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Abstract: This study primarily investigates image sensing at low sampling rates with convolutional
neural networks (CNN) for specific applications. To improve the image acquisition efficiency in
energy-limited systems, this study, inspired by compressed sensing, proposes a fully learnable model
for task-driven image-compressed sensing (FLCS). The FLCS, based on Deep Convolution Generative
Adversarial Networks (DCGAN) and Variational Auto-encoder (VAE), divides the image-compressed
sensing model into three learnable parts, i.e., the Sampler, the Solver and the Rebuilder. To be specific,
a measurement matrix suitable for a type of image is obtained by training the Sampler. The Solver
calculates the image’s low-dimensional representation with the measurements. The Rebuilder learns
a mapping from the low-dimensional latent space to the image space. All the mentioned could be
trained jointly or individually for a range of application scenarios. The pre-trained FLCS reconstructs
images with few iterations for task-driven compressed sensing. As indicated from the experimental
results, compared with existing approaches, the proposed method could significantly improve the
reconstructed images” quality while decreasing the running time. This study is of great significance
for the application of image-compressed sensing at low sampling rates.

Keywords: convolutional neural networks; compressed sensing; deep learning; image reconstruction

1. Introduction

Compressed Sensing (CS) [1] aims to break the limitation of Nyquist’s Theorem and
reconstruct sparse signals with the sampling matrix and a small number of measurements.
According to Candes [2,3], sparse signals can be recovered if the sampling matrix satisfies
the Restricted Isometry Property (RIP). Bickel [4] demonstrated that signals can be recon-
structed using L1 regularization algorithms if the sampling matrix satisfies the Restricted
Eigenvalue Condition (REC). The classical reconstruction algorithms comprise the convex
optimization [4], the matching pursuit [5] and the iterative threshold [6]. The mentioned
approaches show their superior performance in sparse signal reconstruction. In contrast,
the quality of reconstructed images at low sampling rates is unsatisfactory because it is
hard to find the most suitable sparse representation for natural images due to their com-
plexity. Sparse representation refers to represent the image as a sparse signal using an
appropriate base. Because of the difficulty of finding the suitable sparse basis for a specific
task, this study focuses on finding the low-dimensional representation, called latent space
in generative models, of images using deep learning.

Convolutional neural networks (CNN) exhibit a strong ability to extract image features.
Over the past few years, the CNN-based generative model presents a novel idea for the
low-dimensional representation of images. The Deep Convolution Generative Adversarial
Networks (DCGAN) [7] is capable of automatically learning a mapping from the low-
dimensional latent space to the image space. The image output by the pre-trained generator
is sufficiently natural if the network framework and the dataset are appropriate. However,
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the DCGAN encounters the problems of model collapse and nonconvergence. The Decoder
of Variational Auto-encoder (VAE) [8] is capable of generating an image based on the
deep convolutional network with the input sampled from a low-dimensional distribution
learned from the dataset by Encoder. Inconsistent with the DCGAN, the mapping from the
latent space to the image space in the VAE is considered explicit, therefore giving a stricter
mathematical guarantee. However, it will inevitably cause information loss as impacted
by the high-dimensional data forced to fit the low-dimensional Gaussian distribution in
the optimization. The VAE and the DCGAN were combined by Larsen [9] to improve
the generated images’ quality. The motivation to address the image CS problem using
CNN-based generative models is that there are many similarities between different images
in a specific task, and meaningful natural images are usually compressible. Therefore, we
can use few measurements to reconstruct the image with the help of the image features
learned from the training set by the CNN.

Based on the VAE and the DCGAN, a fully learnable model for task-driven image-
compressed sensing (FLCS) is proposed in this study to improve the quality of reconstructed
images at low sampling rates in specific images acquisition systems (e.g., crop monitoring
and face detection). Specific to existing approaches, the process of the image-compressed
sensing falls into three independent parts: the compressed sampling, the reconstruction
and the sparse representation. The mentioned three issues are solved by Sampler, Solver
and Rebuilder in FLCS, respectively. The Sampler and the Solver are generated from the
Encoder of the VAE. The motivation is that the Encoder of VAE tries to learn the low-
dimensional representation of the image, which happens to coincide with compressed
sampling. To keep the simplicity of compressed sampling, we use a learned measurement
matrix to constitute Sampler. A more complicated network named Solver is then used
to find the most appropriate low-dimensional representation of the original image. To
be specific, the Sampler refers to a linear projection from the high-dimensional image
space to measurements, and finally, it learns a sampling matrix suitable for specific tasks.
The Solver can learn the nonlinear mapping from measurements to the latent space. In
addition, the Rebuilder refers to a nonlinear mapping from latent space to the image space,
which is obtained by combining the Decoder of the VAE and the Generator of the DCGAN.
Although adopted in unknown images, the pre-trained FLCS can reconstruct them with
high quality and several iterations, therefore significantly decreasing the running time. The
major contributions of this study are summarized as follows:

