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Abstract: Loss-of-balance (LOB) events, such as trips and slips, are frequent among community-
dwelling older adults and are an indicator of increased fall risk. In a preliminary study, eight
community-dwelling older adults with a history of falls were asked to perform everyday tasks in
the real world while donning a set of three inertial measurement sensors (IMUs) and report LOB
events via a voice-recording device. Over 290 h of real-world kinematic data were collected and used
to build and evaluate classification models to detect the occurrence of LOB events. Spatiotemporal
gait metrics were calculated, and time stamps for when LOB events occurred were identified. Using
these data and machine learning approaches, we built classifiers to detect LOB events. Through a
leave-one-participant-out validation scheme, performance was assessed in terms of the area under
the receiver operating characteristic curve (AUROC) and the area under the precision recall curve
(AUPR). The best model achieved an AUROC ≥0.87 for every held-out participant and an AUPR
4-20 times the incidence rate of LOB events. Such models could be used to filter large datasets prior
to manual classification by a trained healthcare provider. In this context, the models filtered out at
least 65.7% of the data, while detecting ≥87.0% of events on average. Based on the demonstrated
discriminative ability to separate LOBs and normal walking segments, such models could be applied
retrospectively to track the occurrence of LOBs over an extended period of time.

Keywords: loss of balance; activity recognition; body sensor networks; event detection; gait recogni-
tion; machine learning; wearable sensors

1. Introduction

Falls place older adults at high risk of injury [1] and are among the leading causes
of death [2] and non-fatal injury [3,4]. However, their occurrence is relatively rare [5].
Thus, capturing fall events to assess fall risk requires long periods (weeks to months) of
monitoring. In contrast, losses of balance (LOBs) occur more frequently than falls and are
associated with increased fall risk. Among older adults, most falls occur while walking
and are often initiated by slips and trips [6]. LOBs can be defined as events “that would

Sensors 2021, 21, 4661. https://doi.org/10.3390/s21144661 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-5418-1087
https://orcid.org/0000-0001-6605-3293
https://orcid.org/0000-0001-6544-2764
https://orcid.org/0000-0002-7967-6788
https://doi.org/10.3390/s21144661
https://doi.org/10.3390/s21144661
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21144661
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21144661?type=check_update&version=2


Sensors 2021, 21, 4661 2 of 13

result in a fall if sufficient recovery mechanisms were not activated” [7]. Quantifying and
characterizing these LOBs can be useful in assessing fall risk and in guiding interventions
to prevent falls [8].

Most fall risk studies to date have been performed in clinical settings and involve a
clinician evaluating intrinsic (e.g., fall history, sensory deficits, chronic illness) and func-
tional (e.g., gait and standing balance performance) risk factors [9]. However, assessments
in these controlled environments do not necessarily recreate real-world scenarios that
result in falls. Thus, this assessment approach may not directly estimate real-world fall risk.
Real-world LOBs are unanticipated and occur during various daily activities that may not
be adequately recreated in laboratory settings [10–12]. For instance, while LOBs frequently
occur during gait, gait characteristics among older adults have been shown to differ in
the real world from those evaluated in laboratory settings [13,14]. Scripted LOBs typically
exhibit stereotypical responses that are easier to identify, while real-world events possess
more variable, “messier” characteristics. Real-world datasets are also typically large and
thus more challenging to analyze.

Adaptation of clinical and laboratory fall risk assessment measures to estimate real
world LOBs and falls are generally limited. At a high level, current LOB assessment
approaches fall into two main categories: (1) methods relying on observations of func-
tional gait assessment and the individual’s recollection of fall occurrence and (2) methods
leveraging sensors to quantify and detect balance deficiencies, near-falls, and falls.

An individual’s recollection of fall or LOB occurrences may be convenient because the
method does not require any equipment. However, assessments based on recollection of
fall history present challenges in terms of their accuracy as they rely on the individual’s
memory and subjective judgment [15]. Typical balance and gait observational functional
assessments cannot be easily automated due to the need for human instruction and data
collection. Sensors, however, can be used to measure kinematic data that can be indicative
of balance decrements, LOBs, and falls while an individual performs conventional func-
tional assessment tests (e.g., Romberg test and timed-up-and-go test), follows a scripted
protocol [16,17], or receives a perturbation to simulate an LOB event [18]. While these
approaches leverage technologies to extract objective measures of balance and fall risk,
they do not currently capture the real-world fall risk of individuals, as measurements are
only taken during scripted tasks. Wearable sensors offer an opportunity to apply these
approaches to capture individuals’ gait and balance during daily activities. Accordingly,
we used data from a sensor-based approach to quantify real-world LOB events during daily
activities [19] and sought to apply machine learning (ML) to automate the identification of
these events.

