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Abstract: This paper presents a camera-based vessel-speed enforcement system based on two cameras.
The proposed system detects and tracks vessels per camera view and employs a re-identification
(re-ID) function for linking vessels between the two cameras based on multiple bounding-box images
per vessel. Newly detected vessels in one camera (query) are compared to the gallery set of all vessels
detected by the other camera. To train and evaluate the proposed detection and re-ID system, a
new Vessel-reID dataset is introduced. This extensive dataset has captured a total of 2474 different
vessels covered in multiple images, resulting in a total of 136,888 vessel bounding-box images.
Multiple CNN detector architectures are evaluated in-depth. The SSD512 detector performs best
with respect to its speed (85.0% Recall@95Precision at 20.1 frames per second). For the re-ID of
vessels, a large portion of the total trajectory can be covered by the successful detections of the SSD
model. The re-ID experiments start with a baseline single-image evaluation obtaining a score of
55.9% Rank-1 (49.7% mAP) for the existing TriNet network, while the available MGN model obtains
68.9% Rank-1 (62.6% mAP). The performance significantly increases with 5.6% Rank-1 (5.7% mAP)
for MGN by applying matching with multiple images from a single vessel. When emphasizing more
fine details by selecting only the largest bounding-box images, another 2.0% Rank-1 (1.4% mAP) is
added. Application-specific optimizations such as travel-time selection and applying a cross-camera
matching constraint further enhance the results, leading to a final 88.9% Rank-1 and 83.5% mAP
performance.

Keywords: computer vision application; video surveillance; maritime traffic management; vessel
detection; vessel re-identification

1. Introduction

Water authorities are interested in vessel-speed enforcement systems, because of the
necessity to bound Maritime traffic to speed regulations. The main motivation is safety,
especially in areas where tourist and commercial vessels share the waterways. Higher
waves generated by speeding vessels can cause safety risks for other waterway users and
induce dangerous currents for swimmers or small vessels. In addition, these waves create
an increase in water displacement, which results in increased erosion of the shoreline and
structures in the water such as bridges and jetties.

Although commercial vessels have an incentive to take on higher speeds, because of
cargo delivery times, they have measurement sensors aboard and they broadcast their ship
ID, speed and location in a regular interval over the Automatic Identification System (AIS)

Sensors 2021, 21, 4659. https://doi.org/10.3390/s21144659 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0835-202X
https://orcid.org/0000-0002-6047-9143
https://orcid.org/0000-0001-8837-3976
https://doi.org/10.3390/s21144659
https://doi.org/10.3390/s21144659
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21144659
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21144659?type=check_update&version=4


Sensors 2021, 21, 4659 2 of 31

radio system. This information is directly used for law enforcement because it provides
accurate measurements in all weather conditions over a large range. Recreational vessels
do not have such a system, rendering them invisible to law enforcement, and should be
speed-monitored in a different way. The availability of these data thus depends on the
willingness of commercial vessels to transmit such data to harbor authorities. Therefore,
for law enforcement, it is attractive to install a visual sensor system for speed measurement
of vessels in general.

Multiple systems exist for vessel detection in optical satellite images (survey by
Kanjir et al. [1]), however, live satellite images are not always available. Camera surveillance
systems are being deployed for vessels, but their installation is limited to sluices and
important junctions of waterways or cargo loading areas, which are mostly individual
systems with local installation without any speed measurement. To this end, we investigate
a novel camera-based system for the application of vessel speed enforcement on waterways.
Local speed measurement in a single camera view is difficult and requires accurate camera
calibration and accurate position estimation of the moving objects, and is sensitive to small
camera movements from wind. Therefore, speed measurement is typically performed over
a longer trajectory.

In automobile traffic applications, the average speed of vehicles over a longer trajec-
tory is typically implemented using re-identification between two sensor locations using
embedded licence plate recognition. In contrast to vehicles, vessels do not have well-
defined licence plates or other common visual registration markers. However, most vessels
are unique based on their overall appearance, since there are many different vessel types,
and the arrangement of bows, cabins or various other details such as flags or buoys, makes
their appearance more unique. Therefore, vessel images captured at different camera
locations, which enable to make a unique signature of the vessel appearance including the
previously mentioned details, potentially allow re-identification of unique vessels. The
previous description motivates the use of a water-side camera system which is suited for
vessel re-identification.

This solution poses several challenges such as the fluctuating weather conditions,
highly dynamic lighting conditions due to the constantly moving water surface, and
occlusions between vessels. Another challenge is the large variation in vessel sizes, since
vessels vary from small rowing boats to large barges of more than 100 m in length, covering
the entire camera image.

In this paper, we propose a camera-based system that measures vessel speeds by
detecting and linking vessels with two water-side cameras, placed several kilometers apart.
The system detects and tracks vessels within each individual camera view. Then, vessels
are linked from one camera to the most similar historic vessel images in the other camera
by a re-identification system (further referred to in this paper as re-ID system). When a
vessel is recognized and linked in both cameras, its speed is determined using the travel
time compared to the distance between the two cameras. The distance between the cameras
is known and the two systems are time-synchronized. Therefore, if a vessel is correctly
recognized and linked in both cameras, its computed speed computation is accurate, and
an additional validation of the estimated speed values is not performed. We specifically
investigate three aspects of the vessel re-identification problem: (1) vessel detection and
tracking in a single camera, (2) re-ID of vessels based on their visual appearance between
two cameras, and (3) the creation of an image dataset required for training the recognition
algorithms. The challenges for developing a camera-based re-ID system are multifold. First,
the re-ID concepts for regular traffic participants have been evaluated successfully, but such
re-ID has never been confirmed for vessel detection systems. Second, as already indicated,
it is not sure whether the visual appearance properties forms a sufficiently unique pattern
to perform re-ID with a high reliability. Third, the lighting and weather conditions are
highly variable on water surfaces and there is a large variation in waterway scenery. These
large variations and fluctuations may very well hamper successful usage of re-ID concepts.
Some example images of a vessel entering and leaving a canal are shown in Figure 1. Note
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that both cameras are observing vessels from different directions, which complicates the
re-ID problem but poses a realistic constraint for wide-scale deployment where physical
constraints in the scene limit the choice of camera viewing direction.

(a) Camera 1 (b) Camera 2

Figure 1. Example images of the same vessel appearing in Camera 1 (a) and 2 (b), spaced 6 km apart.

For the investigation of such a vessel re-ID system, several developments of re-ID
literature based on traffic of vehicles and persons have been presented with recent advances
in deep learning, which make it likely that the proposed techniques can be also applied
to vessel re-ID. The success of deep learning has made object detection tasks so robust
that it is plausible to assume that they will also facilitate vessel re-ID despite the large
variations. With respect to the recognition of vessels, the multi-view capturing of vessels
seems an important feature to ensure that a unique appearance representation can be
constructed. This feature will therefore be incorporated in the design of the new system.
Dataset construction for vessels has not been a major point of interest and as far as data
availability is concerned, the existing data are mainly concentrating on vessel detection
and classification, rather than other vision tasks.

The research work on the design of a vessel re-ID system has resulted in the following
main contributions.

• A novel system is presented for speed measurement of vessels that combines detection,
tracking and re-ID algorithms.

• A new dataset is created with a broad variation of vessel types and sizes to thoroughly
validate the system concept. The dataset consists of 18,388 images with 1237 vessel
trajectories that are linked between both cameras.

• Different CNN-based object detectors are compared and the training dataset on the
vessel detection accuracy is investigated.

• An innovative combination of re-ID and tracklet concepts are jointly used for high
re-ID accuracy. This total concept is well evaluated.

• A smart rule-set has been designed to improve overall re-ID performance and accuracy.
These rules are based on application constraints such as the distance between the
cameras (a-priory known) and the data characterization sharing of vessels between
the two cameras. These rules significantly improve recognition performance and
thereby the reliability of the system.

Compared to our previous work [2] presented at the VISAPP Conference (VISAPP Con-
ference 2020, Valetta, Malta, http://www.visapp.visigrapp.org/ (accessed on 5 July 2021)),
we have extended our experiments for detection by comparing with two other datasets
and comparing different detection models. Furthermore, the re-ID experiments have
been extended by including an additional re-ID model, several new extensions to our
trajectory-based re-identification and an execution-time analysis.

The remainder of the paper is divided as follows. Section 2 introduces related work
for all components of our system. Next, Section 3 describes the proposed system. The
dataset used for the experiment is presented in Section 4. The experimental validation

http://www.visapp.visigrapp.org/
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of the proposed system is divided in the evaluation of the vessel detection performance
in Section 5 and the re-identification performance in Section 6. The paper finalizes with
conclusions in Section 8.

2. Related Work

The proposed application consists of a complete pipeline for visual detection and
re-identification of vessels. Limited work is available for vessel-speed enforcement with
surveillance cameras.

2.1. Application-Oriented Work

One particular system is ARGOS [3], a vessel-traffic monitoring system in the city
of Venice. This system employs surveillance cameras with slightly overlapping views,
mounted high above the waterway. The authors employ background modeling for detec-
tion and tracking of all vessels.

The work of Qiauo et al. [4] concentrates on unrestricted detection, tracking and re-ID
of moving vessels, to recognize other vessels in their surroundings. They use a CNN-based
detection model [5] and apply sensor fusion and a re-ID algorithm to achieve accurate
vessel tracking in their surroundings. The authors show that detection, tracking and re-ID
is feasible for vessels, although they use re-ID only within a single camera view to improve
the tracking algorithm. Ghahremani et al. [6] also successfully employ vessel re-ID within
a single camera view.

The main components of our envisioned speed enforcement system are vessel de-
tection and re-identification of vessels in non-overlapping camera views. Therefore, we
discuss also related work on detection and re-identification in the following subsections.