*  We propose a novel task-driven CS model termed the FLCS which is inspired by VAE-
GAN. The FLCS learns the low-dimensional representation on the training dataset
with CNN to create a mapping from the latent space to the image space. It significantly
improves the reconstructed images” quality.

¢ We build a fully learnable image acquisition model in this study. The compressed
sampling process falls into three parts: the Sampler, the Solver and the Rebuilder.
Each part of them is composed of fully connected networks and convolutional neural
networks, which can be trained jointly or independently.

e In the FLCS, the measurement matrix, the sparse representation and the solving
process are all pre-trained, which can be the most suitable for a specific task. Thus,
we can establish an image acquisition system for applications (e.g., the single target
monitoring). As indicated from the results on plant seedling and face images, the
proposed approach is accurate and fast.

This study is organized as follows. In Section 1, the background of the CS and the
image low-dimensional representation based on the CNN is briefed, the significance,
contributions and the fundamental idea of our approach are summarized. Section 2
outlines some related works about image CS reconstructed algorithms and applications.
Section 3 presents the architecture and specific design of the FLCS model. In Section 4,
the experimental details are illustrated, and we compare our approach with some state-
of-the-art methods. Section 5 summarizes the article and puts forward the prospects for
subsequent works.
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2. Related Work

The compressed sensing aims to reconstruct sparse signal x € R” from linear mea-
surement y € R™:
y = Px, (1)

where ® € R™*"(m < n) denotes the measurement matrix. It is unlikely to find a
unique solution to Equation (1) since it refers to a system of under-determined equations.
According to the CS theory [1], it is considered that x can be recovered with a high
probability if it is sparse. Candes[2,3] proved that to recover the sparse signal x, the
measurement matrix x should satisfy RIP:

(1= 3)||x[Z < | @xll3 < (1+3)l|x3, )

where § > 0is a small constant, || - ||, expresses p-norm. This property ensures that the low-
dimensional measurements y, y» of two different vectors x1, x; are different after the linear
projection. Algorithm optimization and practical application have been extensively studied
since the CS theory was proposed. In [10], Li proposed a method termed as TVAL3 using
the augmented Lagrangian method to minimize total variation. It accurately described
the structure of natural images but needs more measurements to reconstruct images.
Dong [11] proposed a reconstructed algorithm termed as NLRCS using the nonlocal low-
rank regularization to address the image CS problem. It obtained the set of similar blocks
by block matching based on the self-similarity of natural images, then reconstructed the
images by minimizing the rank of the block set. It is a time-consuming method because of
the complexity of the search process. Metzler [12] developed a novel framework termed as
DAMP, introducing the BM3D denoiser to AMP algorithm for image sensing. DAMP used
off-the-shelf denoising algorithms to impose priors, which simplified the development of
the reconstructed algorithm. Yuan [13] solved the total variation minimization problem
based on the generalized alternating projection algorithm and further proposed a method
termed as GAPTV. In [14], Song proposed an image CS algorithm using intra prediction
method based on the block-based CS image framework. In [15], CS reconstructed algorithm
was introduced to video recovery, and a temporal residual-domain dictionary learning
method was proposed.

A common problem of the mentioned methods above is that they cannot reconstruct
the images with high quality at low sampling rates, because they try to restore images
with the help of some known priors. These priors are universal for natural images but not
optimal for specific tasks. Moreover, convolution neural networks exhibit a strong ability
in image processing. Numerous methods and applications combining the CS and deep
neural networks have been developed over the past few years.

Bora [16] introduced generative models into the CS reconstruction, termed as CSGM,
which significantly improved the performance of image reconstruction at a low sampling
rate. In [16], the restriction of ® was expressed as a more general condition termed as the
Set Restricted Eigenvalue Condition:

1@ (1 — x2) |3 > ¥ll (x1 — x2) |3 = 9, ®)

where v > 0 and 6 > 0 are small constants. The CSGM exploits the pre-trained generative
network as the mapping from low-dimensional representation space to image space.