While ML has been successfully applied to data from wearable sensors to automatically
detect falls [20,21], few studies have applied ML on datasets that included LOBs that did
not result in a fall. Among the studies that have captured LOB events using IMU data,
21 or fewer LOB events were captured in each study and all events occurred during
laboratory-based scripted protocols or treadmill gait trials [22,23]. While these studies
report promising levels of accuracy, all were based on datasets collected under scripted
and controlled laboratory settings. Alternative approaches involving ML methods for
detecting LOB events have relied on other types of sensors, such as plantar force insoles,
EEG sensors, radar, and vision-based methods [24–27]. IMUs offer multiple benefits over
these alternative sensors. For example, IMUs are widely available, consume minimal power,
are easily integrated into handheld/wearable electronics (e.g., phones, smartwatches), can
measure multiple body segments, and are not affected by field-of-view restrictions, thus
lending themselves to real-world applications outside of controlled settings.

As a preliminary step toward developing automated methods for detecting LOBs in
large, real-world datasets (and ultimately, assessing real-world fall risk) in community-
dwelling older adults, we used real-world data and a data-driven approach to develop,
train, and test models capable of identifying real-world LOBs during daily activities in
at-fall-risk older adults.
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2. Materials and Methods
2.1. Overview

An overview of the data collection and data analysis flow is shown in Figure 1. We
collected IMU data from at-fall-risk community-dwelling older adults. Participants were
instructed to don a set of three IMU sensors, one on each foot and one on the lower
trunk while they carried out their daily activities and reported the occurrence of LOBs in
near-real time through a voice-recording device over a period of 2 weeks [11]. Using the
IMU data with time-stamped LOB events, we extracted kinematic features representing
participants’ movements throughout the day and applied ML techniques to build classifiers
for automatically identifying LOB events. In contrast to other studies that solely included
handpicked and pre-selected samples of data when validating models [22,23], we used the
entirety of the data collected for any day during which there was an LOB event reported
over the 2-weeks period for each participant. Finally, we evaluated the performance of
these models by testing them on held-out data for one participant at a time.
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Figure 1. Overview of methods. Kinematic data were collected via wearable IMUs and used to
extract relevant features. LOB events were reported and time-stamped to create true labels in the
dataset. ML models were trained using leave-one-out cross-validation to automatically label LOB
events based on kinematic features. Model performance was evaluated with respect to the AUPR
and AUROC.

2.2. Data Collection
2.2.1. Study Cohort

Eight community-dwelling older adults (three females, five males, aged 69 to 82 years)
with the ability to ambulate independently in the community, no physical activity con-
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traindications, and at least one of the following inclusion criteria conferring fall risk
participated in the study: a history of ≥2 falls in the past 6 mo, a history of an injurious
fall in the past 6 mo, or self-reported balance difficulties [11]. Exclusion criteria included
the use of a walker (which might alter the LOB pattern dramatically) or cognitive deficits
(Montreal Cognitive Assessment score <24/30 [28]). All participants provided written
informed consent. The study protocol was reviewed and approved by the University of
Michigan Institutional Review Board (HUM00086479).

Study participants were equipped with a set of three wearable IMUs (Opal, APDM
Inc., Portland, OR, USA; synchronized 128 Hz sampling). The IMUs measured linear
accelerations and angular rates along the mediolateral (y-axis), anteroposterior (x-axis),
and longitudinal (z-axis) axes. Participants were asked to wear the IMUs on their feet
and lower back throughout the day, as they performed real-life, unscripted daily activities.
Participants used a wrist-mounted, watch-sized voice recorder (Sansa Clip Zip 8 GB MP3
player, with a custom version of the RockBox open source firmware) to indicate when an
LOB occurred and to describe the context of the event. The recorder was programmed to
only record time- and date-stamped voice data for up to 2 min when a single button was
pressed. The recorder, synchronized to the IMUs at the onset of each participant’s period of
home wear, retained synchrony to within approximately 1 min per month and maintained
battery power for the study duration.

