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Abstract: Spatial susceptible landslide prediction is the one of the most challenging research areas
which essentially concerns the safety of inhabitants. The novel geographic information web (GIW)
application is proposed for dynamically predicting landslide risk in Chiang Rai, Thailand. The
automated GIW system is coordinated between machine learning technologies, web technologies,
and application programming interfaces (APIs). The new bidirectional long short-term memory
(Bi-LSTM) algorithm is presented to forecast landslides. The proposed algorithm consists of 3 major
steps, the first of which is the construction of a landslide dataset by using Quantum GIS (QGIS). The
second step is to generate the landslide-risk model based on machine learning approaches. Finally,
the automated landslide-risk visualization illustrates the likelihood of landslide via Google Maps
on the website. Four static factors are considered for landslide-risk prediction, namely, land cover,
soil properties, elevation and slope, and a single dynamic factor i.e., precipitation. Data are collected
to construct a geospatial landslide database which comprises three historical landslide locations—
Phu Chifa at Thoeng District, Ban Pha Duea at Mae Salong Nai, and Mai Salong Nok in Mae Fa
Luang District, Chiang Rai, Thailand. Data collection is achieved using QGIS software to interpolate
contour, elevation, slope degree and land cover from the Google satellite images, aerial and site
survey photographs while the physiographic and rock type are on-site surveyed by experts. The
state-of-the-art machine learning models have been trained i.e., linear regression (LR), artificial neural
network (ANN), LSTM, and Bi-LSTM. Ablation studies have been conducted to determine the optimal
parameters setting for each model. An enhancement method based on two-stage classifications has
been presented to improve the landslide prediction of LSTM and Bi-LSTM models. The landslide-risk
prediction performances of these models are subsequently evaluated using real-time dataset and it
is shown that Bi-LSTM with Random Forest (Bi-LSTM-RF) yields the best prediction performance.
Bi-LSTM-RF model has improved the landslide-risk predicting performance over LR, ANNs, LSTM,
and Bi-LSTM in terms of the area under the receiver characteristic operator (AUC) scores by 0.42,
0.27, 0.46, and 0.47, respectively. Finally, an automated web GIS has been developed and it consists of
software components including the trained models, rainfall API, Google API, and geodatabase. All
components have been interfaced together via JavaScript and Node.js tool.

Keywords: landslide risk prediction; geographic information system; google map; machine learning;
linear regression; artificial intelligence; long short-term memory
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1. Introduction

Landslides are a natural disaster where land or rocks can follow along the slopes of
the mountain. In most cases, landslides occur with or after heavy rains, causing the soil
to become so wet that the weight of the soil mass increases and as a result, the adhesion
force between the soil masses decreases [1–3]. Landslides occur slowly or suddenly. If
there are inhabitants or properties in the direction of soil flow, then they may also cause
damage to life and property [4]. According to the statistics on landslides in Thailand,
most of them occur in the mountainous regions from the upper central to the northern
regions. Additionally, there is a southern region in which they sometimes occur. While not
as frequent as floods, over the past 30 years, landslides have killed more than 500 people.
Analysis results from the Department of Mineral Resources found that Thailand has 54
provinces or 1084 sub-districts affected by landslides. Areas at risk from landslides have
been estimated by using various geospatial data to be analyzed together according to
GIS techniques such as topographic data, area slope, geological data, information on the
location of community sources, and land use information, etc.

The landslide occurrence is a complex process which is a combination of multiple
interacting factors. In previous decades, traditional methods for landslide susceptibility
assessment have relied on statistical-based approaches and data-driven approaches. For
example, frequency ratio and index of entropy models [5,6], a logistic regression (LR)
approach [7–9], and support vector machine (SVM) [10–13] are powerful approaches
to predict potential landslides. However, these approaches require a large number of
samples in order to yield high predicting accuracy. Landslides occur from time to time in
random locations, but will significantly cause damage and impact on people and property.
Disadvantages of traditional landslide prediction include: (1) the models generally require
a large amount of prior knowledge and assumptions. (2) The networks are not sufficient
to characterize the underlying non-linear features of landslides. (3) The networks are
not sufficiently wide to consider the correlations between sub-regions. (4) The models
encounter problems, such as over-fitting, time-consuming computation, ease of falling into
local optima, and sensitivity to missing data, which affect the accuracy of prediction.