X = g(Z), (4)

where z € R¥(k < m) is the low-dimensional representation of image x. The signal sparsity
is no longer required in CSGM since the generator is capable of automatically learning the
low-dimensional manifold of the images by training on the image set.

Adler [17] proposed a deep learning approach for the block-based CS, in which a
fully connected network performs both the block-based linear sensing and nonlinear recon-
struction stages. Nguyen [18] developed a deep learning approach to achieve significantly
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sparse ternary projections that are more suitable for hardware implementation. In [19],
with the pre-trained deep neural network as Image Prior, a method for the CS recovery with
untrained deep generative models was proposed. In [20], a framework jointly training a
generator and the optimization process for reconstruction via meta-learning was proposed.
In [21], an image CS framework with a convolutional neural network (dubbed CSNet) that
covered a sampling network and a reconstruction network was proposed. In [22], a deep
learning architecture, termed as ADMM-CSNet was proposed for the magnetic resonance
images reconstruction. the deep neural network-based CS was also applied for Magnetic
Resonance Imaging extensively [23-25].

3. Fully Learnable Compressed Sensing Model

Set x € R" as the image we sought to sense and ® € R™*" as the measurement matrix.
The measurements y € R" (m < 1) are obtained by Equation (1). Set z € R¥(k < m) as
the low-dimensional representation and F as a nonlinear mapping from z to x, x = F(z).
The solution of Equation (1) is transformed into a nonlinear least square problem:

2 = argmin | ®F (=) — y. ©)

It can be solved by gradient descent. On the whole, the measurement matrix used in
conventional algorithms is a Gaussian random matrix (each entry of which sampled i.i.d
from N(0,1)). As a general measurement matrix, it is under-fitting for specific CS tasks.
To tackle down the problem of task-driven image-compressed sensing, the FLCS model
illustrated in Figure 1 is proposed.

n~ N(0,1) = Rebuilder Discriminator — D(z, )

7,
Solver z~N(u,0”) = Rebuilder

Discriminator — D(z,)

o2

Discriminator — D(z)

T

Figure 1. The framework of Fully Learnable Compressed Sensing Model. The purpose of Encoder is to find the low

dimension representation space of images. The goal of Discriminator is to distinguish real and fake images. The Rebuilder

aims to fool the Discriminator.

3.1. Submodules
The sampling process of image CS is completed by Sampler (Sp):

y = Sp(x). 6)

It comprises a fully connected layer without any bias and activation function, which
refers to a learnable linear projection. The output of such a layer is measurements y, and
its weights constitute the measurement matrix ®,

Sp(x) = ®x. (7)
The distribution of latent vector z for image x was obtained by Solver (Sv):

[n, 0] = Su(y). ®)
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It consists of three hidden layers and one output layer. The hidden layers refer to
fully connected layers with ReLU activation and Batch Normalization. The numbers of
units in the three hidden layers are 1024, 512 and 256, respectively. The output layer is
a fully connected layer without activation and normalization. The Solver finally output
two vectors, i.e., a mean vector y and a variance vector ¢. z is randomly sampled from the
normal distribution N (, 0'2).

The image is reconstructed by the Rebuilder(R):

£ = R(z). 9)

It covers a fully connected layer and four deconvolutional layers. There are two types
of inputs for the Rebuilder: z ~ N(u,0?) and n ~ N(0,1). First, the latent vectors are
projected and reshaped to size [4,4,512]. Next, the images of size [64,64,3] are outputted
through four deconvolutional layers with kernels of size 5 X 5 and a stride of 2. The
activation applied in all five layers refers to the hyperbolic tangent function. The whole
process of image-compressed sensing is:

£ = R(So(Sp(x))). (10)

3.2. Loss Function

Discriminator (D) is adopted to distinguish the real from the fake images. Binary cross
entropy acts as the loss function of Discriminator.