2.2.2. Outcome

Participants were instructed to report all LOBs (e.g., slips, trips) throughout the data
collection period regardless of whether an LOB resulted in a fall, using a voice-recording
device. During post-processing, the LOB events were cross-referenced and confirmed by a
physical therapist based on foot velocity analysis and 3D animation kinematic reconstruc-
tion of the movements using the IMU signals collected [11].

2.3. Data Segmentation and Processing
2.3.1. Data Segmentation

To establish the datasets for training and testing our ML models, IMU time series data
for each day of data collection (a day of data collection lasted 11.4 ± 1.8 h) during which at
least one LOB event was reported were segmented into short 10 s overlapping blocks such
that each two consecutive blocks had a 2 s time difference (see Figure 2).

All LOB events in the dataset lasted less than 7 s, with most lasting 1–3 s. Thus, a 10 s
segment with a 2 s stride ensured that every LOB occurred during at least one segment in
its entirety. The sliding window segmentation approach did not rely on a priori knowledge
of the event and ensured a variety of training and testing examples; e.g., some included
LOB events near the beginning of these 10 s windows, some near the middle, and some near
the end. The chosen window length could also be used for long LOB events that exceeded
8 s in duration (i.e., the overlap length between two consecutive windows), except that
any single window would then only capture a portion of such a long event; we did not
need to investigate these scenarios since we did not have any long LOB events in our data.
For each 10 s window, we extracted the features (classifier input) and a binary LOB label
(classifier output) described below in the Extraction of IMU-Derived Features and LOB
Labels sections and subsequently built a ML model to map from the inputs to the outputs.

2.3.2. Extraction of IMU-Derived Features (Inputs)

We used custom algorithms to integrate six-dimensional raw IMU sensor data (gy-
roscopes and accelerometers) to obtain foot orientation, velocity, and position using zero-
velocity updates (ZUPT) to correct for sensor drift as described in Ojeda et al. [29,30]. Using
foot trajectories, we determined individual strides and timing information and computed
several common gait parameters (e.g., stride length, stride time) [31,32]. For each 10 s
window, we extracted 32 features from the IMU data. Since the IMU data were collected
in unscripted, real-world settings and included various activities other than gait, we first
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extracted a gait/no gait feature. We included a gait indicator feature since LOB events often
arose from trips and slips during gait. A gait determination was assigned to each segment
if it contained five or more strides longer than 0.1 m, where footfalls were detected based on
foot velocities, assuming that the feet came to rest during the stance phase. This condition
was defined based on reference gait parameter data for healthy participants ranging in
age between 10 and 79 years [33]. The validity of this gait indicator was assessed visually
to confirm that it correctly indicated walking segments. In addition to the gait indicator
feature, we extracted 31 additional gait metrics corresponding to the total distance traveled,
stride time, stride length, trunk angles, and angular velocities (Table 1).
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Table 1. Descriptive features extracted from kinematic IMU data.

Feature Definition Variables

Gait Binary value (=1 if at least
5 strides of length >0.1 m) IS GAIT (Binary)

Walked distance (m) Total distance traveled in the
horizontal plane GAIT DISTANCE (Total)

Stride length (m)

Distance traveled in the
horizontal plane between

two consecutive footfalls of
the same foot

SL MAX (maximum),
SL MIN (minimum),
SL MEAN (mean),

SL MEDIAN (median),
SL IQR (interquartile range),

SL VAR (variance),
SL RMS (root mean square)

Stride time (s)
Time elapsed between

two consecutive footfalls of
the same foot

ST MAX, ST MIN,
ST MEAN, ST MEDIAN,
ST IQR, ST VAR, ST RMS

Foot velocity (m/s) Magnitude of foot velocities
for both feet (left and right)

RF MAX VEL, RF MEAN VEL
LF MAX VEL, LF MEAN VEL

Peak/Swing foot
velocity (m/s)

Peak foot velocity magnitude
for each foot (left and right) at
every stride corresponding to

swing phase

RS MAX VEL, RS MEAN VEL,
RS MIN VEL LS MAX VEL,

LS MEAN VEL, LS MIN VEL

Trunk angles (deg) Angular sway in the pitch and
roll directions

TRUNK RMS PITCH
TRUNK RMS ROLL

Trunk angular
velocities (deg/s)

Angular velocities in the pitch
and roll directions

TW RMS PITCH
TW RMS ROLL

TW RANGE PITCH
TW RANGE ROLL

2.3.3. Extraction of LOB Labels (Outputs)

Each 10 s segment was assigned a positive LOB label (LOB = 1) if it overlapped with an
identified LOB event either partially or completely. Otherwise, the segment was assigned a
non-LOB label (LOB = 0).