2.2. Vessel Detection

In the generic field of visual object detection, state-of-the-art performance is achieved
by Convolutional Neural Networks (CNNs). There are two main groups of CNN detection
techniques. The first group splits the problem into a region proposal and a refinement
stage. The region-proposal stage proposes bounding boxes that possibly contain an ob-
ject of interest. These proposals are refined and classified into categories by the second
stage [7]. These stages are combined into a single CNN [8,9] and can even perform instance
segmentation in the refinement step [10]. The other common group of CNN detection
techniques skips the region proposal step and estimates bounding boxes directly from the
input image. Examples of such detectors are YOLO [11,12], Single Shot Multibox Detector
(SSD) [13] and Fully Convolutional One-Stage Object Detection (FCOS) [14]. All detection
systems use a baseline CNN architecture with an additional detector head to convert
features into object bounding boxes. YOLO uses the top feature map to directly predict
bounding boxes for each cell in a fixed grid. SSD extends this concept of using anchor
boxes at the topmost feature map by adding anchor boxes with multiple aspect ratios
and detector heads at several scaled versions of the top feature map. These anchor boxes
serve as hyperparameters which are refined by estimating offsets compared to these boxes.
FCOS adds a feature pyramid and proposes to avoid the use of anchor boxes altogether.
For each feature layer element, it estimates a 4D vector that encodes the pixel-location of
a bounding box at that feature layer. This results in more simple loss functions and less
post-processing during inference. The computational complexity is higher than the other
detectors due to the additional feature pyramid. Early work in detection of vessels uses
handcrafted features and motion analysis [15,16]. However, at present CNN networks have
proven consistently to outperform handcrafted features. Prior work by Zwemer et al. [17]
shows that the SSD detector is robust against large-scale variations of vessels. We select the
SSD detector for our application because of the relatively low computational requirements
and high accuracy that has been proven for the vessel detection problem. However, for
comparison purposes, we also evaluate the performance of YOLO, FCOS and Faster-RCNN
implementations for our application.
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2.3. Vessel Re-Identification

Related work for re-identification is mainly focused on the domain of person re-
identification and we have not found any literature that specifically targets vessel re-
identification. However, for the re-identification of road vehicles, recent work evaluates the
performance of state-of-the-art re-ID algorithms [18], showing that these re-ID algorithms
generalize to other domains. Re-ID systems for persons typically use a CNN architecture
based on a ResNet-50 backbone, which is pre-trained on ImageNet. Considering that
ImageNet has many classes, including persons, cars, trains, etc., it is expected that these
re-ID algorithms do generalize well to other domains.

In the last decade, visual re-ID performance has been significantly improved by
including aspects of recent developments in CNNs [19] and can be divided in two main
techniques: pairwise verification and metric embedding. Pairwise verification networks
are typically Siamese networks [20] that are trained on image pairs and try to estimate if
the two images correspond to the same object. These networks learn to increase the feature
distance between two different objects from their images, while decreasing the distance
for two images of the same object. Alternatively, metric embedding networks consider
so-called (image) triplets that are generated for each considered image in the training set
(the anchor image). A triplet is constructed from the anchor image, an image from the
same object and an image from a different object. Note that the corresponding triplet
loss always simultaneously considers a matching and non-matching image pair, while
the contrastive loss of pairwise verification networks considers just one image pair [21].
As a result, metric embedding networks utilize inter-class and intra-class variances in the
resulting embedding space more efficiently. In this case, both classes with large and small
intra-class variance will be nicely separated in the embedding space.

Another advantage of using (image) triplets is its effective hard triplet mining, called
batch hard. This technique has been introduced by [21]. One of the main issues with
training re-ID networks is a strong class-imbalance between matching samples and non-
matching samples, namely all other vessels than the considered vessel are considered
non-matches. Because most samples are quite different, it is important to select the most
informative samples during training. With this batch-hard strategy, each image in a batch
becomes the triplet anchor once, and the triplets are created by selecting the hardest
matching and non-matching samples in that batch (hardest in the embedding space). Since
the batch-hard strategy selects the hardest triplets possible in a random subset of the total
training set, it provides a good balance between hard, nominal and trivial samples, which
has proven beneficial for training [21]. For these reasons, metric-embedding networks are
generally preferred and have been adopted in recent re-ID literature.

Another commonly used network-based technique is to focus on different parts of
an object, such as the head, body and legs for persons. The current state-of-the-art model
that integrates object parts is the Multiple Granularity Network (MGN) [22]. The CNN
architecture of MGN constructs three separate branches on a backbone network, each
focusing on a different partitioning of the object. The first branch considers the global
person image, the second partitions the image into two parts (upper and lower body) and
the third branch applies three partitions (head, torso, legs). In addition to the partitioning,
the MGN network is trained using both the triplet loss and cross-entropy loss. The cross-
entropy loss is typically used in training of classification networks and is added to the
triplet loss to obtain a better optimization. Intuitively, this assists in distinguishing two
different persons that are visually similar. Joint usage of these two loss functions has gained
popularity in recent re-ID work [18,23,24].

Finally, there is also interesting re-ID literature on improving the effectiveness of the
feature embeddings, by changing the matching procedure while using the same embedding
methods. For example, Zhong et al.propose to use re-ranking, which cross-matches the set
of most likely matches. More specifically, for a close match it verifies whether that image
has the query image also in its set of most likely matches. If not, it is removed from the
set of most likely matches of the current query. In previous work [25], we also refined
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the set of most likely matches for a query based on scene understanding, such as possible
paths between cameras and plausible transition times. Consequently, this results into a
significant gain in performance.

In our work, we focus on surveillance cameras with more dynamic backgrounds and
our system utilizes cameras with non-overlapping views and located several kilometers
apart. Another restriction is the required camera height to obtain a suitable birds-eye view
of the scene. In open fields, cameras would require to be mounted on high poles, resulting
in resonance and movement in the camera images, such that the output videos are not
suitable for conventional computer vision techniques. In this paper, we propose to employ
CNN-based analysis and given the related work on image triplets, we are interested in
both the computationally efficient TriNet model [21] and the more complex and higher
performing MGN model [22].

3. System Overview

The proposed system is divided in two stages (see Figure 2): camera processing,
including vessel detection in each individual camera, and vessel re-identification that links
vessels between the two cameras. The first stage performs real-time detection and tracking
of vessels. For each recognized vessel, a set of vessel image crops and a timestamp is stored
in the database and sent to the re-identification stage. These crops enable the construction
of a unique feature vector description of the vessel that embeds the visual properties. The
selection of the image crops of the same vessel positioned over a short period of time is the
input for the re-ID stage. The final selection of image crops of the same vessel is called a
tracklet of image crops (TIC). Note that the terms trajectory and tracklet refer to the same
concept in this paper. The re-identification stage then checks if this vessel has also been
recognized by the other camera, by evaluating all images stored in the gallery dataset of
the other camera. All possible visually matching vessels are then evaluated using the travel
time constraints that are imposed by the fixed distance between the cameras and the speed
limit at hand. If a match is found for a vessel that traveled faster than the speed limit, this
match is sent to the system operator that has to manually verify that the vessel is indeed
identical. In the following subsections, the implementations and aspects of both stages and
their embedded processing steps are discussed in more detail.

Tracklet-based re-ID Operator

E. TIC Database

D. Feature embedding

Speeding? yes/no

Matches

C. Tracklet of Image Crops (TIC)A. Vessel Detection B. Tracking

Camera 1 processing

time

time

C. Tracklet of Image Crops (TIC)A. Vessel Detection B. Tracking

Camera 2 processing

F. Query-tracklet 

filtering

G. Vessel travel time

H. Cross camera

D
a
ta

b
a
s
e

F
il
te

ri
n
g

I. Tracklet-based matching

Figure 2. System overview, depicting the procedure at test time.

3.1. Camera Processing Stage

A. Vessel Detection:vessel detection is performed using the Single Shot Multibox
Detector (SSD) [13]. This detector is based on a Convolutional Neural Network (CNN) and
consists of a base network and a detection head. The base network converts the input image
of size of 512× 512 pixels into a feature representation. The detection head contains several
convolutional layers which create downscaled versions of these features. The detection
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head predicts an object confidence and bounding box on each of these feature layers. The
box is predicted using offsets to a set of fixed anchor boxes. The output of the detection
head is created by combining the class confidences, location offsets and anchor boxes of all
feature layers. These combinations are then filtered by thresholding the class confidences
followed by non-maximum suppression, based on the Jaccard overlap (IOU) of the boxes,
leading to the final set of detections.

To match the input resolution of the SSD detector network, a fixed square region in the
camera image is selected as input for the detection network and scaled to 512 × 512 pixels.
The video from the camera is processed by the detector at a rate of five frames per second.
This results in bounding-box localizations of all detected vessel in each image.

B. Tracking: detected vessels are tracked over time at the rate of 25 frames per second.
Every detected vessel is compared to existing tracks using a box overlap. If sufficient
overlap occurs, the tracker is updated with the detected bounding-box coordinates. If
no track exists for a detection, a new tracker is started. The detector can be applied at a
somewhat lower frame rate (5 fps), so the tracking algorithm only needs to track objects
over the intermediate frames (4 frames). Therefore, a simple and computationally efficient
tracking algorithm can be used, so that the tracking algorithm does have a negligible
performance impact on the complete system discussed in this paper. Tracking is performed
independently for each object using feature point tracking [26] with optical flow. For each
tracked vessel box, a uniform grid of feature points is created and new positions of each
point are estimated in the next frame based on their estimated displacement by optical flow.
The median displacement of the feature points determines the new position estimate of
the vessel box. Over a period of 1 s, 5 detections are found with each of them 4 tracked
positions in between. Tracking continues until the vessel leaves the scene.

C. Tracklet of Images Crops (TIC): the output of the tracking contains the group of
boxes at tracked positions of the same vessel, starting with the first detection of that vessel
until the vessel left. This group of boxes is then downsampled to 1 bounding box per
second, beginning at the first detection. The downsampling inherently limits the amount of
transmitted data to the re-ID stage. The result after detection and tracking for each vessel
is a set of cropped vessel images over time, representing the tracklet of image crops (TIC).

3.2. Vessel Re-Identification (Re-ID) Stage

The re-ID stage receives vessel images of the recognized vessels from one camera and
finds the corresponding vessel in historic images of all detected vessels (TIC Database).
As shown in Figure 2, the re-ID stage consists of an image-embedding system (D), a
TIC Database (E), a filtering system (F, G and H together) and a matching system (I).
Our main novelty lies in the latter two systems, which are specifically tailored to our
application. We have adopted two existing models for the image-embedding system:
TriNet [21] and MGN [22]. In this subsection, we start by summarizing the used CNN
architectures and discuss the common way of evaluation and implied matching procedure
in re-ID literature. Afterwards, we elaborate on the proposed improvements concerning
that matching procedure.