Lp = —slog(D(xx)) — (1 —s)log(1 — D(x«)), (11)

where x, denotes the groundtruth or the images generated from Rebuilder, and s expresses
the label of x.. For discriminator, the real image x is labeled as 1, while the wrong image
x;, is labeled as 0. Thus,

Lp = —log(D(x)) —log(1 — D(xx)). (12)

Set p(X) as the distribution of images and p(Z) ass the distribution of latent vectors.
The Rebuilder aims to learn a generative model p(X|Z) that maximizes p(X),

p(X) = ;p(XIZ)p(Z)- (13)

p(Z) denotes the standard Gaussian prior distribution, which is a large range. The
stress was placed on the latent vectors more likely to generate high-quality images. Encoder
is adopted to learn an approximate posterior probability distribution g(Z|X). The Encoder
is trained by maximizing the Evidence Lower Bound (ELBO) of the marginal log-likelihood.

ELBO = E,(zx, [log P (;(’?} . (14)
9(Z|X)

The training processes of the Rebuilder fall into two parts, i.e.,, VAE and GAN. In the
VAE process, the Rebuilder generates images using vectors sampled from p(Z|X) to make
x; as close to x as possible. In the GAN process, Rebuilder generates images using vectors
sampled from standard normal distribution to fool the Discriminator.

Lg =[xz — x[l; + |D(xz) = D(x)3

(15)
—log(D(xn)).
By referencing [26], the loss function of Encoder is
L =|lx: —x||h +|z|3+ Li(n, o
g =z —x[) + 1213 + Li(s, ) )

+[D(xz) = D(x)lI3,
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where L; denotes the latent loss,

Li(w, o) = = ) 5|1 +log(o?) —oF — 1iF]. (17)

I~
N =

3.3. Reconstructed Framework

The framework illustrated in Figure 2 is adopted to reconstruct images after FLCS is
pre-trained. In the reconstructed process, the Discriminator is abandoned, and Sampler’s
weights constitute the measurement matrix. With the measurements y as input, FLCS
aims to seek the optimal solution of the latent vector z by a few iterations to generate £
approaching original image x. Algorithm 1 expresses the pseudo code of reconstructed
process. The applied loss function is

loss(z) = [|Sp(R(2)) — y3- (8)

The maximum iteration number is expressed as i;;4x and the learning rate denoted as
Ir. First, z is initialized to Sv(y), therefore providing a starting point close to the optimal
solution in space R¥. Subsequently, FLCS optimize z by several iterations. In each iteration,
Equation (18) is adopted to calculate the loss, and Adam [27] is employed to update
z with learning rate Ir. Lastly, image % is obtained after the optimal low-dimensional
representation z is found.

Solver —>»z—» Rebuilder —»

8>

Y

Figure 2. The framework of the reconstruction model. With y obtained from the Sampler as input,
the image is reconstructed with a few iterations.

Algorithm 1 Proposed Approach

Require: y, Sp, Sv, R, learning rate Ir, Iterations iy;ax
initialize z = Sv(y)
fori = 0to iy, do
loss(z) = [|Sp(R(z)) —yll3
Optimize 2 + z — lr%loss(z)
end for
Ensure: £ = R(z)

4. Experiments and Discussion

In this section, we evaluate the performance of visual image CS reconstruction ap-
proaches by some experiments. First, the performance of FLCS model pre-trained with
L1-norm or L2-norm is evaluated. Subsequently, we compare the reconstructed effect of
FLCS using the learned measurement matrix and Gaussian random matrix. Lastly, the
performance of FLCS is compared with some state-of-art image CS methods.

4.1. Experimental Details

The image datasets employed in the experiments are the Aberystwyth leaf evaluation
dataset [28] and the large-scale face dataset (CelebA) [29]. The first dataset is obtained
from the following link: https://zenodo.org/record /168158#, accessed on 19 February
2021. It comprised 4 sets of 20 Arabidopsis Thaliana plants that have been grown in
trays, and the images of each tray are taken in a 15-min timelapse sequence. The second
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dataset is obtained from this link: http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html,
accessed on 25 February 2021. CelebA contains over 200,000 face images. The respective
sample in experiments is cut out from a large-scale image and scaled to size 64 x 64, giving
64 x 64 x 3 = 12,288 inputs per image. The value of the respective input is scaled to [—1, 1].
For both datasets, we randomly sample 19,200 images for training and 1000 for testing.

The FLCS network is optimized by Adam with batch size of 32 and learning rate of
0.001. The dimension of latent vector z is set to k = 100. The optimizer of the reconstruction
model refers to Adam with learning rate Ir = 0.05, and the maximum iterations 7, is set
to 100. All experiments are implemented on a workstation with Intel(R) Xeon(R) W-2145
@3.70GHz CPU, 64.0GB DDR4 memory, and NVIDIA Quadro RTX4000 GPU.