2.4. Loss-of-Balance Classification Task

Using a leave-one-participant-out framework, we learned a mapping from the 32 IMU
data features (inputs) to LOB labels (outputs) for each segment. Given a new segment
of IMU data, this type of model could automatically estimate whether an LOB event
had occurred.

2.4.1. Model Architecture

Two model architectures were implemented and compared: (1) regularized logistic
regression and (2) bi-directional long short-term memory (BiLSTM) [34,35].

Regularized logistic regression models are commonly used for binary classification
tasks as they are easy to implement and interpret and efficient to train. BiLSTM is a
type of recurrent neural network well suited for sequence data and a close relative to the
well-recognized long short-term memory (LSTM) network. An LSTM network processes
sequential data in the forward direction and makes classification decisions using informa-
tion only from preceding times. In contrast, a BiLSTM network processes sequential data
in both the forward and reverse directions, capturing meaningful trends or indicators of an
LOB that either succeeded or preceded the actual event. Features describing recent LOB
recovery could be as useful as features describing an imminent LOB. Therefore, outputs
from both the forward and backward BiLSTM layers were concatenated before going
through a dense layer to make the final prediction. This model architecture was highly
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parameterized, and the degree of complexity was expressed in terms of cells, with the
number of parameters being proportional to the number of cells. The complete pipeline is
shown in Figure 3. This approach imposed that the automatic classification model account
for up to 20 s of data following an LOB due to the 5-strided windows of 10 s that came
after the earliest-possible LOB. Although this approach would make near-real-time LOB
detection challenging, the delay associated with this approach did not negatively affect the
model’s usability in the context of a posteriori fall risk assessment.
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predicted label ŷt at time t shown in a green box. The BiLSTM model (parameters shown in blue boxes) used the five time
steps both before and after the LOB. The memory of previous time steps was stored as CT, and predictions from previous
time steps were stored as HT. Both of these information streams were passed to the next recurrent cell, either forward (F) or
backward (B), and this accounted for contextual information at each time step. The linear model made use of the same
features but in a flat vector (Xt−5, Xt−4, . . . , Xt+4, Xt+5), resulting in 374 features.

2.4.2. Training Details

We set up our training and testing cases following a leave-one-participant-out scheme
in order to assess the generalizability of our models across different participants. First,
we created eight separate leave-one-participant-out test cases—that is, each test case had
one of the eight participants’ data designated as the testing set, while the remaining seven
were used for training and cross-validation. Then, in each of these sets of seven, leave-one-
participant-out cross-validation was carried out to aid hyperparameter selection, where now
one of the seven participants’ data were left out for cross-validation, while training was
performed on the remaining six. For both testing and cross-validation, we split the data
based on participants such that no participant appeared in both training and validation.
Failure to do so could have resulted in the model simply learning to memorize individual
participants, which would be of little clinical value.

Training was performed by minimizing the binary cross-entropy loss using the Adam
optimizer [36] with a learning rate of 0.0001. The hyperparameters investigated included
L1 and L2 regularization parameters for both logistic regression and BiLSTM models
(10−5, 10−4, 10−3, 10−2, 10−1) and the number of cells (2, 5, 10) of the BiLSTM model (i.e.,
the complexity of the model and how many parameters were learned). During training, we
repeatedly up-sampled LOB events to aid with class imbalance. This data augmentation
technique improved the class imbalance of LOB:non-LOB labels from approximately 1:1520
to 1:1 and helped prevent models from simply always predicting the majority class. BiLSTM
models with the above settings were trained for 50 epochs, and the best hyperparameters
were selected based on the lowest cross-validation loss. After cross-validation, our final
models were trained with the best hyperparameters: L1 and L2 regularization of 0.01 and
10−5, respectively, for logistic regression, and L1 and L2 regularization of 0.1 and 0.001,
respectively, for the BiLSTM with two cells.
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2.4.3. Evaluation Details

Since the distribution of classes was highly unbalanced (ratio of labels LOB:non-LOB
was approximately 1:1520 windows in our case), an accuracy measure would be misleading
(e.g., without any training, a constant classifier always predicting non-LOB would still
achieve an accuracy of >99% for this study). Instead, we evaluated our models using the
areas under the receiver operating characteristic curve (AUROC) and the areas under the
precision recall curve (AUPR). The AUROC measures the performance trade-off between
the true-positive and the false-positive classification rate. A random classifier based on
the prevalence of the positive label would have an AUROC of 0.5, and a perfect classifier
would have an AUROC of 1. The AUPR measures the performance of the classification
precision (i.e., positive predictive value) relative to the classification recall (i.e., sensitivity).
A random classifier would have an AUPR equal to the incidence of the true label, and a
perfect classifier would have an AUPR of 1. For each test dataset, empirical confidence
intervals were calculated using 200 bootstrapped samples.