D. Feature Embedding: for the system responsible for creating the image embeddings,
the existing networks TriNet [21] and MGN [22] are used. Independent of the applied
model, they convert each vessel image into a feature vector that embeds the visual vessel
properties into a relatively low-dimensional vector representation. First, we discuss the
two adopted triplet-based models.

In the TriNet model [21], each vessel image is first scaled to a resolution of 288 × 144 pixels
and then randomly cropped to 256× 128 pixels to match the input of the ResNet-50 base network
of the TriNet model. The last layer of the ResNet-50 model is replaced by two fully connected
layers of 1024 and 128 units, respectively. By applying the TriNet model, every single
image in a vessel trajectory is thus converted to this 128-dimensional embedding, which is
subsequently stored in the database. The model is trained end-to-end and uses the triplet
loss function to perform metric learning.
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The MGN model [22] has a more extensive network architecture. First, it rescales
the images to a resolution of 384 × 128 pixels prior to insertion into a partial ResNet-50
backbone. The backbone connects to three different branches and each branch consists of
the remaining residual blocks of the ResNet-50 backbone (without shared weights). These
branches all guide their training with differently connected loss terms, but all branches
are trained using a triplet-loss and softmax-loss term on their global feature map. For the
second and third branch, an additional two-way and three-way partitioning is applied
based on the height dimension of this global feature map, respectively. The partitioning is
performed such that these branches can also guide their training by connecting a softmax-
loss term to each partition individually. Finally, by applying MGN at test time on a sample
image, a 2048-dimensional embedding is created by concatenation of the embedding
subparts that each branch produces.

The computational cost of the re-ID system is twofold. When a new vessel is rec-
ognized in a camera, a description of each vessel image is generated, resulting in a set
of feature vector embeddings. Second, the vessel is compared to the database of vessels,
previously observed in the other camera. For the comparison, a distance-measure is cal-
culated between each new vessel embedding vector and the set of existing vectors in the
database, where the amount of comparisons is equal to the number of vessel embedding
vectors. The distance between cameras relates to the amount of vessels that are stored in the
database. Depending on this configuration and the used re-ID model, the computational
complexity is dominated by the calculation of the feature embedding or the computation
of the similarity to the dataset entries. Note that the TriNet model creates 128-dimensional
vectors, while MGN generates 2048 dimensions.

E. TIC Database: Once a model is trained, it learns to produce meaningful feature
embeddings and its final re-ID performance is determined on the test set. For this, both a
database of images with known vessel IDs, a so-called gallery set, and a query set is required.
Similar to the most popular (person) re-ID datasets, DukeMTMC-reID [27] and Market-
1501 [28], we define a (single) query as a newly observed vessel with unknown identity, where
the query set is one random image for each vessel tracklet in the test set. Each vessel in the
test set will be used once as a query, represented by a single random image from its tracklet.
The gallery set is defined as the full test set with exclusion of the query set.

In contrast to using a single random sample, we represent a query by its whole tracklet.
Consequently, we group the embeddings created by the Feature-embedding system (D)
per TIC and store them in the TIC Database. These TIC-based feature embeddings are
then used in our customized (tracklet-based) matching and filtering systems. For making
comparisons, the common matching procedure uses a gallery without additional filtering,
so that such a system would only have components D, E and I, where I is image-based.
We propose to customize this common matching procedure by applying a total of four
extensions that results in significant improvement of the matching performance. These four
extensions are now defined, starting with the most important one for ease of explanation.

I. Tracklet-based matching. In this extension, we propose to perform matching by
Tracklet-based Querying, where all images per query-vessel tracklet are utilized. In line
with re-ID literature, we use the term tracklet to indicate an object trajectory in this work.
To utilize the full tracklet, we accumulate the database similarity scores for all of its images
to improve matching accuracy. This is substantially different from the common matching
procedure, where just a single image is used per query-vessel tracklet to compute the
similarity with the database images. As depicted in Figure 3, we match each image in
the query tracklet individually with each image in the gallery set and, per gallery image,
combine the resulting similarity scores over all different images in the query tracklet (by
summation). The database image with the highest aggregated similarity score defines the
most likely match.
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Figure 3. Visualization of our novel Tracklet-based Querying Approach. The yellow boxes indicate the top-3 query tracklet
images per database-image (i.e., per column). For conciseness, there is only a single vessel visualized in the database of
Camera 1 (c1).

F. Query tracklet filtering: Based on the image size of the images in the query tracklet,
we remove a certain percentage of the tracklet by filtering, in order to reach the full potential
of the Tracklet-based matching. This is beneficial for re-ID performance because the largest
vessel images contain most fine details of the vessels and there are often many vessel
images with too few details for accurate matching.

G. Vessel travel-time filtering in database: Based on the minimum and maximum possible
travel time of vessels between the two cameras, we construct a different subset of the whole
gallery for each query. For each query vessel, the gallery only contains those vessels that
satisfy the timing constraints for passage from one camera to another. This increases re-ID
performance because mismatching vessels are removed from the search set (the gallery subset).

H. Cross-camera filtering in database: Finally, in our application, vessels from Camera
1 only need to be matched with vessels from Camera 2, and vice versa. Hence, we ensure
that the gallery only contains images from the other camera. It is common practice in re-ID
literature that the gallery contains images from all cameras. Hence, to safeguard that our
reported re-ID performance is well comparable with re-ID literature, we introduce this
extension at the end of the experiments.

4. Vessel Datasets
4.1. Datasets for Detection

Popular datasets for generic visual object detection are MS-COCO [29], ImageNet [30]
and PASCAL-VOC [31]. Although these datasets do contain images of vessels, they
are taken from very different camera viewpoints not matching with typical surveillance
scenarios. The dataset proposed in [17] consists of vessels in surveillance scenarios with
multiple camera viewpoints and can be used for training a vessel detector. However, this
dataset lacks vessel trajectories and identifications of the vessels, so it cannot be used for
training the re-ID network. A large dataset of vessels called MARVEL [32] containing
two million vessel images, focuses on classification and is based on only cropped vessel
images without context, so that it cannot be used for training a vessel detector because all
vessels are located at image center without bounding boxes. A similar dataset focusing on
the same harbour application and containing images from various maritime areas named
VCA-VCO has recently been made publicly available by Ghahremani et al. [33] (VCA-VCO
dataset [33]: contact the authors to obtain a copy.). Figure 4a shows several example images
from this dataset. Another publicly available dataset is the SeaShips dataset presented
by Shao [34]. Although the paper claims that their dataset contains 31, 455 images, the
provided dataset for download contains 7000 images only (SeaShips-7000 dataset [34]:
http://www.lmars.whu.edu.cn/prof_web/shaozhenfeng/E-publication.html (accessed

http://www.lmars.whu.edu.cn/prof_web/shaozhenfeng/E-publication.html
http://www.lmars.whu.edu.cn/prof_web/shaozhenfeng/E-publication.html
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on 5 July 2021). Therefore, we refer to this dataset as SeaShips-7000 in the remainder of
this paper. Some example images of both are shown in Figure 4. Table 1 shows statistics on
these datasets such as image resolution and the amount of images/objects available.

Table 1. Statistics of VCA-VCO, SeaShips-7000 and Vessel-reID (ours) datasets.

Resolution Images Vessel Annotations (Unique) Application
Dataset (Pixels) Train Test Train Test Detection ReID

VCA-VCO 1920 × 1080 10,000 1000 28,260 (N.A.) 2818 (N.A.) X
SeaShips 1920 × 1080 31,455 ≈500 (≈60) X

SeaShips-7000 1920 × 1080 3500 3500 4,538 (N.A.) 4683 (N.A.) X
Vessel-reID (ours) 3840 × 2160 81,984 28,044 577,794 (2226) 243,534 (787) X X

(a) VCA-VCO (b) SeaShips-7000

Figure 4. Example images from the SeaShips-7000 and VCA-VCO datasets with box annotations (red).

4.2. Datasets for Re-ID

Although both the VCA-VCO and SeaShips-7000 datasets consist of data for training
a vessel detector, they do not contain any identification information and therefore cannot
be used for training a re-ID system. The most commonly used datasets for re-identification
focus on persons, such as DukeMTMC-reID [27] and Market-1501 [28], which can also not
be applied for vessel re-ID. These datasets are closed sets, meaning that for each query object
a representative object is available in the gallery set. Hence, to our knowledge, a suitable
dataset for training a vessel re-ID system is not available. Consequently, we introduce a
novel vessel dataset named ‘Vessel-reID’ containing trajectories and identifications. This
dataset is used in this paper to train our vessel detector and re-ID system.

4.3. Vessel-reID Dataset

We introduce the Vessel-reID dataset containing vessels from two cameras, located
6 kilometers apart along a canal in the Netherlands. The set has been recorded over 4 days
and contains 2474 vessels traveling between the two cameras. Each vessel is sampled over
its full trajectory in the individual camera views by multiple images and the trajectories
are linked between the two cameras. Figure 5 shows a schematic birds-eye view of the
positions of the cameras. Note that the connecting canal is not covered by any camera (at
the top in the figure). This causes some vessels to appear in one camera, but not reappear
in the other camera. Fortunately, the majority of the vessels use the main canal and pass
both cameras.
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Camera 1 Camera 2

Side canal

Figure 5. Schematic overview of the two cameras positioned along the main waterway (top-view).

The Vessel-reID dataset has been created semi-automatically. For each video capturing
day, we first process each camera stream individually to extract per-camera trajectories of
vessels. The video is then processed with an existing vessel detector [17] to find vessels
and track them over time through the camera view. The obtained vessel trajectories are
temporally sub-sampled (every 6 s) and manually validated to enforce accurate localization
and full coverage of all vessels. To produce the final dataset, interpolation of trajectories is
performed to obtain annotations every second. To increase the annotation accuracy, the
vessel detector is retrained with the annotations of the first day of video for both cameras,
prior to applying it to the data of the other days.