FLCS is compared with TVAL3 [10], NLRCS [11], DAMP [12], GAPTV [13] and
CSGM [16]. The implementation codes of mentioned algorithms are downloaded from
authors” websites. This study uses default parameters without any modification. Lasso is
adopted to reconstruct images in WT domain. The mentioned methods are evaluated at
different sampling rates (sv = m/n, i.e., the ratio of the dimension of measurements y and
image x). The implement measurement matrix ® is Gaussian random matrix with each
entry sampled i.i.d from N(0,1) for methods without learned Sampler. For comparison
methods, y is obtained by projecting the ground truth image x with Gaussian random
matrix ®, y = ®x. For FLCS, y is the output of Sampler, y = Sp(x). For easy reference,
FLCS-G denotes the FLCS model using Gaussian random matrix. FLCS-S denotes the FLCS
model using learned measurement matrix. FLCS-L1 denotes the model pre-trained with
Ll-norm (p = 1 in Equations (15) and (16)). FLCS-L2 denotes the model pre-trained with
L2-norm (p = 2 in Equations (15) and (16)).

The implement image quality metrics are Peak Signal to Noise Ratio (PSNR) and
Structural Similarity (SSIM). Equation (19) is adopted to calculate PSNR.

PSNR(x,2) = 101ogy(—— 22 (19)
’ O (- £)2
Equation (20) is employed to determine SSIM.
SSIM(x, %) = (papiz + 1) (2045 +C2) (20)

(12 +u3+ ) (0% + 02+ c2))’

where i, denotes the mean of x, ji4 expresses the mean of £, 02 represents the variance of
X, (7% denotes the variance of £, 0,4 is covariance between x and %, ¢; and ¢, are constants
that avoid dividing by zero.

4.2. Evaluating Different Loss Functions

In this subsection, we evaluate the performance of FLCS-L1 and FLCS-L2. FLCS-L1
employs L1-norm to constrain the error e of reconstruction image £ and the original image
x, e = £ — x, FLCS-L2 employs L2-norm. FLCS-L1 and FLCS-L2 are trained with the same
dataset, learning rate, and iterations. Figure 3 presents some reconstructed samples of
FLCS-L1 and LFCS-L2 on two image sets at the sampling rate of 0.1. Both methods are
suggested to be able to reconstruct images with high quality, whereas FLCS-L1 outperforms
FLCS-L2 in image details. Specifically, the color of the first image reconstructed by FLCS-L1
is significantly closer to the ground truth than FLCS-L2. For the last image, FLCS-L1 is
more precise in reconstructing eyebrows and eyes.
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Figure 3. Some reconstruction samples of plant seedling and face images with sr = 0.1. The first
row gives the ground truth. The second row shows images reconstructed by FLCS pre-trained with
L1-norm. The third row shows samples with L2-norm.

Table 1 lists the average PSNR and SSIM of both methods on plant seedling and face
image set at different sampling ratios of 0.1, 0.07, 0.05, 0.02 and 0.01. The best results are
marked in bold. As indicated from the quantitative results in Table 1, FLCS-L1 outperforms
FLCS-L2. FLCS-L1 has higher PSNR and SSIM than FLCS-L2 at all sampling rates. To be
specific, we found that with the same sampling rate, on the plant image dataset, the PSNR
and SSIM are improved by about 2dB and 0.08, respectively. As on the face image dataset,
they are improved by about 1dB and 0.03, respectively. Accordingly, it demonstrates that
the loss function using L1-norm performs better than L1-norm.

Table 1. Average PSNR and SSIM comparisons of FLCS pre-trained with different loss functions. Bold indicates the

best result.
sr = 0.1 sr = 0.07 sr = 0.05 sr = 0.02 sr = 0.01

Images Methods
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Plant FLCS-L1 3193  0.8932 3137  0.8692  30.84  0.8472  30.02  0.8153  29.48  0.7983
ants FLCS-1.2 2964 07921 2916  0.7801  28.83  0.7685 2823 07468  27.87  0.7364
e FLCS-L1 3021 09102 29.81 09042  29.46  0.8982 28.87  0.8878  28.12  0.8741
aces FLCS-1.2 2913  0.8942 2887 08791 2853 08659 2806 08515 2751  0.8336

