

γ̂n
. (22)

The process of the channel estimation with UTAMP-SBL is given in Algorithm 1. In
this algorithm, the iteration will be halted if the number of it reaches the maximum value
Tmax or ‖ĥω(t) − ĥω(t−1)‖/‖ĥω(t)‖ < 10−12.

Algorithm 1 Uplink channel estimation with UTAMP-SBL.

Input: The received signal y and the matrix Φ.
Output: The estimated sparse channel ĥω.

1: Initialization: SVD Φ = UΣV, r = UHy, vhω = 1, ĥω = 0, s = 0, σ̂ = 1, γ̂ = 1,
ε̂ = 0.001

2: repeat
3: Calculate the mean µ and variance τµ as (16).
4: Calculate the mean ẑ and variance vz as (14).
5: Update the noise variance σ̂ as (18).
6: Calculate the mean s and variance τs as (17).
7: Calculate the mean π and variance τπ as (16).
8: Calculate the mean ĥω and variance vhω as (15).
9: Calculate the variance γ̂ according to (21).

10: Update the parameter ε̂ according to (22).
11: until halt

The computational complexity of the UTAMP-SBL is dominated by the complex
multiplications required for matrix-vector operations. At the stage of initialization, the
complexity of SVD is O(M2N) [21]. The matrix-vector product of UHy is O(M2). At the
stage of iteration, the complexity of calculating τµ and µ are respectively O(M2 + 2M)
and O(2MN + M) in the step 3 of Algorithm 1. The calculations of remaining steps
only involve the component-wise vector multiplication or scalar operations which bring a
small amount of complex multiplication compared with matrix-vector product. Therefore,
the computational complexity of them is omitted. When the iteration reaches T, the total
complexity isO(M2N + M2 + T(M2 + 2M+ 2MN + M)). Discarding the low-order terms,
the total complexity is O(M2N).

4. Cramér-Rao Bound Analysis

In this section, the CRB is provided as a performance benchmark of the channel
estimation. From Section 3, the sparse channel estimation is modeled as an SBL problem
and the CRBs for SBL derived in [22] can be adopted directly.

According to [22], the lower bound on the mean squared error (MSE) matrix of hω is

E �
(

ΦHΦ

σ̂2 + diag(γ̂)

)−1

, (23)

where σ̂ is from (18) and the nth entry of γ̂ = [γ̂1, γ̂2, . . . , γ̂N ]
T is gotten from (21). Thus,

the CRB of ĥω is

CRB(ĥω) =
1
N

tr(E). (24)

5. Simulation Results

The simulation parameters are chosen as follows, NBS = GBS = 64, NUE = GUE = 16,
NRF
BS = NRF

UE = 4, Ns = 4, K = 4, P = 32 and L = 4. The pilots, precoders and combiners
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are generated according to [17]. In order to evaluate the performance, the normalized MSE

(NMSE) E
{
‖hω−ĥω‖2

‖hω‖2

}
between the estimated channel ĥω and the real channel hω is intro-

duced. We compare the NMSE performance for the OMP [5], SBL [9], EM-BBG-VAMP [7],
SuRe-CSBL [15], TurboCS [10], UTAMP-SBL, and the CRB derived in Section 4.

Figure 3 shows the NMSE versus the pilot overhead at SNR = 20 dB. As defined in
Section 3, N is the dimension of the received signal y and M is the dimension of the sparse
channel hω . In this simulation, the pilot overhead is denoted as M/N. We can find that the
off-grid algorithm, SuRe-CSBL, could not achieve the desired performance when the pilot is
insufficient in spite of it is the winners in [15]. The SBL, EM-BBG-VAMP and UTAMP-SBL
work well with 9.38% pilot overhead compared with other algorithms. Thus, when the
pilot overhead is extremely low, the SuRe-CSBL, TurboCS and OMP are not sensible choices.
It is also shown that the UTAMP-SBL performs distinctly better than the other estimators
with the same pilot overhead. From another side, it is also concluded that the UTAMP-SBL
can accurately estimate the channels with fewer pilots. For example, when the NMSE
performance meets −10 dB, the OMP, SBL and EM-BBG-VAMP respectively need 22.66%,
21.88%, 16.41% pilot overhead. However, the UTAMP-SBL only needs 11.72% overhead,
which means the pilot overhead is reduced by 28.58% compared with the EM-BBG-VAMP.