In addition to reporting classification performance with respect to individual 10 s
windows, we also reported overall data reduction, sensitivity, and precision at the event
level for a 0.5 classification threshold. Overall data reduction was calculated by dividing
the number of negative predictions by the number of windows in the dataset. At the event
level, we defined a true positive as an LOB event for which our model predicted an LOB
for at least one overlapping window (i.e., we had at least one alarm for that LOB event).
Sensitivity was calculated by dividing the number of true positives by the number of LOB
events. Precision was calculated by dividing true positives by all positive predictions.
These metrics were chosen because they conveyed the model performance in a manner
that was more directly useful to practitioners.

2.4.4. Feature Importance

Furthermore, we performed a feature permutation importance analysis to determine
whether any of the features in the dataset influenced the best model’s performance more
than others. Deep neural networks, including BiLSTM, are not easy to interpret based on
model parameters alone. We thus used permutation importance to test which feature, if
swapped with the corresponding feature of different segments (with potentially different
labels), yielded the greatest increase in model error. We implemented permutation impor-
tance measuring the change in both the AUROC and the AUPR when certain features were
randomly shuffled between different segments, and then reported the final importance
rank [37]. One limitation to this analysis was that permutation importance did not recog-
nize feature redundancy. For example, if the same information was present among several
correlated variables, the resulting feature importance might have been dampened because
those same data remained intact in the correlated, non-permuted feature. We instead used
the covariance matrix of the different covariates to identify groups of correlated features
and permuted them together. Thus, rather than focusing on individual features, we opted
for better information regarding the importance of highly independent feature groups [37].
By identifying block patterns in the feature covariance matrix, we split the 34 features into
six groups: walked distance, stride length, stride time, trunk angles and angular velocity,
swing and foot velocity, and the gait indicator. Variables in the same group were shuffled
together during the permutation importance computation.

3. Results

Table 2 summarizes the number of days where at least one LOB event was observed,
and the number of LOB events detected for each study participant. In total, 62 LOB
events were identified based on voice recordings by the participants and verified via visual
inspection of the signals by the study team.



Sensors 2021, 21, 4661 9 of 13

Table 2. Number of LOB events for each participant.

Participant ID Number of Days with
Observed LOB Events Number of Reported LOB Events

S 1 10 23
S 2 5 8
S 3 1 1
S 4 1 2
S 5 5 18
S 6 3 3
S 7 2 2
S 8 4 5

Total 31 62

The testing results for the final logistic regression model and the BiLSTM model are
reported in Tables 3 and 4.

Table 3. Test AUROC values for each held-out participant.

Logistic Regression Model BiLSTM Model

Participant ID AUROC (95% CI) AUROC (95% CI)

S 1 0.815 (0.659, 0.929) 0.911 (0.887, 0.938)
S 2 0.802 (0.621, 0.937) 0.902 (0.878, 0.927)
S 3 0.788 (0.627, 0.918) 0.948 (0.916, 0.970)
S 4 0.808 (0.657, 0.938) 0.942 (0.907, 0.977)
S 5 0.735 (0.575, 0.920) 0.874 (0.843, 0.915)
S 6 0.816 (0.615, 0.934) 0.906 (0.842, 0.950)
S 7 0.738 (0.550, 0.908) 0.892 (0.859, 0.927)
S 8 0.778 (0.599, 0.936) 0.946 (0.935, 0.958)

Table 4. Test AUPR values for each held-out participant.