In general, the L2-norm penalty is considered a better choice since it decreases the
energy of the error vector e (i.e., it makes the elements approach 0 but unequal to 0),
therefore improving the generalization ability of the model. The L1-norm penalty makes
the error vector e sparser (i.e., more elements are equal to 0), therefore improving the
model’s simplicity. There is a strong structural similarity between different images for
CS applications (e.g., plant or face image acquisition). FLCS pre-trained with L1-norm
penalty achieves a better effect by reducing the number of different pixels between the
reconstructed image and the ground truth, which might explain why FLCS-L1 outperforms
FLCS-L2. Accordingly, for task-driven CS applications, L1-norm is recommended in this
study to constrain the error between the reconstructed image £ and the original image x.

4.3. Validating the Learned Measurement Matrix

In this subsection, we validate the effect of the learned measurement matrix for im-
proving FLCS. The network architecture of FLCS-G is identical to that of FLCS-S. They are
trained with the same dataset, learning rate iterations. The difference is that the measure-
ments y of FLCS-G are obtained by projecting the image x with Gaussian random matrix
®, y = dx, while FLCS-S adopts the learned measurement matrix. The measurements y of
FLCS-S are the output of Sampler, y = Sp(x). Figure 4 shows some reconstructed samples
of FLCS-G and FLCS-S on two image sets at the sampling rate of 0.1. It is shown that
the quality of images reconstructed by FLCS-S is significantly better than that of FLCS-G.
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Specifically, the details of plant images reconstructed by FLCS-S are more precise, and the
target’s edge and color are closer to the ground truth. Furthermore, the results on face
images are consistent. The fifth sample reconstructed by FLCS-G is fuzzy and contains
considerable noise, whereas that of FLCS-S is clear and natural.

=0 8 BB 3 i B
&1 1 1 Ielelals
-G S AR & 0 ]

Figure 4. Some reconstruction samples of plant seedling and face images with sr = 0.1. The first row
gives the ground truth. The second row shows images reconstructed by FLCS with Gaussian random
matrix. The third row shows samples with trained measurement matrix.

Table 2 lists the average PSNR and SSIM of both methods on plant seedling and
face images at different sampling ratios of 0.1, 0.07, 0.05, 0.02 and 0.01. The best results
are marked in bold. As indicated from the quantitative results, the images reconstructed
by FLCS-S achieved higher PSNR and SSIM at all sampling rates. To be specific, at the
sampling rate of 0.1, the PSNR and SSIM of FLCS-S are about 1.6 and 0.08 higher than FLCS-
G on plant seedling images, and about 1.6 and 0.02 higher on face images. With the decrease
of sampling rate, the advantage of the learned measurement matrix is more obvious. At
the sampling rate of 0.01, the PSNR and SSIM of FLCS-S on plant seedling images are 29.48
and 0.7983, which can be improved by 4.5 and 0.23 respectively compared with FLCS-G.
The results on face images are 28.12 and 0.8741, which is 4.8 and 0.20 higher than FLCS-G.
Quantitative results show that the learned measurement matrix is effective and helps FLCS
significantly improve the quality of reconstructed images at low sampling rates.

Table 2. Average PSNR and SSIM comparisons of FLCS with different measurement matrices. Bold indicates the best result.

sr = 0.1 sr = 0.07 sr = 0.05 sr = 0.02 sr = 0.01
Images Methods
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR  SSIM
Plante  FLCSG 3032 08113 3018 08073 2989 07915 2901 07694 2495 05706
as  pLcs-s 3193 0.8932 3137  0.8692  30.84  0.8472  30.02  0.8153 2948  0.7983
v FLCS-G 2866  0.8903 2848  0.8863 2821 08770 2654 08184 2335  0.6762
aces  pLCs-S 3021 09102 29.81 09042 2946  0.8982  28.87  0.8878  28.12  0.8741

Gaussian random matrix satisfies the RIP condition with a high probability and is
widely used in classical CS methods. However, the images in task-driven CS applications
are very regular. There is a strong structural similarity between images, and the key
information is often concentrated in several important pixels. Gaussian random matrix is
not the best choice in the mentioned scenes. The learned measurement matrix can preserve
the features of the target images more effectively and achieve better reconstruction at the
same sampling rate. This is the reason FLCS-S performs better than FLCS-G.