9.38 12.50 15.63 18.75 21.88 25.00 28.13 31.25 34.38 37.50 40.63 43.75 46.88 50.00

Pilot overhead: M/N [%]

0

N
M

S
E

 [
d
B

]

LR-Gr-SBL

LR-Gr-SBL+MS

SuRe-CSBL

TurboCS

OMP

SBL

EM-BBG-VAMP

UTAMP-SBL

CRB

Figure 3. The NMSE versus the pilot overhead at SNR = 20 dB.

Figure 4 shows the NMSE versus the SNR with 25.00% pilot overhead. Due to insuffi-
cient of pilots, the SuRe-CSBL and TurboCS could not estimate the channels well, even if
their NMSEs are lower than CRB at low SNRs. It is observed that the UTAMP-SBL has the
best performance compared with the other competitors. This is because the UTAMP-SBL is
robust to different types of difficult measurement matrices, such as non-zero mean, rank-
deficient, correlated, or ill-conditioned matrix [16]. This feature is crucial for the practical
application of this algorithm. In the channel estimation, the measurement matrix Φp is
usually related to the complex signal processing operations as described in Section 2.3, so it
can be a difficult matrix. Therefore, the UTAMP-SBL with strong robustness performs better
in the channel estimation. Moreover, the matrix inversion step of SBL causing the high
complexity is avoided by replacing the E-step in the EM with UTAMP, and the algorithm
complexity is reduced [16].



Sensors 2021, 21, 4760 9 of 11
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 [
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EM-BBG-VAMP

UTAMP-SBL

CRB

Figure 4. The NMSE versus the SNR with 25.00% pilot overhead.

Figure 5 provides the NMSE versus the number of iterations at different SNRs with
25.00% pilot overhead, which illustrates the convergences of the algorithms. Since the
algorithms, SuRe-CSBL, TurboCS, are not suitable for our channel estimation when the pilot
overhead is 25.00%, only the convergences of the OMP, SBL, EM-BBG-VAMP and UTAMP-
SBL are compared. When SNR = −10 dB, the OMP fails to converge even if the number of
iterations reaches 300, and the NMSE performance decreases with the increasing iterations.
This shows that the OMP is not suitable for the low SNR cases. The SBL, EM-BBG-VAMP
and UTAMP-SBL require about 100 iterations to converge. When SNR = 10 dB, the OMP
is still with the worst convergence and the UTAMP-SBL is with the best convergence.
However, when SNR = 30 dB, the EM-BBG-VAMP converges slightly faster than the
UTAMP-SBL. From the results, the EM-BBG-VAMP converges within 20 iterations while
the UTAMP-SBL requires about 40 iterations. And these two algorithms are both faster than
the SBL and the OMP. Additionally, in this figure, only the performance of the UTAMP-SBL
becomes better with the iteration at all SNRs, while that of other algorithms sometimes
deteriorates with the iteration. This further demonstrates the advantage of the UTAMP-SBL
in convergence. From above observation and analysis, the UTAMP-SBL is superior to the
comparison algorithms in the convergence speed and the NMSE performance.
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Figure 5. The NMSE versus the number of iterations at different SNRs with 25.00% pilot overhead.

6. Conclusions

In this paper, the UTAMP-SBL algorithm is applied to estimate the sparse channels
for improving the performance. In order to evaluate the effect of this algorithm in practical
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channel estimation, we study the multi-user uplink channel estimation for hybrid architec-
ture mmWave massive MIMO systems. Simulation results demonstrate the superiority of
the UTAMP-SBL in terms of NMSE performance and pilot overhead reduction.
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