Recently, model-based learning approaches have been extensively exploited for land-
slide prediction. Artificial neural network (ANN) [14–17], long short-term memory (LSTM),
and deep learning methods have been trained for learning landslide patterns and extracting
crucial factors of landslide susceptibility. LSTM applies gate control logics and memory
to learn long temporal dependency data in time series predictions [18–21]. For example,
the research in [18] provided 14 factors which can be categorized into 3 groups. These are
topographic, land cover, and hydrological factors, achieved by obtaining information from
remote sensing images and a geographic information system. Historical landslides areas
of study have a total of 369 landslides from 1970 to 2012. Machine learning was built by
using LSTM with conditional random field. This method yields better landslide-prediction
rate than multilayer perception, logistic regression, and decision tree. The dynamic model
in [19] was proposed for foretelling the movement associated with the landslide in China
in September 2015. The landslide area is about 200 × 300 m. The LSTM model is given by
multiple factors of geological conditions, rainfall intensity, and human activities. Compared
with a traditional mechanical model, the deep-learning-based models are able to extract
inherent and deep features given by smaller data. Hence, the model-learning approach has
good characteristics of dynamic feature to capture landslide pattern from a limited dataset.

Thailand is a country in the center of Southeast Asia which has a total size of
513,120 km2 (198,120 mi2). Most of Thailand’s terrain is the high mountainous area in
the North, an upland plateau in the Northeast, a central plain in the middle and the sea in
the South. Thailand’s climate is divided into three seasons which are the rainy, winter, and
summer seasons. Large landslides have occurred in Thailand every 3–5 years [22]. Research
on landslides and landslide forecasts in Thailand have constantly been developed. Various
prediction approaches have been employed for estimating landslides risk such as the GIS,
remote sensing techniques, statistical methods, or machine learning models. Phetchabun
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Province used GIS and remote sensing techniques in 2006 [23]. In 2010, a weighting factor
and geotechnical methods were used to estimate the safety factor scores, then generate
a landslide susceptibility map of Phuket Island by using APIs. Some studies have used
statistical methods to predict landslide probability levels. A landslide probability model
under multiple global climate models (GCMs) was applied to project the probability of
landslide occurrences in Thailand in 2014 and used a shallow landslide instability predic-
tion model (SLIP) to foretell the risks of landslides based on rainfall triggering factor in
2018 [24,25]. Almost all research predicts the likelihood of landslides for an area at the
provincial, district, or sub-district level. However, the landslide prediction of smaller areas,
at the village level or smaller, have not been largely presented. Therefore, the smart GIS
web application of landslide-prediction risk is an important challenge for this country.

The prediction of landslides is the one of the most challenging topics because of the
complexity of the relationships of various dynamic and uncertain factors and the physical
gaining data processes. When the relatively small or limited number of landslide data are
available that will lead to an extreme scenario of the landslide prediction problem. The
prediction method will be formulated to capture the significant features from the training
model process. This research exploited state-of-the-art machine learning approaches for
building landslide prediction applications, given by limited historical landslides and
landslide factors. The innovations of this research can be highlighted as the following
points: Firstly, only five landslide factors from three historical landslides were provided for
model learning, categorized into 2 groups: statistical factor and dynamic factor. Secondly,
various types and formats of data; i.e., aerial digital images, Google satellite, and site survey
photographs, were combined by using QGIS software tool to form geospatial landslide
information. The learning weight of the full-connected network will be determined by the
value from the previous associated training model. Next, the model-learning approaches
characterize the nonlinear long-term scenarios to describe the multi-scale temporal and
spatial relationships between landslide occurrence and various influencing factors [26]. To
the best of our knowledge, based on literature reviews, Bidirectional-LSTM (Bi-LSTM) has
rarely been applied for the susceptible landslide-prediction problem yet. The prediction
model automatically corresponds to dynamic factors i.e., rainfall. Finally, a web application
of dynamic online landslide susceptible risk was developed through interfacing dynamic
rainfall from API data, the trained model, and geometric visualization via website.