After creating trajectories of the two individual cameras, the vessels in the two cameras
are manually linked to define the re-ID ground truth. A few examples of different types
of vessels and ground-truth annotations are shown in Figure 6. Figure 7 shows examples
of linked trajectories of vessels in Cameras 1 and 2. Of all linked trajectories, the slowest
vessel moved at 2.25 km/h, while the fastest vessel travelled at 23 km/h. An overview of
all travel times is given in Figure 8b. The speed limit in the canal is 12.5 km/h. Since only a
few vessels travel faster than the speed limit, we used all vessels for our experiments in
determining speeding (max. 160 min travel time). For re-ID purposes, we have created a
closed set and only use linked vessels as queries, meaning that a matching vessel is always
available in the gallery for every query vessel.

In total, we annotated 4 days of video from 6.00 AM until 9.00 PM from both cameras.
This resulted in a total of 136, 888 vessel images containing 2474 trajectories (TICs) of 1237
unique vessels moving through both cameras. Each vessel trajectory was quantized at the
rate of one sample per second. On average, there were 44 samples for each vessel TIC in
Camera 1 and 66 samples in Camera 2. The different numbers can be explained by the
different viewing angles of both cameras, resulting in different track lengths (see Figure 1).
Table 2 gives an overview of the vessel trajectories per day. Note that about 30% of the
unique vessels were moving into the side canal, mooring at a local harbour or appearing
in one camera only. Since vessels that passed both cameras led to two TICs, the overall
total of unique vessels in our dataset was less than the overall total TICs. Note that the two
per-camera total TIC counts in Table 2 thus each incorporated the first two rows of that table
plus some other rows of that table corresponding with that camera. For re-identification,
this means that a total of 3013 TICs occurred in 4 days (both cameras), which led to an
average required re-identification throughput of 50.22 TICs per hour. During the most busy
hour in these 4 days, a maximum of 184 TICs per hour occurred for both cameras.

The dataset was used for training and evaluation of our detector and re-identification
stage. To this end, the dataset was split into a training set containing the data of the first
3 days and a testing set containing the fourth day of data (see Table 1 for the overall
statistics). By doing so, the test set contained true unseen data.
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(a) Examples from both cameras (full images). (b) Examples of several types of vessels (cropped images).

Figure 6. Example images from our Vessel-reID dataset.

Figure 7. Example images of vessel trajectories in both Camera 1 (left) and Camera 2 (right). Each row shows a unique
vessel trajectory in our dataset. Some intermediate images are skipped (red dots).
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Table 2. Number of vessels per day moving in each direction.

Direction Day 1 2 3 4From To

Cam1 Cam2 178 104 167 181
Cam2 Cam1 155 134 176 142
Cam1 Side-canal 34 23 45 31
Cam2 Side-canal 31 30 50 33

Side-canal Cam1 25 28 41 33
Side-canal Cam2 24 27 40 44

Total TICs Cam1 392 289 429 387
Total TICs Cam2 388 295 433 400

Dataset split Train Test

(a) Number of samples per unique vessel, per camera. (b) Travel times between the two cameras.

Figure 8. Statistics of the Vessel-ReID dataset, in terms of trajectory lengths and travel times.

5. Experimental Results: Detector

Four main experiments were conducted to evaluate the performance of vessel detec-
tion. First, the effect of the training dataset on the detection performance was investigated.
Second, four different CNN detection models were evaluated. Third, a more in-depth mea-
surement with respect to the vessel sizes was performed using the same detectors. The final
experiment gave insight in the robustness of the detection performance for re-identification
purposes, by measuring the percentage of each vessel trajectory that was detected.

Detection performance evaluation was carried out using the same metric in each of the
experiments. Performance was reported by recall-precision curves and summarized in a
single value by the the mean Average Precision (mAP) metric, which averaged interpolated
precision values of the positive samples. Recall R(c) denotes the fraction of objects that
were detected with a confidence score of at least c. An object was detected if its bounding
box has a minimum Jaccard index (Intersection-over-Union ratio) of 0.5, when compared
with its ground-truth bounding box. Lower overlap values resulted in incorrect detections.
Precision was defined as the fraction of correct detections. Hence, each point in the recall-
precision curve represented a certain fraction of correct detections (precision) vs. the
fraction of detected vessels (recall) for a certain detector threshold c. For our application in
vessel detection, a working point on the recall-precision curve had to be selected. Therefore,
we also report the obtained recall at 95% precision, since a high precision was desired and
preferred over a high recall.

In all our experiments on the Vessel-reID dataset, we used the data subsets Days 1,
2 and 3 for training and Day 4 for testing. All detectors were trained on the manually
validated frames in the dataset only (every 6 s of an annotated vessel trajectory). The SSD
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detector was trained by fine-tuning the VGG16 base network from the original paper [13],
using the default anchor-box configuration. We performed 10,000 warm-up iterations
(linear) of ratio 0.0001 and used an SGD optimizer with a learning rate of 0.02, momentum
of 0.9 and weight decay of 0.0005. Training was performed with a batch size of 8 for 24
epochs (during one epoch we sampled the dataset five times, resulting in ≈16,500 iterations
per epoch). The learning rate was decreased at epochs 16 and 22.

5.1. Cross-Validation on Datasets

This experiment investigated the effect of the dataset on the detection accuracy by
performing a cross-validation between the different datasets. The SSD detector was trained
four times: on each dataset individually and on all datasets combined. Evaluation was
carried out on each dataset separately. The datasets used in this experiment were SeaShips-
7000, VCA-VCO and our Vessel-reID set. We reported average recall-precision curves and
standard deviations by evaluating over three training cycles. The results are presented
in Figure 9.
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(a) Tested on SeaShips-7000. (b) Tested on VCA-VCO. (c) Tested on Vessel-reID.

Figure 9. Detection performance: cross-validation, training SSD on different datasets individually as indicated in the caption on which
it also is tested.

SeaShips-7000 (Figure 9a). Best performance was obtained when training with Sea-
Ships or the combined dataset, resulting in very high 99% mAP scores. When training
with VCA-VCO, the performance was significantly lower because of the larger variation of
vessels: the precision dropped under 90% at around 46% recall. The detector trained with
our Vessel-reID dataset had poor performance (17.1% mAP score). We concluded that all
datasets were quite different from each other (visually mutually exclusive, which will be
discussed later) and that when only one of the existing datasets was used for training, it
lead to a significant reduction in detection accuracy.

VCA-VCO (Figure 9b). We observed a similar pattern as compared to testing on the
SeaShips-7000 dataset. The VCA-VCO dataset apparently was quite different from the
other training sets. The detectors trained on the VCA-VCO dataset and the combined sets
both had high detection performance (96.8% and 96.6% mAP, respectively). The detector
trained on SeaShips-7000 had a low performance (42.4% mAP), as precision dropped under
90% already at below 10% recall. The detector trained on our dataset performs even worse,
obtaining only 29.2% mAP score.

Vessel-reID (Figure 9c). A similar behaviour was observed again, training with the
Vessel-reID set and the combined set results in an mAP score of 89.8% and 90.2%, re-
spectively. The detector trained only on VCA-VCO data has a reasonable performance
(76.7% mAP) with about 65% recall at 90% precision. The precision drops faster for the
detector trained on SeaShips-7000, but this detector still obtains an mAP score of 57.1%.

Overall, the results show that the three datasets were visually quite different. Training
on the same dataset always results in best performance, while training with all datasets
results in a comparable score. SeaShips and Vessel-reID seemed to be the most different
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datasets. The VCA-VCO dataset was the most diverse dataset, as a detector trained on this
dataset always obtains second-best performance on the two other datasets. In all cases,
training with all datasets did not hurt performance, suggesting that the different datasets
did not visually overlap much. We concluded that it was best to train on the combination
of all datasets to obtain the most generalizing detector that also performed well on each
individual dataset. In the remainder of the experiments, we therefore used a detector that
was trained on the combination of all datasets.

5.2. Detector Comparison between CNN Implementations

To provide insight in the performance of the SSD detector, we present a comparison
between different CNN detection models. In this experiment, a comparison was made
between SSD [13], YOLO-v3 [12], FCOS [14] and Faster R-CNN [9]. The YOLO-v3 model
used the Darknet-53 backbone and was trained on input images with a resolution of
608 × 608 pixels. FCOS and Faster R-CNN both use the Resnet-50 backbone and worked
on an image input resolution of 1333× 800 pixels. FCOS was trained with Deformable Con-
vNets v2 in the backbone and head. Each detector was fine-tuned with their default training
parameters (Training parameters: https://github.com/open-mmlab/mmdetection/tree/
master/configs/ (accessed on 3 March 2021)) for 24 epochs. The detectors were all trained
on the combined data from SeaShips-7000, VCA-VCO and Vessel-reID. The detector perfor-
mance was measured by the mAP score and the recall-precision curve on the test sets of
each dataset.

The obtained detection performance on the three datasets was depicted in Figure 10.
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Figure 10. Detection performance: cross-validation of the selected detectors on different datasets, trained on all datasets combined and
tested with the individual test sets per dataset.

SeaShips-7000 (Figure 10a). The recall-precision curves on the SeaShips-7000 dataset
show that Faster-RCNN and FCOS had the highest performance, reaching a high mAP score
of 99.7% and 99.3%, respectively. The recall-precision curve of the SSD512 detector was
slightly lower, achieving 98.5% mAP score. The YOLO-v3 detector has lower performance
(92.7% mAP) and the precision dropped earlier.

VCA-VCO (Figure 10b). Similar observations could be made for the VCA-VCO dataset.
Faster-RCNN, FCOS and SSD512 all seemed to have similar curves. Faster-RCNN has the
highest overall precision. The precision of FCOS dropped slightly at an early stage (at 10%
recall). However, it surpassed the precision of SSD512 at about 83% recall. The precision of
the YOLO-v3 detector started to decrease at 10% recall. However, YOLO-v3 still obtained a
respectable 89.4% mAP score.