4.4. Comparison with State-of-Art Methods

In this subsection, we compare the proposed approach with other state-of-art methods
on plant seedling and face images set. In the experiments, FLCS employs the L1-norm to
constrain the error of the reconstruction image and the original image and projects images



Sensors 2021, 21, 4662

10 0of 13

with the learned measurement matrix. Figures 5 and 6 illustrate some visual examples
reconstructed by various methods at the sampling rate of 0.05. Figure 5 gives 3 plant
seedling images and Figure 6 shows 3 face images. According to the figures, TVAL3
can only reconstruct some color blocks to approach the ground truth, and the target is
unrecognizable. Images reconstructed by NLRCS are too smooth to preserve detail. The
images reconstructed by DAMP are blurry, with unclear edges. The image reconstructed
by GAPTV exhibited poor visual quality because of the sawtooth effect. CSGM is an image
CS method based on deep neural networks. Compared with other conventional methods,
it grows higher quality reconstruction images but cannot reconstruct the details accurately,
e.g., the lip color of the third face image is quite inconsistent with the ground truth. In
contrast, the visual effect of FLCS is significantly better than other methods. The image
details are closer to the original image, and the target’s edge is easy to identify, which is
more valuable information in the CS application.

Ground

Truth TVAL3 NLRCS DAMP GAPTV CSGM Ours

Figure 5. Some reconstruction samples of plant seedling images with sr = 0.05. The first column
gives the ground truth. The last column is the images reconstructed by our approach. The others are
the results of comparison methods.

Ground
Truth

EII
o

!

B’

g

EA
-

—~—
[ -

TVAL3 NLRCS DAMP GAPTV CSGM Ours

Figure 6. Some reconstruction samples of face images with sr = 0.05. The first column gives the
ground truth. The last column is the images reconstructed by our approach. The others are the results
of comparison methods.

Table 3 lists the quantitative evaluation of various methods. The average PSNR and
SSIM on plant seedling and face images at different sampling ratios of 0.1, 0.07, 0.05, 0.02
and 0.01 are presented. The best results are marked in bold. The quantitative results show
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that the performance of the proposed method is significantly better than other methods on
both datasets. Specifically, at the sampling rate of 0.1, the PSNR and SSIM of FLCS on the
plant image set are 31.93 and 0.8932, which are 1.54 and 0.0788 higher than NLRCS, 1.71 and
0.0835 higher than DAMBP, respectively. The PSNR and SSIM of FLCS on the face image set
are 30.21 and 0.9102, which are 1.06 and 0.0244 higher than NLRCS, 0.88 and 0.0185 higher
than DAMD, respectively. With a high sampling rate, the quality of images reconstructed
by FLCS is slightly better than other methods. Still, the advantage is not obvious since they
all collect sufficient information to reconstruct the images. With the decrease of sampling
rate, the advantages of FLCS gradually appear. At the sampling rate of 0.05, the PSNR and
SSIM of FLCS on the plant image set are 30.84 and 0.8472, which are 3.52 and 0.1458 higher
than the suboptimal method NLRCS, respectively. The PSNR and SSIM of FLCS on the
face image set are 29.46 and 0.8982, which are 3.14 and 0.1007 higher than the suboptimal
method CSGM. At the sampling rate of 0.01, DAMP collapses completely on both image
sets. On the plant image set, GAPTV and CSGM can barely reconstruct images. PSNR and
SSIM of them are only about 22 and 0.45. In contrast, the PSNR and SSIM of FLCS are 29.48
and 0.7983, respectively. CSGM, a method based on deep neural networks, outperforms
other conventional methods on the face image set. The PSNR and SSIM of the CSGM are
23.71 and 0.6788, respectively. FLCS can reconstruct face images with high quality even at
the sampling rate of 0.01. The PSNR and SSIM of which are 28.12 and 0.8741. In brief, the
performance of the proposed method on the two image sets is better than other comparison
methods. Especially at low sampling rates, FLCS outperformed other methods significantly,
and it can still reconstruct the image with high quality when other methods are invalid.