This paper is organized as follows: Section 2 presents the detail of the landslide-risk
web GIS methodology. Next, Section 3 evaluates and elucidates the performance of the
proposed landslide-risk web GIS method. Finally, Section 4 summarizes the proposed web
application and future research prospects.

2. Methodology
2.1. Study Area

Chiang Rai Province in Thailand is the one of the country’s most famous tourist attrac-
tions. Chiang Rai is Thailand’s northernmost province and is mostly a high mountainous
and hilly region. The average elevation of the province is 580 m (1903 ft), where the high-
way stretches through seven large mountains and the Kok river flows along Chiang Rai’s
north side. Chiang Rai has a tropical wet and dry climate with an average daily maximum
of 34.9 ◦C (94.8 ◦F) [27]. The rainy season runs from late April through October. The studies
are three historical landslide locations which are Ban Pha Duea (A) at Mae Salong Nai, Mai
Salong Nok (B) in Mae Fa Luang District, and Phu Chifa (C) at Thoeng District, Chiang
Rai, Thailand as presented in Figure 1. These areas have frequently occurring landslides in
tourist and densely populated areas.
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Figure 1. Digital map of historical landslide locations in the study area.

Pha Dua Village Community (Study Area A), which is located in Mae Salong Nai
Subdistrict Mae Fah Luang District and near the area of Tambon Pa Tung, Mae Chan
District. Study Area A covers an area of 25 square kilometers. Study Area A has traces of
landslides in several places as shown in Figure 2.

Figure 2. Landslide on 4 September 2017 at Pha Dua Village Community (Study Area A). Ref. https://www.thairath.co.th/
news/local/north/1062644 (accessed on 30 May 2021).

In the recent past, in 2017, a landslide occurred in the area of community in Village
No. 6, Ban Pha Dua. Whole houses collapsed and were damaged by the movement of
the soil in a vertical distance of over 40 m, sliding down to a depth of more than 30–40 m.
The proportion of land cover types of Study Area A are 6.26%, 3.50%, 60.08%, 23.92%, and
6.24% for building, road, trees, glass or shrub, and bare soil, respectively. Rock type is Dc.
The elevation of Study Area A is in the range of 630–550. The slope level of Area A is in the
range of 0.04–53.5.

https://www.thairath.co.th/news/local/north/1062644
https://www.thairath.co.th/news/local/north/1062644
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Study Area B refers to a landslide that occurred 21 August 2018, where soil in the
community area sank more than 25 cm deep and stretched over 80 m as shown in Figure 3.
The proportion of land cover types of study area B are 20.58%, 7.66%, 47.78%, 19.02%, and
4.96% for building, road, trees, glass or shrub, and bare soil, respectively. Rock type is Cb.
The elevation of Study Area B is in the range of 1080–1100 m. The slope level of Area A is
in the range of 0.03–56.9.

Figure 3. Landslide on 21 August 2018 at Mai Salong Nok (Study Area B). Ref. https://mgronline.
com/local/detail/9610000083606 (accessed on 30 May 2021).

Study Area C is a landslide that occurred on 31 July 2018, where buildings collapsed
into a canyon about 50 m deep as shown in Figure 4. The proportion of land cover types
of Study Area C are 12.51%, 10.24%, 25.56%, 33.24%, and 18.44% for building, road, trees,
glass or shrub, and bare soil, respectively. Rock type is Dc. The elevation of Study Area C
is in the range of 1260–1340. The slope level of Area A is in the range of 0.01–68.6.

https://mgronline.com/local/detail/9610000083606
https://mgronline.com/local/detail/9610000083606
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Figure 4. Landslide on 31 July 2018 at Phu Chifa, (Study Area C). Ref. https://mgronline.com/local/
detail/9610000075917 (accessed on 30 May 2021).

2.2. Instability Landslide Factors

Four static factors are considered for landslide-risk prediction, namely, land cover,
Physiographic (soil properties), elevation and slope, and a single dynamic factor i.e.,
precipitation [28]. Static data acquisition is achieved using QGIS software to interpolate
contour, elevation, slope degree, and land cover from the Google satellite images and aerial
and site survey photographs, while physiographic and rock type are on-site surveyed by
experts. Figure 5 presents static instability-landslide factors by QGIS.