Vessel-reID (Figure 10c). The SSD512 detector achieved the highest mAP score with
respect to the other detectors (90.2%), followed by Faster-RCNN (85.8% mAP), YOLO-v3
(85.6% mAP) and FCOS (78.3% mAP). This was mainly caused by the SSD512 detector
obtaining a higher recall, whereas the precision of Faster-RCNN was slightly higher. How-
ever, the final recall of Faster-RCNN was only 86%, effectively resulting in a lower mAP

https://github.com/open-mmlab/mmdetection/tree/master/configs/
https://github.com/open-mmlab/mmdetection/tree/master/configs/
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score. The recall-precision curve of FCOS ended at just under 80% recall, causing the low
mAP score. The curve of YOLO-v3 showed lower overall precision, but achieved higher
recall than Faster-RCNN and FCOS.

Overall, the performances of Faster-RCNN, FCOS and SSD512 were all in the same
range, while YOLO-v3 obtains the lowest accuracy. Although the results on the SeaShips-
7000 and VCA-VCO dataset were consistent, on the proposed Vessel-reID dataset the
results were slightly different. We can explain this by the fact that the proposed dataset
was automatically annotated by another SSD detector model (as explained in Section 4).
The dataset was manually edited after automatic detection during the dataset generation
process. As a consequence, false detection boxes were manually removed and incorrectly
localized annotations and missed annotations were edited. Despite this manual correction,
the annotations in the dataset may have left a small bias to favor the detection results of
the SSD detector.

5.3. Detection Performance with Respect to Vessel Size

In this experiment, a more in-depth inspection was carried out based on the vessel
size. As vessels varied in size, from small inflatable boats to large barges, it was interesting
to measure whether vessels of all sizes were detected. Therefore, the detection performance
with respect to the ground-truth sizes was measured on each dataset. The ground-truth
bounding boxes of each dataset were split into the following bins based on their areas:
extra small (XS, a bounding-box area belongs to the smallest 10% of all bounding-box areas
in a dataset), small (S, between 10$ and 30%), medium (M, between 30% and 70%), large
(L, between 70% and 90%) and extra large (XL, 90%+). The actual area sizes of each bin
are presented in Table 3. Each detection was matched to a corresponding ground-truth
bounding box, and thereby categorized into one of the bins. If a detection was a false
positive and could not be matched to a ground-truth box, it was categorized into a size bin
according to its area. This area evaluation was similar to the COCO [29] implementation,
but we extended the amount of size bins to capture the large variation in vessel sizes. The
evaluation was performed separately on the three datasets, for each of the detectors trained
in the previous experiment. The results are depicted in Figure 11 and some visual detection
examples are illustrated in Figure 12.

Table 3. Upper and lower pixel area limits for the different bins of each dataset used for evaluation.

Bin Limits SeaShips-7000 VCA-VCO Vessel-reID
Resolution [px] 1920 × 1080 1920 × 1080 3840 × 2160

Smallest 608 276 255
10% area 11,232 1760 4918
30% area 36,432 4880 15,790
70% area 149,490 24,332 91,917
90% area 294,867 89,518 376,913
Largest 813,656 766,080 4,919,722

SeaShips-7000 (Figure 11a). All four detectors had a quite stable detection performance
over all vessel sizes. Only SSD512 and YOLO-v3 showed a small drop in performance
for extra small vessels. It can be observed from Table 3 that the sizes of the vessels in
SeaShips-7000 were relatively large, and the spread in sizes was not as large as in the
VCA-VCO and Vessel-reID datasets.

VCA-VCO (Figure 11b). It can be observed that for all detectors, performance dropped
for extra small ships. The lowest performance was obtained by YOLO-v3 at 58% mAP. The
SSD512 detector results in a large drop from 95% mAP for small vessels (S category) to
82% mAP for XS vessels. The FCOS and Faster-RCNN detectors both had a small drop
in performance for XS vessels of about 0.5% mAP, and were more robust at detecting the
smallest ships than SSD512 and YOLO-v3.
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(a) Tested on SeaShips-7000. (b) Tested on VCA-VCO. (c) Tested on Vessel-reID.

Figure 11. Detection performance: influence of vessel size for different detectors on the separate datasets.
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Figure 12. Examples of bounding-box detections and confidence scores generated by Faster-RCNN, FCOS, YOLO and
SSD512 on the Vessel-reID dataset.

Vessel-reID (Figure 11c). The drop in performance for small ships was even more
significant on the Vessel-reID dataset. This can be explained by the extreme variations in
vessel sizes with respect to the other datasets (see Table 3). Faster-RCNN offered the highest
performance on XS vessels (62% mAP) followed by YOLO-v3 (55% mAP), FCOS (50% mAP)
and SSD512 (44% mAP). Although SSD512 performed worst on XS vessels, there was a
significant performance increase for small (S) vessels, moreover together with Faster-RCNN
it performed best on small vessels (91% mAP). FCOS gave lowest performance for small
ships (84% mAP), followed by YOLO-v3 (89% mAP).

Overall, these results show that all detector models obtained good performance for
small-to-medium-sized vessels (S-M), but struggled with very small vessels (XS, S). The
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Faster-RCNN detection model seemed most robust to very small vessels. Large vessels did
not pose a problem for any of the detectors, since in general the detection performance
increased for larger vessels. Investigating some visual examples (Figure 12), it can be
observed that Faster-RCNN provided a very accurate detection. Interestingly, Faster-
RCNN could detect sailing ships with high masts quite accurately, while the other detectors
had difficulties in finding such vessels. In addition, all single-shot detectors had difficulties
detecting vessels that were partly occluding each other. Note that the large barges (at
the top row) should both have been detected as two separate vessels: the barge and the
pushing vessel. We expect that adding more training samples for such specific cases will
improve the detection accuracy in general for all individual models.

5.4. Detection Execution-Time Analysis

In this experiment, we measured the throughput of each of the CNN detection models.
The execution was carried out on a single GeForce GTX 1080 GPU for a batch size of unity.
Timing was averaged over 2000 forward inference cycles. The timing was measured in
(detection) frames per second and was plotted with respect to the recall score of each
detector at 95% precision.

Figure 13 shows the trade-off between execution time and accuracy. The YOLOv3
detector was clearly the fastest detector operating at 38 frames per second. It was followed by
the SSD512 detector executing at 20.1 fps, Faster-RCNN at 13 fps and FCOS at 12.4 fps. For
our application, we chose the SSD512 detector because it provided a high accuracy of 84.0%
recall at 95% precision, while being able to sufficiently fast perform the inference processing.

Frame rate (fps)

Figure 13. Trade-off between throughput speed and accuracy for the four detectors.

5.5. Detection for Re-Identification

In our application of re-ID, it was important that each vessel was detected at least
once in both cameras. Our testing dataset contained several images of each vessel along
its trajectory, enabling the measurement of the amount of detections per vessel over its
trajectory. In this experiment, we measured the detection ratio for each vessel which was
computed by the amount of correct detections with respect to the amount of ground-truth
annotations. This detection ratio was reported as a histogram over all vessel trajectories per
camera location in our dataset. The experiment was performed using the SSD512 detector.
We selected a sensitivity threshold at 95% precision, to limit the amount of false detections
while still having a high recall of 84.2% (see SSD512 in Figure 10c).

Figure 14 shows the results per individual camera. Note that the vertical axis has a
logarithmic scale. In general, many vessels were detected over more than 90% of their
trajectory and almost all vessels had a trajectory coverage of more than 60%. Unfortunately,
there were few vessels (11 in Camera 1 and 6 in Camera 2) that were detected in less than
10% of their available trajectory images. Visual inspection of these ‘missed’ vessels shows
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that these detections were typically very small boats (such as ‘dinghies’ behind larger boats)
or boats moving close together (see Figure 12 ).

Figure 14. The number of vessels detected per camera for a given percentage of its actual trajectory.

This experiment shows that the proposed detector obtained a high detection accuracy
and delivers a dense set of image samples for the considered re-identification sub-system.
Note that we did not investigate object tracking in this experiment and purely focus on
detection. In the actual application, an early detection of a vessel at the beginning of
its trajectory will therefore effectively lead to a larger measured part of its trajectory. For
re-identification, it was important to detect each vessel at least once. Although a few vessels
were encountered that were never detected, they were mostly attached to a larger boat
(‘dinghies’), which did not influence the re-identification performance, since in those cases
the main vessel was detected (See Figure 12f). Missed vessels that were close to each other
require the combined vessel pair to be detected for correct re-identification in both cameras.

6. Experimental Results: Re-Identification

The re-identification stage was also experimentally validated. This section first
presents the evaluation criteria (Section 6.1) and the related common matching proce-
dure from literature (Section 6.2). Then, the results on our dataset are presented using a
baseline re-ID system based on TriNet and MGN (Section 6.3).

In this research, instead of the common matching procedure, a new more-effective
matching approach was introduced. The common procedure was practically adopted in all
re-ID literature, because it was predefined by the most popular re-ID datasets as a part of
their evaluation procedure. The common procedure was enhanced with various incremental
improvements, while directly adapting the feature-embedding system to our application.
Experimental results are presented for various querying approaches using tracklets, and
results for additional filtering based on application constraints. First, Section 6.4 introduces
the proposed Tracklet-based Querying Approach, followed by Section 6.5 describing the
execution-time analysis and related improvements obtained by linear subsampling. Next, the
advanced query tracklet filtering technique for the proposed Tracklet-based Query Approach
(Section 6.6) was evaluated, followed by the gallery filtering based on implied transition times
(Section 6.7), and finally the proposed ’only cross-camera’ gallery approach (Section 6.8).