Logistic Regression Model BiLSTM Model

Participant ID Incidence Rate AUPR (95% CI) AUPR (95% CI)

S 1 0.066% 0.006 (0.002, 0.009) 0.004 (0.003, 0.006)
S 2 0.061% 0.004 (0.001, 0.008) 0.004 (0.002, 0.009)
S 3 0.037% 0.004 (0.001, 0.008) 0.004 (0.002, 0.0057)
S 4 0.131% 0.004 (0.001, 0.008) 0.030 (0.007, 0.101)
S 5 0.161% 0.003 (0.001, 0.006) 0.005 (0.003, 0.006)
S 6 0.036% 0.005 (0.002, 0.009) 0.011 (0.002, 0.041)
S 7 0.028% 0.003 (0.001, 0.006) 0.005 (0.003, 0.008)
S 8 0.037% 0.004 (0.001, 0.008) 0.005 (0.003, 0.010)

For each test set, one study participant was held out, and we reported AUROC and
AUPR scores to evaluate the performance of the models on each testing set. The relatively
sparse occurrence of LOB events recorded in the data was reflected through the incidence
rates reported in Table 4. The BiLSTM model outperformed the linear model in terms of
the AUROC (p < 0.01), but performance benefits in terms of the AUPR were less significant
(p = 0.07). In terms of the AUROC, BiLSTM performed consistently when testing across
all participants, whereas the linear model occasionally outperformed BiLSTM by a small
margin for some participants only to underperform BiLSTM by much wider margins for
other participants.

For the BiLSTM model, overall data reduction, event-level sensitivity, and precision
at a 0.5 threshold are reported in Table 5. The lowest average sensitivity score across all
test cases was 87.0%, although most of them were greater than 90%. While these are the
average sensitivity scores across multiple cross-validation trials, lower individual scores
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were observed for some trials, as reflected by the confidence intervals. We adopted the
0.5 threshold for this analysis as a reasonable demonstration, although it may be further
optimized to achieve desirable goals (e.g., to reach a certain sensitivity or precision target).

Table 5. Overall data reduction, sensitivity, and precision values for each held-out participant for the
BiLSTM model.

Participant ID Overall Data
Reduction (95% CI) Sensitivity (95% CI) Precision (95% CI)

S 1 91.1% (89.7, 92.0) 87.0% (82.3, 90.9) 0.46% (0.37, 0.56)
S 2 68.0% (54.0, 72.6) 98.8% (95.8, 100) 0.18% (0.13, 0.23)
S 3 78.5% (62.0, 83.7) 100% (100, 100) 0.16% (0.08, 0.28)
S 4 84.7% (74.5, 86.9) 98.0% (93.4, 100) 0.81% (0.43, 1.21)
S 5 67.2% (52.3, 77.7) 98.7% (96.6, 99.7) 0.52% (0.44, 0.63)
S 6 85.5% (78.6, 89.6) 89.5% (83.1, 95.9) 0.21% (0.11, 0.31)
S 7 70.9% (55.8, 80.7) 100% (100, 100) 0.31% (0.23, 0.39)
S 8 91.0% (87.8, 92.9) 98.1% (93.2, 100) 0.39% (0.28, 0.54)

For the BiLSTM model, the feature permutation importance of the feature groups
included in the model varied based on the performance metric relative to which the ranking
was calculated. Walked distance, stride length, and trunk angles and angular velocities
were most important relative to the AUROC. Stride time, gait indicator, and stride length
features were most important relative to the AUPR.

4. Discussion

Both BiLSTM and linear logistic regression models were able to successfully learn to
identify LOB segments based on the kinematic dataset used, as reflected through AUROC
scores exceeding 0.87 for the BiLSTM model and AUPR scores exceeding the incidence rate
of LOBs for all test sets (for both models). The BiLSTM model outperformed the linear
model based on test AUROC scores for all held-out participants, as shown in Table 3, and
AUPR scores for most held-out participants, as shown in Table 4.

Reported feature permutation importance results reflected the kinematic characteris-
tics of LOB events detected through the automatic classification models developed. The
ranking of feature groups varied depending on the metric used to assess permutation im-
portance. In the case of the AUROC, features relating to walked distance, stride length, and
trunk rotations were of the most importance, whereas in the case of the AUPR, stride time,
gait indicator, and stride length were most important. The observed variability may have
indicated that the model learned from all of these feature groups as they all contributed to
enhancing at least one of the performance scores calculated. These findings agreed with
the characteristics of LOB events described in previous observational studies by Ojeda
et al. [19] and Handelzalts et al. [11], where scenarios of compensatory trunk rotations and
shorter strides were noted from wearable IMU data when participants slipped or tripped
in real-world settings.