Table 3. Average PSNR and SSIM comparisons of different image CS approaches. Bold indicates the best result.

sr = 0.1 sr = 0.07 sr = 0.05 sr = 0.02 sr = 0.01
Images Methods
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
TVAL3 18.69 0.5690 18.19 0.5114 17.60 0.4590 15.85 0.3566 14.46 0.2976
NLRCS 30.39 0.8144 28.30 0.7448 27.32 0.7014 23.33 0.5162 21.02 0.4156
Plants GAPTV 28.41 0.7911 27.26 0.7352 26.32 0.6737 24.32 0.5379 22.75 0.4554
DAMP 30.22 0.8097 28.25 0.7416 26.67 0.6760 10.61 0.1148 10.42 0.1689
CSGM 25.26 0.5732 25.25 0.5764 24.90 0.5571 23.89 0.5079 22.73 0.4598
Ours 31.93 0.8932 31.37 0.8692 30.84 0.8472 30.02 0.8153 29.48 0.7983
TVAL3 17.83 0.6376 16.41 0.5579 14.99 0.4871 11.80 0.3174 9.91 0.2290
NLRCS 29.15 0.8858 27.00 0.8331 25.56 0.7807 20.54 0.5205 18.52 0.3958
Faces GAPTV 26.94 0.8718 25.65 0.8241 24.51 0.7679 21.87 0.5855 20.05 0.4577
DAMP 29.33 0.8917 28.14 0.8713 25.92 0.8064 6.53 0.0868 6.53 0.0875
CSGM 26.63 0.8098 26.51 0.8059 26.31 0.7975 25.29 0.7554 23.71 0.6788
Ours 30.21 0.9102 29.81 0.9042 29.46 0.8982 28.87 0.8878 28.12 0.8741

4.5. Comparison of Running Times

In this subsection, we evaluate the reconstruction speeds of various methods. Table 4
summarizes the average runtimes of comparison methods on the plant seedling images.
The runtime is not the focus in this study since FLCS works on GPU while the first four
baselines are implemented in MATLAB and only use CPU. CSGM is another reconstructed
method working on GPU. It is shown that FLCS significantly reduces the runtime while
improving the quality of reconstructed images. It takes less time to reconstruct an image
than CSGM at all sampling rates. To be specific, with the sampling rate of 0.1, it takes 1.60 s
for FLCS to reconstruct an image on CPU and 0.14 s on GPU. As comparisons, it takes
2.30 s on CPU and 0.25 s on GPU for CSGM. Moreover, with the decrease of sampling rate,
the runtime of FLCS is almost constant. In brief, FLCS acts as a faster image reconstruction
method, which is more suitable for CS applications.
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Table 4. The average runtime (seconds) for each method with the variety of compression rates.

Methods Devices sr=10.1 sr = 0.05 sr = 0.01
TVAL3 CPU 0.9621 1.0216 1.0902
NLRCS CPuU 98.2306 97.9891 97.5978
GAPTV CPU 2.5897 2.5718 2.5465
DAMP CPU 5.9107 5.4376 3.2654
CSGM CPU/GPU 2.3016/0.2509 2.4126/0.2402 2.3682/0.2356

Ours CPU/GPU 1.5873/0.1374 1.6024/0.1390 1.5981/0.1391

Moreover, the training time is another consumption for deep CS methods because
conventional methods do not need a training phase. Fortunately, deep CS methods only
need to be long-time trained once and then reconstruct the images quickly after deploying
the trained model. On the training set with 19,200 images of size 64 x 64, it takes 6.21 h to
train CSGM on the experimental platform and 8.74 h to train FLCS. FLCS requires more
time consuming because the Sampler and the Solver are also pre-trained on the training set.

5. Conclusions

A fully learnable task-driven CS reconstruction model termed as FLCS is proposed in
this study. The FLCS model is more suitable for applications requiring a low sampling rate
(e.g., the Internet of Things for geological disaster monitoring or agricultural production).
As indicated from the experiments on the Arabidopsis image set and CelebA dataset, FLCS
significantly outperforms the state-of-art methods. Moreover, FLCS can achieve good re-
construction effects with fewer iteration, therefore significantly reducing the computational
performance requirements and improving the real-time performance.

For the diversity of generation models, numerous ways (e.g., adjusting the generator
network structure or applying low-rank constraints) could be adopted to improve the
proposed method’s performance for different application scenarios. Benefiting from the
strong learning ability of neural networks, FLCS can achieve a better reconstructed effect
with the increase of the training set. In subsequent work, we will use some post-processing
methods to address the problem of abnormal image collection at low sampling rates.
In addition, this study employs FLCS to images of small size 64 x 64. We will attempt
to reconstruct large-scale images by combining FLCS and block-based CS methods in
future work.
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