6.1. Evaluation Procedure and Performance Metrics

The re-ID performance was reported using the two prevalently-used metrics: Rank-1
and mean average precision (mAP). The performance values are expressed as mean and
standard deviation over 10 training cycles. Note that in all experiments, the same trained
re-ID models were used in the evaluation and test with every vessel trajectory as a query to
obtain comparable scores. In order to determine these performance metrics, the performed
matching procedure is explained in Section 3.2.
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Evaluation of a single query image results in a similarity score for each gallery image.
Next, the gallery was ranked, meaning that it was ordered to similarity score in decreasing
order with the most similar image being on top. The Rank-1 score then indicated the
fraction of all queries that had a true match at the top (Position 1) of their ranking. Similarly,
the Rank-10 was the fraction of all queries that had at least one true match at Positions 1
through 10 of their ranking. The mAP was calculated as follows. First, the average
precision value of each individual query was calculated, which was measured as the
average precision@k for only those images in the ranking that were actual matches, where
k was the position of the match in the ranking. The mAP was then defined as the mean of
each query average precision. More details can be found in [28,35]. In contrast to the Rank
score, the mAP includes the position of all correct matches in the ranking. When all true
matches were at the top of the ranking, this yielded 100% mAP. If the top-x of the ranking
consisted of true matches interchanged with mismatches, the mAP reported a lower value,
while the Rank-x metric reports 100%. Important here was that a mismatch degraded the
mAP more when it occurred at the top than when it was lower in the ranking. The Rank-1
metric was the most important metric for the application of vessel-speed enforcement,
since the system should automatically detect a single correspondence between two cameras
to observe a speed violation and thus only the top of the ranking mattered. Throughout
this section, we report the Rank-1 and mAP evaluation scores.

6.2. Default Query Approach from Literature

The default matching procedure that is commonly applied in re-ID literature is now
discussed, since this introduces important background information for the proposed re-ID
matching system. After the model was trained on the train set, this common matching
procedure was applied to determine the Rank-1 and mAP performance of the re-ID model
on the test set. This matching procedure was used by the evaluation procedure of most
re-ID datasets [27,28], which explains why it was incorporated here.

Prior to matching, each image in the test set was first converted into an image em-
bedding vector by the re-ID model, where the test set was always separated into a query
and gallery set. The query set contained one random image from the vessel trajectory
of each vessel in the test set, while all other images of those trajectories were added to
the gallery set. Matching in the Default Query Approach was now carried out for each
individual query image in the query set, by computing the Euclidean distance between
the single query embedding and each gallery embedding. This distance resulted in a
similarity score for each gallery image, which was then used to compute the Rank-1 and
mAP scores. Important here is that each query vessel was represented by only one image
from its tracklet.

Finally, note that the gallery contained all images of all cameras, including the camera
of the query. An advantage of this approach was that a larger dataset was obtained for
evaluation (with more mismatching samples), resulting in a better statistical validation
of the algorithmic performance. However, it must be ensured that images from the same
tracklet as the currently considered query did not count as possible matches, since these
images were very similar in appearance and thus otherwise would appear at the top of
the ranking. This was easily solved by applying a so-called excluder, which temporarily
excluded those images from the gallery during the individual evaluation of each query.

6.3. Image Embedding Networks and Their Baseline Performance on Our Vessel-reID Dataset

This subsection outlines the first experiment, where existing re-ID models were eval-
uated using the Default Query Approach. This experiment will leverage the baseline
performance of those standard re-ID models. The existing TriNet [21] and MGN [22] re-ID
models were trained on the training set of our Vessel-reID dataset. Besides as using these
trained models as reference (baseline), they were also used as image embedding for the
matching procedure in the proposed overall re-ID stage (see Section 3.2 (D)).
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Then, the models were used to construct image embeddings for all images in the test
set. In this experiment, we started with optimizing the influence of the hyper-parameters
for training of the models for our vessel application. In line with re-ID literature, the per-
formance was evaluated using the image-based Default Query Approach (see Section 6.2).

The optimal training parameters for TriNet were investigated in previous work [2],
leading to a learning-rate of 3× 10−4 and 500 training epochs, while exponentially decaying
the learning rate with a base of 1 × 10−3 starting at epoch 300. The system trained with
these parameters resulted in a Rank-1 performance of 55.9% and 49.7% mAP on the Vessel-
reID dataset, when applying the Default Query Approach. Similarly, we also optimized
MGN and found that training the model with a learning rate of 2 × 10−4 for 1000 epochs
with a learning rate decay of a factor 10 at epoch 400 and 650, to be optimal. Training
MGN with these hyper-parameter settings on the Vessel-reID dataset resulted in 68.9%
Rank-1 and 62.6% mAP scores. The reported settings for all subsequent experiments in
the remainder of this study were based on these optimized settings for TriNet and MGN
(baseline performance).

In comparison with public person re-ID datasets, both re-ID models showed a large
performance gap with our vessel dataset. That is, on DukeMTMC-reID, TriNet and MGN
achieved 75.4% [36] and 88.7% [22] Rank-1, respectively. On Market-1501, the scores were
even higher with 84.9% [21,36] and 95.7% [22] Rank-1, respectively. The lower performance
with our dataset is mainly explained by the hard conditions of our train and test sets. In
the Vessel-reID dataset, the test set was recorded during a completely different day with
different lighting and weather conditions, while the person re-ID datasets applied a random
division into train/test sets, such that both sets had samples of the complete recording
time range. Consequently, this resulted in a more similar train and test set, whereas in
our dataset, the test set contained truly new unseen data. Furthermore, we observed that
our dataset contained several vessels of identical brand and model (identical rental boats),
which were very similar in appearance, but yet had a different vessel ID in our dataset.

6.4. Tracklet-Based Querying Approach

The baseline image-based Default Query Approach was now extended towards ex-
ploiting information from multiple images per vessel trajectory. This was expected to
improve performance in cases where the randomly selected image from the query-vessel
trajectory was a poor representative, e.g., a very low-resolution image (vessel far away from
the camera) or a partial occlusion by another vessel occurred. To overcome this limitation,
we considered a tracklet as a query instead of a single image in our Tracklet-based Querying
Approach (see Section 3.2 (I)). The Tracklet-based Querying Approach applied inference
on every image in a vessel tracklet and combined the per-image similarity scores. As a
consequence, this also required changing the final evaluation (and matching) procedure,
because the common query/gallery division approach dictated using the whole test set
minus the query set as the gallery set. With this division approach, using each image of
a tracklet instead of a single image would lead to an empty gallery set. Therefore, we
proposed to keep all images in the gallery and consider one tracklet at a time as the query.
To this end, we carefully validated that using the full test set as the gallery had a negligible
impact on re-ID performance. Furthermore, adoption of the excluder, as explained in
Section 6.2, ensured fair use of the gallery, so that the re-ID model could not select any
query-tracklet images as a possible match in the gallery.

Figure 15 shows an example embedding distances matrix between several query
tracklets and their three closest matching gallery tracklets (distance colors explained in
caption). It can be observed that some query images were not a good representation for a
query vessel, resulting in high distance scores (horizontal yellow bars). This was similar for
some images in a gallery tracklet (vertical yellow bars). However, most query and gallery
images of a matching tracklet pair result in low distance scores indicating that the use of
tracklets for matching was beneficial for re-ID.
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Figure 15. Distance matrix visualization of our Tracklet-based Query Approach for four query vessels (left side of the
matrix). For each query, the distance values are shown from each image in its tracklet to each image in the depicted gallery
tracklets (top side of the matrix). The thin horizontal red/green color bars underneath the gallery images indicate the
ground-truth matching result with the indicated query (green was match, red mismatch). The colors in the matrix cells
refer to the embedding distances between the query and the gallery images. These colors are scaled per query tracklet
(row) for maximum contrast, where red hot means small distance and yellow white indicates large distance (see legend bar
underneath). The query/gallery images at the left/top are only one visual example but represent the set of images in its
query/gallery tracklet, where each individual color pixel in the matrix signals the individual matching distance by its color.

As mentioned in Section 3.2 (I) and shown in Figure 3, all possible similarity scores
per gallery image were combined. The method used for combining was evaluated in
the following two ways to find the best combining approach. First, we take the sum
of all per-gallery-image distances (over each column). Second, we took the sum of only
the top-X per-gallery-image distances (over each column), effectively only summing the
three yellow entries in Figure 3, where X = 3 is visualized as an example. In essence, the
second approach allowed us to only consider the Top-X most representative images for
the tracklet query. Intuitively, this enabled us to discard the less-representative images in
the evaluation (low-quality or occlusion). Thereafter, the resulting aggregated similarity
vector was used to compute the Rank-1 and mAP scores as introduced in Section 6.1. Note
that the aggregated similarity vector was comparable to the vector from the Default Query
Approach, enabling a direct comparison using the Rank-1 and mAP scores.

The effect of the number of selected matches (Top-X) was investigated in a fine-grained
sweep over the range X = 1 to 40, while its impact on re-ID performance is reported. For
reference, all available matches (All) is also included. This optimization was performed
on MGN, since it was our best-performing baseline algorithm. The results are presented
in Figure 16. The performance increased gradually with increasing values of X, while it
converged for X values of about 20–30. Values exceeding 30 resulted in a minor decrease in
performance and eventually reach the same performance as the All method, when further
increasing X. Note that up to the Top-15 setting, the performance was lower than when
using all images (All). Clearly, there was a trade-off involved in focusing on too few versus
too many most-representative images. From the optimal range X = 20 − 30, where on
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Rank-1 X = 20 achieved lowest spread among training cycles while X = 30 achieved
highest performance, we selected the Top-25 as our preferred setting. Furthermore, it
performed well on both the Rank-1 and mAP evaluation scores. Moreover, larger values
were not desired because selecting more images for a tracklet could potentially include less
representative images (low-quality or occlusions).

Summarizing, for the best-performing MGN model, matching all tracklet images (All)
results in a Rank-1 score of 73.9%. Using the Top-X method, a similar performance was
obtained when selecting only the Top-10 scoring images. The performance further increased
when selecting the Top-15 (74.3%) and Top-25 (74.5%). The use of multi-image matching was
clearly beneficial because it offers a total gain of 5.6% compared to the baseline performance
(single-image matching, see Section 6.3).
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Figure 16. Re-ID performance expressed in Rank-1 (top curve) and mAP score (bottom curve), as
a function of the number of top-matching images (Top-X) with the proposed Tracklet-based Query
Approach. Results are reported as mean (stddev) over 10 MGN training cycles.