Figure 5. Static instability-landslide factors by QGIS.

https://mgronline.com/local/detail/9610000075917
https://mgronline.com/local/detail/9610000075917
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Study Areas: A, B, and C have latitude-longitude at the center of each area as:
(20.169946, 99.7401521), (20.1537033, 99.62243674), and (19.8446844, 100.4371284), respec-
tively. Each study area covers an area of 25 square kilometers. Geographical data of the
three landslide sites was obtained from 3 sources: aerial photographs, Google satellite,
and site surveys. Aerial photographs are primary geographic data obtained from rele-
vant government agencies such as Department of Mineral Resources, Ministry of Natural
Resources and Environment, Thailand, Royal Thai Survey Department, and Bureau of
Research, Development and Hydrology in Department of Water Resources. Google Satel-
lite refers to the digital aerial photographs taken by selecting the satellite view of Google
Maps web application. Geographic information is used for determining the position of the
landslide locations from the detailed satellite data of the study areas i.e., A, B, and C as
in Figure 6. The digital evaluation maps (DEM) were generated by using QGIS according
to the following steps:

1. Determine the center of the study area based on an EPSG coordinate system.
2. Generate based map by using QGIS tools.
3. Segment the area into grid cells where a grid size is 0.25 km2.

Figure 6. Study area of A, B, and C by QGIS.

2.2.1. Land Cover Geographic Information

Land cover was categorized into 6 types given by Google satellite, which are bare
soil, building, road, glass or shrub, and trees. The land-cover maps were captured in 2019.
The 6 types of land cover were classified according to the land-cover classes of the Land
Development Department, Thailand. Aerial photography and Google Satellite images
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were transformed into digitalized map. Land cover information was generated by the
following processes:

1. Annotate each type of land cover by using polygon tools throughout the map.
2. Generate land cover dataset by exporting land cover layer into a Shape file.

Examples of land cover map are illustrated in Figure 7 where red square symbol
denotes a historical landslide location, dash lines represent a study area, brown areas mean
bare soil, green areas represent trees, a light green area is grass or shrub, light gray areas
indicate buildings, dark gray areas mean roads, and a blue area means water.

Figure 7. Land cover map in 2019 of study areas: A, B, and C by QGIS.

2.2.2. Physiographic (Soil Types) Geographic Information

Based on aerial photographs from Department of Mineral Resources, Ministry of
Natural Resources and Environment, Thailand, Chiang Rai’s physiographic consists of
five major classes. Studied areas contain two physiographical classes i.e., the first class is
sedimentary or metamorphic rock, and granite in the second class. Aerial photographs
were transformed into image digitization via QGIS, as illustrated in Figure 8.

2.2.3. Elevation Geographic Information

Aerial photographs and DEM from Department of Mineral Resources, Ministry of
Natural Resources and Environment and Royal Thai Survey Department were transformed
via QGIS by the following steps to generate contouring and elevation map (as presented
in Figure 9):

1. Create Raster layer by using DEM. Raster data is like any image that depicts various
properties of objects in the real world.

2. Generate contouring and elevation by using Vector > Geometry tools > Centroids, set
interval between contour line, and fetching elevation values from Raster layer via
Sample Raster Values tools.
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Figure 8. Chiang Rai Geological Map from the Department of Mineral Resources.
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Figure 9. Elevation maps of study areas: A, B, and C by QGIS.

2.2.4. Slope Geographic Information

Slope is the angle of disposition to the horizontal. Slope was obtained using primary
data from aerial photographs and DEM from Department of Mineral Resources, Ministry of
Natural Resources and Environment and Royal Thai Survey Department. Slope maps were
rendered by QGIS via Slope tool to illustrate the steepness of areas, as shown in Figure 10.
The steepness (degree) of the slope is expressed by its saturation—steeper slopes are
darker colors.

Figure 10. Slope maps of study areas: A, B, and C by QGIS.
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In the Figure 7, the symbols , , , and denote Subdistrict Adminis-

trative Organization, school, temple, and landslide area. Slope level
symbols are 0.03, 15, 30, 45, and 60, respectively.