The AUPR scores computed through these analyses reflected a trade-off between
precision and recall. Although the models learned to separate the two classes (LOB vs. non-
LOB), they did not do so precisely; i.e., depending on the model, false-positive predictions
occurred 100-500 times more often than true-positive predictions. The low precision results
suggest that these models would not lend themselves to use-case scenarios involving the
real-time detection or prediction of LOB events in real-world settings due to the high rate
of false positives. Overall data reduction, event-level sensitivity, and precision, as reported
in Table 5, further highlighted the models’ performance at identifying true LOB events as
well as the challenges presented in terms of precision due to the high rate of false positives.
The high sensitivity rates indicated that the models captured nearly all LOB events, while
the overall data reduction values implied that significant portions of data (65.7–90.8%)
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were automatically filtered to greatly reduce the human effort of a posteriori analysis that
targets only LOB events.

Based on the findings, the use of such models is better suited as an initial filter to reduce
large datasets collected via wearables in real-world environments to smaller, more man-
ageable datasets to support post-data collection analysis. As wearable sensing technology
has evolved, there have been increased opportunities to transition from laboratory-based
simulated LOB studies to real-world studies; however, barriers exist to fully leveraging
potential real-world datasets, because current analysis methods require labor-intensive
data segmentation approaches to identify likely LOB events [21–23]. The results from this
study suggest that the developed models could eliminate up to 90% of data segments and
facilitate more efficient search strategies for LOB events. Furthermore, due to the high
sensitivity scores of these models, few LOBs would be eliminated as false negatives.

LOB events are inherently a rare occurrence during daily activities, although much
more common than fall occurrence (only one fall was noted in this cohort). Due to the
limited number of LOB events identified in the dataset, the models developed were built
on a heavily skewed or unbalanced dataset, with an incidence of roughly 1:1520 positive-to-
negative class labels. The up-sampling methods used were one attempt to partially address
this issue. The use of a dataset with more incidents of LOBs should help improve the
performance and generalizability of the models developed, despite the inherent imbalance
between the two classes.

The results presented in this study underline the difference in difficulty between auto-
matically detecting LOBs within laboratory versus real-world environments. In contrast
to other studies that solely included handpicked and pre-selected samples of data when
validating models [22,23], we used the entirety of the data collected from several days of
daily activities that included LOB events for any given participant throughout the data
collection period. In laboratory-based treadmill or over-ground studies involving scripted
protocols, high (>0.85) sensitivity and specificity have been achieved through automatic
binary classification, as reported by Weiss et al. [22] and Aziz et al. [23]. In the case of un-
scripted, real-world LOBs, however, we observed a significant drop in specificity due to the
high rate of false positives detected by the models presented. Similar challenges have been
reported when detecting falls, despite the more prominent kinematic features associated
with falls in comparison with LOB events. Chaudhuri et al. [38] evaluated the real-world
performance of a commercial fall detection wearable device whose manufacturer reported
high specificity (>0.92) and sensitivity (>0.94) on laboratory-based validation data. In their
findings, Chaudhuri et al. reported a much lower real-world sensitivity (<0.25) and low
precision (<0.02). In another study, Palmerini et al. [39] attempted to address this challenge
by training and testing a fall detection ML model on real-world datasets and were able to
achieve higher sensitivity (>0.80) and precision (>0.53). The precision achieved, however,
still fell short of the requirements of a real-world fall detection/alert system due to the
high rate of false positives. These findings highlight the importance of training models
on real-world datasets to optimize the performance of automatic event detection in the
real world.

The primary limitations of this study were the limited number of LOB events and
the lack of objective ground-truth data. This dataset included 62 LOB events, and the
LOB event labels were based on participants’ voice recordings noting when a near-fall
occurred and visual inspection of the kinematic data by study team members. Therefore,
it is possible that some LOB events may have been unreported. Additional limitations
included the small number of study participants; a larger number of study participants is
likely needed to generalize our findings. In addition, by only including periods of data
collection (days) during which LOB events were reported by study participants, the dataset
used in this analysis did not capture the real incidence rate of LOB events over the 2-week
data collection period.

This preliminary study demonstrated the use of an automatic LOB detection algorithm
for real-world, unscripted daily-activity datasets. While the currently reported models
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showed good separability of the two examined classes (LOB and non-LOB), they presented
challenges in terms of precision. Future work should incorporate datasets with additional
LOB events in real-world settings with additional forms of ground-truth data.
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