6.5. Execution-Time Analysis and Related Improvements by Linear Subsampling

In this subsection, an analysis of the computational cost of our extended re-ID system
is provided. The total computational costs consisted of two parts: computation of the
embedding vectors and computation of the matching. Every time a new vessel entered the
camera view and a trajectory was formed by the detection and tracking system, the unique
vessel description for re-ID was generated by the calculation of the vessel embedding
vectors. To perform re-ID, the system requires the embeddings for all images in the gallery,
of all trajectories contained, and then starts the matching for this new vessel against the
gallery. The embeddings for all images of each vessel were calculated once, and used both
initially as a query and were then added to the gallery for future comparisons. Note that
this approach avoided the calculation of all embeddings of the complete gallery at test time.
Therefore, the computational cost of the creation of the embeddings was similar for both
our Tracklet-based and the Default Query Approach.

After embedding, the matching was then performed by comparing the vessel simi-
larity (embedding distance) with all previously observed vessel samples. Therefore, the
computation cost for matching was linear to the number of vessel images in the gallery,
which was linear to the number of vessels (assuming a constant number of images per
vessel). Similarly, for embedding, the computation cost was thus linear to only the number
of images in the vessel trajectory. Therefore, reducing the number of stored images per tra-
jectory effectively reduced computation cost for both the embedding and matching phase.

In our Vessel-reID dataset, the average trajectory contained 63 images, increasing to
over 300 images for slow-moving vessels, see also Figure 8a. Note that many of these
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images were visually similar, especially for slowly moving vessels, because of the minimal
movement between samples. We therefore gradually reduced the number of images per
trajectory using linear subsampling to a fixed amount and investigated its impact on the re-
ID performance and processing time. As a result, the computation time for both embedding
and matching of each vessel became now fixed, even for slowly moving vessels.

The results of applying linear subsampling are presented in Figure 17, where we indi-
cate the re-ID performance and execution time of both the Default and our Tracklet-based
Querying Approach. The execution times were measured using a naive GPU implemen-
tation on a system with a GeForce GTX 1080 GPU and a Xeon E5-2650 v4 CPU, where
both the embedding of the query images and the distance calculations were performed
on the GPU. The shown execution times are based on parallel execution on the GPU. As
can be observed in the figure, there was virtually no decrease in re-ID performance when
limiting the trajectories to roughly 20–30 images only. This reveals that on average, only
about 20–30 images of a vessel trajectory were sufficiently informative for re-ID while the
additional images were either similar or were less representative (low-quality or occluded).
We proposed to select 20 images per trajectory as a good trade-off for optimal re-ID perfor-
mance at a large reduction of the computation time, with a factor 3 (from 667 to 216 msec)
and 5 (from 1250 to 275 msec) for the Default and the Tracklet-based Query Approach,
respectively. For the best-performing Tracklet-based matching, the total computation time
of 275 msec at 20 images/tracklet was divided in the embedding (212 msec) and distance
computation (63 msec). With this configuration, we obtained a speedup of five times com-
pared to the baseline re-ID system (1250 msec) without loss in Rank-1 accuracy and only a
minor reduction of 0.3% in mAP. When comparing the proposed Tracklet-based Querying
with the Default Querying at 20 images/tracklet, the accuracy increased with 5.3% Rank-1
for a relatively low increase in computational cost, going from 216 to 275 msec (+27%).
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(a) Default Query Approach. (b) Tracklet-based Query Approach.

Figure 17. Re-ID performance expressed in Rank-1 (top blue curve) and mAP score (bottom blue curve), when applying
linear subsampling to all tracklets (both gallery and query set) in order to improve computational efficiency (going
rightwards). The color of the curves indicate which y-axis applies. Results are presented as mean (stddev) over 10 MGN
cycles, and Tracklet-based matching (b) is based on Sum-of-top-25.

Furthermore, the proposed system obtained a throughput rate of 3.6 TICs per second
for matching, which was more than sufficient for the use case considered. In our dataset, an
average of only 50.22 vessels passed both camera views per hour (1 TIC every 72 s) with a
peak of 184 vessels/hour (1 TIC every 20 s). In practice, even when our peak throughput
occurred continuously and a vessel passed by every 20 s, the gallery could ultimately
contain and allow us to match vessels that were observed at the latest preceding 45 days.
In comparison, the total computation time of 275 msec was achieved when the gallery
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contained 7 h of data with vessels. Given the size of the overhead, it is therefore likely that
the proposed system could even operate at real time on an embedded computing platform.

We also evaluated a more advanced subsampling approach that involved top-7 ranking
results, but then refining that to top-3 adaptively on the basis of the incorporated embed-
ding distance values. However, this approach did not result in any notable performance
differences, even when changing the numbers 3 and 7 to other alternative numbers.

6.6. Advanced Query Tracklet Filtering for the Proposed Tracklet-Based Query Approach

For the Query-tracklet filtering system (see Section 3.2 (F)), we were inspired by the
large spread in image sizes in the vessel trajectory samples and hypothesize that not all
images in a tracklet were equally informative. Vessel images were smaller in pixel-count
when vessels were further away from the camera and were larger in size when being
closer to the camera. Evidently, this effect varied with the camera view configuration. We
evaluated the assumption that vessel images with finer details were more informative
for re-ID and thus that larger object visibility (bounding boxes) in the images improve
re-ID performance. Moreover, when the vessel was entering the camera view, it was only
partially visible and therefore resulted in an incomplete description for re-ID. We tested our
hypothesis by excluding some of the data and involving a fraction of the remaining query
tracklet data in two different ways prior to starting our Tracklet-based Query Approach.
First, the middle part of the tracklet was emphasized by removing the beginning and end
parts of the tracklet, thereby eliminating the samples where the vessel was potentially
partially visible. In the second way, the largest bounding-box images in the tracklet were
emphasized by removing the smallest samples (measured by pixel-count/bounding-box
size), such that only the samples with most details remained.

The mean Average Query Image Size (mAQuIS) metric was included in the measure-
ments to indicate how the bounding-box size changed when the remaining data fraction
increased. This mAQuIS metric was computed in two steps, by first determining the
average bounding-box image size of each query tracklet. Second, this was repeated for all
query tracklets and then the mean over all averages per tracklet was computed as well.
This mAQuIS metric was chosen to give a more meaningful result, since it focuses on
a computation at a per query-tracklet level, similarly as the mAP was computed by its
double mean. Consequently, since a small set of extreme outliers were most likely related
to a single query-tracklet, these extreme outliers had less impact on the final mean value
because each outlier now only influenced an individual tracklet average.

Figure 18 depicts the results on re-ID performance for both ways to reduce the re-
maining data fractions. Figure 18a shows the effect of focusing on the middle part of the
trajectories. It can be observed in the figure that the re-ID performance was constantly
decreasing when reducing the remaining data fraction from the tracklet. This implies that
the beginning and ending parts of the tracklet were important. Figure 18b indicates how
keeping the largest bounding-box images in a tracklet affected performance. In contrast
to removing the tracklet end and beginning, reducing the number of bounding-box im-
ages increased performance here, because visibility of the vessels was augmenting. This
confirms our assumption that more relevant information for re-ID was contained in the
largest bounding-box images. Consequently, this way for defining remaining tracklet data
was applied in our Query-tracklet filtering system (Figure 2f). The bounding-box size
was more important than filtering images at trajectory beginning/end, especially since
the largest bounding boxes always occur at the beginning or ending of a trajectory. This
aspect also explains the decreasing performance when filtering the begin/end of tracklet
data (Figure 18a). Note that the filtering of begin/end trajectory had a different effect on
small/far away vessels and large barges. Large barges resulted in many images in which
the vessel was only partially visible, while for small/far away vessels there were only few
images with partial visibility.



Sensors 2021, 21, 4659 26 of 31

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

Remaining data fraction of the query tracklets

65

66

67

68

69

70

71

72

73

74

75

76

77

78

R
e-

ID
 p

er
fo

rm
an

ce
 [%

]

530

560

590

620

650

680

710

740

770

800

830

860

890

920

m
A

Q
uI

S
 [

A
re

a
]

Rank-1

mAP

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

Remaining data fraction of the query tracklets

65

66

67

68

69

70

71

72

73

74

75

76

77

78

R
e-

ID
 p

er
fo

rm
an

ce
 [%

]

530

560

590

620

650

680

710

740

770

800

830

860

890

920

m
A

Q
uI

S
 [

A
re

a
]

Rank-1

mAP

(a) Middle part of the tracklet remains. (b) Largest bounding boxes of the tracklet remain.

Figure 18. Accuracy of the re-ID performance (blue) as a function of the remaining data fraction of the query tracklets for
our Tracklet-based Query Approach. The mean Average Query Image Size (mAQuIS) is shown in red, where image refers
to bounding box. The curve color indicates which y-axis is applicable. Results reported as mean (stddev) over 10 cycles
for MGN.

Additionally, the mAQuIS curves supported the conclusion that bounding-box size
was important. For example, when comparing both mAQuIS values at the 95% remaining
data-fraction point, it has a value of 570 pixels for Figure 18a versus 579 pixels in Figure 18b.
Hence, even though there was an increasing trend in the beginning of the reduction of
the remaining fraction in Figure 18a, the mAQuIS curve was always lower than that of
Figure 18b. Nonetheless, the increasing trend at the left of the mAQuIS curve in Figure 18a
may seem special, but this can be readily explained by the viewing angle of the cameras.
That is, even if a vessel traveled at constant speed, from the perspective of the camera it
would move slowly when being far away and quickly when being close-by. Hence, its
trajectory would contain mostly small samples and only a small fraction of the largest
samples. As such, the average bounding-box size of both the very start and very end of the
trajectory was lower than the overall average at first, causing the initial rise.

As a conclusion, we adopted the second approach for preserving tracklet data when
some parts were omitted, where the focus will be on keeping the largest bounding-box
images in our Query-tracklet filtering system. We chose a fraction of 40% as the preferred
value for the fraction of remaining tracklet data, since this was a good balance between
re-ID performance while keeping a sufficiently large number of bounding-box images to
dominate the amount of less informative bounding-box images (low-quality or occlusions).
With this approach and setting, an additional 2.0% Rank-1 performance increase was
obtained for our final re-ID stage.

6.7. Travel-Time Selection

In this function, the added value of database filtering was evaluated, based on the
implied travel time (see Section 3.2, G). This function can be directly applied to other object
classes as well, such as persons or vehicles [25].

Inspection of our Vessel-reID dataset revealed that the vessel travel time between
the two cameras was roughly 32 min. Additionally, we found that from all vessels in our
dataset, only two vessels required more than 2 h to pass. Hence, we excluded any possible
matches from the gallery where the implied travel time was longer than 2 h. The travel
time was determined by comparing the time difference between the vessel occurrence
time and the appearance times of the same vessel in the gallery tracklets. This function
was applied on top of our previously discussed approach to concentrate on the largest
bounding-box images in the query tracklet. In Table 4, an incremental overview of each
function is presented in our final re-ID stage, showing its individual influence on re-ID
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performance. The results highlight that including travel-time information significantly
improved re-ID performance, by 2.2% Rank-1 and 3.8% mAP for MGN.

Table 4. Re-ID performance on our Vessel-reID dataset, when incrementally applying the novel
functions on tracklet-based querying, remaining data selection, travel time, and cross-camera samples
(see Section 3.2). Bold numbers indicate the reference values for both the ’Real-time optimized’ and
’Largest BB images only’ results. Results reported as mean (stddev) over 10 training cycles.

TriNet MGN
Description Rank-1 mAP Rank-1 mAP

Vessel-reID
(baseline) 55.9 (±1.4) 49.7 (±1.0) 68.9 (±0.9) 62.6 (±0.6)

+ Tracklet-based
Querying

All 61.9 (±1.4) 55.0 (±1.0) 73.9 (±0.7) 68.1 (±0.5)
Top-10 63.7 (±1.1) 56.3 (±0.8) 73.8 (±0.9) 68.0 (±0.6)
Top-15 64.0 (±1.2) 56.5 (±0.9) 74.3 (±0.9) 68.2 (±0.6)
Top-25 63.8 (±1.2) 56.4 (±0.9) 74.5 (±0.9) 68.3 (±0.5)

+ Real-time
optimized 62.2 (±1.4) 55.4 (±1.0) 74.5 (±0.8) 68.0 (±0.5)

+ Largest BB
images only 66.3 (±1.2) 58.5 (±1.0) 76.5 (±1.0) 69.7 (±0.5)

+ Travel-time
selection 70.4 (±1.2) 64.1 (±0.8) 78.7 (±1.0) 73.5 (±0.4)

+ Only
cross-camera 80.1 (±0.9) 74.1 (±0.6) 88.9 (±0.6) 83.5 (±0.2)

+ Real-time
optimized 79.6 (±0.8) 73.9 (±0.6) 89.3 (±0.5) 83.3 (±0.2)

6.8. Only Cross-Camera Samples in Gallery

In the functions discussed above, we improved the Default Querying Approach but
still adopted the common database practice for comparison purposes with re-ID literature.
Here, as mentioned in Section 3.2, each query was matched to a combined gallery, consisting
of all images from all cameras. The only images that were excluded from the gallery were
the images from the query tracklet, i.e., those from the same class (e.g., vessel) that also
originate from the same camera as the query. Using the combined gallery of all cameras,
it was more likely that mismatches could occur. However, given our application, we
specifically required that a query from one camera was matched to the gallery images
of another camera. In this subsection, we defined a function that changed the previous
generic matching procedure such that it only considered images of the other camera in the
gallery, thereby restricting ourselves to only cross-camera matching. An evaluation with
this constraint provided insight into how the vessel-speed enforcement application would
ultimately perform in practice.

For this application, we obtained the final re-ID performance by applying this cross-
camera matching function on top of all previously introduced refinement functions. That
is, by applying the proposed only cross-camera matching in combination with the Top-
25 Tracklet-based Querying Approach, where only the largest bounding-box images per
tracklet were considered and additional travel-time selection was included. As presented
in the bottom row of Table 4, a re-ID performance score of 88.9% Rank-1 and 83.5% mAP
was achieved ultimately for MGN.

7. Discussion

An important point of discussion is the fact that the system design is actually based on
a closed-set gallery, which refers to the fact that there is always a matching vessel for each
query image in the gallery. This effectively means that in our experiments we considered
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a closed-set re-ID problem. However, in an actual real-world application of our system
we have to consider re-ID as an open-set problem, because for some vessels there are no
matches available. Images of a newly appearing vessel (sailing into the trajectory covered
by the cameras) should not/cannot result in a matching historic vessel. Moreover, vessels
can be removed already actively from the gallery set after their maximum travel time has
passed, since we are only interested in speeding vessels. This effectively reduces the gallery
set and removes the closed-set constraint. Although in reality there may not be a true
match in the gallery set, the proposed system always returns the best-matching vessel. This
emphasizes the value of the Rank-1 evaluation score. Therefore, the system design needs
to be adjusted, such that also a non-match can be detected, e.g., by applying a threshold on
the matching score. The impact of this modification is left for future work.

8. Conclusions

In this paper we have proposed a first camera-based vessel-speed enforcement system.
This system uses a setup with two cameras, spaced several kilometers apart. To our
knowledge, this is the first time that an automated trajectory speed measurement system
for vessels has been investigated and reported. The system performs vessel detection and
tracking per camera view and employs a re-ID system that links vessels between the two
cameras. Multiple images are collected for each vessel and stored in a gallery database for
visual re-ID. Newly detected vessels in one camera (query) are compared to the gallery set
of all vessels detected by the other camera.

Novel dataset. We have introduced the novel Vessel-reID dataset. This extensive
vessel dataset was captured by two camera positions mounted 6 kilometers apart at a canal
in the Netherlands. During four days, a total of 2474 different vessels were captured. Each
vessel is represented by multiple images captured along its trajectory in the camera view,
resulting in 18,338 camera images (video frames), totalling to 136,888 vessel image crops
(bounding boxes). The set contains a large variation in vessel appearance, varying from
large commercial barges to sailing ships and small dinghies. Most vessels in the set are
pleasure crafts. The total set has been separated in train and test sets by using separate
days of data capture, resulting in a test set with different light/weather conditions, instead
of mixing data of all captured conditions in the test and train sets, which is common in
re-ID literature.

Vessel detection. We have investigated the effect of the dataset on the detection perfor-
mance. It was found that the SeaShips-7000, VCA-VCO and our Vessel-reID dataset are
providing different performances and training with all datasets jointly results in the best
performance. The performance of various CNN architectures for detection has been evalu-
ated. The Faster-RCNN (85.0% R@95P) and SSD512 (84.0% R@95P) detectors both result
in a high detection accuracy, whereas FCOS (78.0 R@95P) and YOLO-v3 (71.0% R@95P)
obtain a lower performance. When visually inspecting detection results, it seems that
Faster-RCNN generalizes better to the large variation of vessels and can handle occlusions
better. All detection models are able to accurately detect ships of different sizes, but show
a small performance decrease for small vessels. We have measured the computational
complexity of all detectors and found that SSD512 yields optimal performance with respect
to accuracy (20.1 frames per second). For the re-ID of vessels, we have experimentally
validated that for most vessels, a large portion of the total trajectory is detected by the SSD
detector. All vessel types are detected, with an exception of a few very small rowboats
having a limited size of only a few pixels. Summarizing, the detection system accurately
recognizes vessels, which enables further application of vessel re-identification.

Re-identification. We have performed an extensive comparison of two popular re-ID
algorithms: TriNet and the Multiple Granularity Network (MGN), where MGN consistently
outperforms TriNet in all of our experiments. Directly applying these algorithms with the
common evaluation method in which single images of vessels are compared for re-ID, results
in a (baseline) score of 55.9% Rank-1 (49.7% mAP) for TriNet, while MGN obtains 68.9%
Rank-1 (62.6% mAP). Our main contribution for re-ID is in applying matching with multiple
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images from the trajectory of a single query vessel, in contrast to matching based on a single
image only. This aspect alone significantly increases the re-ID performance with 5.6% Rank-
1 (5.7% mAP) for MGN. When additionally emphasizing the largest images in the query
tracklet that contain more fine details of the query vessel, another 2.0% Rank-1 (1.4% mAP)
is added to the re-ID performance. Next, we have proposed application-specific filtering
of matches to further improve re-ID performance. First, applying travel-time selection
adds 2.2% Rank-1 (3.8% mAP), leading to a combined performance of 78.7% Rank-1 and
73.5% mAP, without re-ranking. Second, by further restricting to cross-camera matching
only, we obtain the highest re-ID performance where 88.9% (Rank-1) of the vessels are
correctly re-identified in the other camera (83.5% mAP). The proposed extra functions result
in a significant increase in performance of +20% Rank-1 and +21% mAP, compared to the
single-image baseline matching. The final re-ID contribution contains also a execution-time
analysis of the proposed re-ID stage. A computational speedup is achieved by applying
linear subsampling to all trajectories (query and database) to limit the number of images
per trajectory. Extensive validation has shown that 20 images per trajectory yields the best
balance between re-ID accuracy and execution time, resulting in a speedup of 4× (from 1250
to 275 msec per query) without loss in accuracy for the Rank-1 score and only a 0.3% mAP
loss. With this setting, applying the proposed matching and travel-time selection procedure
yields an average throughput of 3.6 vessels per second, which is clearly sufficient for the
law-enforcement application, as vessels typically do not move fast.

Summarizing the final conclusions, the vessel recognition system efficiently detects
all vessels that pass the camera view. Re-identification links unique vessels between the
two cameras and achieves a high accuracy of close to 90% Rank-1 score. The proposed
system enables the automated speed measurement of vessels over a large-distance trajec-
tory. The proposed system can achieve real-time operation with 20.1-fps object detection
and 3.6-vessels/s re-identification (where 0.05 vessels/s have been observed during peak
hours). Although the current process of law enforcement still requires the intervention
of a human operator, the performance of our automated system is very high and can be
integrated to directly support law enforcement. Consequently, the system automatically
captures 90% of all speeding vessels, while only leaving the operator a manually filtering
task for the remaining incorrect 10%. All proposed improvements have been experimen-
tally validated for the vessel class, but are expected to give similar re-ID performance gains
for other classes such as persons.
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