2.2.5. Dynamic Rainfall Factor

The cumulated rainfall and the duration of the rainfall events can trigger landslides
but in the case of less severe rainfall events, moisture content plays an important role in the
occurrence of landslides. Heavy rain breaks the bond between soil particles. This causes
the particle disintegration. Continuous flow of runoff water along land covers leads to
slides. Due to soil absorbing water, the unit area and total weight increases, and also in pore
pressure. Finally, the water percolates in joints and cracks and triggers landslides [29,30].
Daily rainfall data was collected from the Bureau of Research, Development and Hydrology
in Department of Water Resources, Ministry of Natural Resources and Environment,
Thailand. Rainfall of each study area is based on the three closest rainfall monitoring
stations. The 4-day cumulative rainfall was calculated for the dynamic in rainfall as plotted
in Figures 11 and 12. The 4-day accumulated rainfall is the summation of the daily rainfall
and the previous 3 days of precipitation. Studied areas A and B are close to each other.
Hence, both areas use the same rainfall monitoring stations, which are STN0183, STN0195,
and STN0401. However, studied area C uses the rainfall monitoring stations: STN0046,
STN0384, and STN0399. Effect of rainfall on landslides is interpolated by relating distance
from each rainfall monitoring station of the individual area to each grid cell. Thus, the
effects of drainages and surface water in the areas were interpolated by computing a
ratio of rainfall per the distance between the centroid of each grid cell to each rainfall
monitoring station.

Figure 11. The 4-day cumulative rainfall of 3 rainfall monitoring stations in 2017 of Study Area A and B.

Figure 12. The 4-day cumulative rainfall of 3 rainfall monitoring stations in 2017 of Study Area C.
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2.3. Landslide-Risk Prediction Models

The five model-based methods were investigated for forecasting landslide-risk predic-
tion: logistic regression (LR), artificial neural network (ANN), gated recurrent units (GRU),
LSTM, and bidirectional LSTM (Bi-LSTM).

2.3.1. Logistic Regression

Logistic regression (LR) is an extension of the linear regression for classification binary
problems. LR is a statistical method similar to linear regression, since LR finds an equation
that predicts an outcome for a binary variable [31]. LR does not strictly require continuous
data. To predict group membership, LR uses the log odds ratio rather than probabilities
and an iterative maximum likelihood method rather than a least square to fit the final
model. This means the researcher has more freedom when using LR and the method may
be more appropriate for non-normally distributed data or when the samples have unequal
covariance matrices. Logistic regression assumes independence among variables, which is
not always met in morphoscopic datasets.

LR can be expressed as the general equation in Equation (1) that can handle any
number of numerical and/or categorical variables [32].

p =
1

1 + e−(β0+β1X1+β2X2+...+βnXn)
=

1
1 + e−(β0+∑n

i=1 βiXi)
(1)

LR equation produces a logistic curve, that the probability of the outcome (p) is limited
between 0 and 1 given by a vector data (Xn). The constant (β0) interchanges the curve left
and right and the slope (βn) defines the steepness of the curve. An advantage of logistic
regression is that it allows the evaluation of multiple explanatory variables by extension of
the basic principles. Logistic regression can also be used to solve problems of classification
as argument of the sigmoid function. The corresponding output of the sigmoid function is
a number between 0 and 1. The middle value is considered as threshold to establish what
belongs to the class 1 and to the class 0.

2.3.2. Artificial Neural Network

Artificial neural networks (ANNs), usually simply called neural networks (NNs),
are computing systems inspired by the biological neural networks of the human brain
processes information [33–37]. ANN consists of a first input layer, then hidden layers, and
lastly an output layer [38]. In each of the layers in ANN, there are nodes called neurons.
A node is a process of a sum of the data along with its coefficient and transfer function
through the network. The process is illustrated in Figure 13.

The neurons network of multi hidden layers can expressed in Equation (2).

x(l+1)
i = f (l+1)

(
j

∑
i=1

w(l)
ij x(l)j + b(l)i0

)
(2)

where x(l)j denotes the jth input at the lth layer e.g., l = 1, 2, 3, and so on. The term w(l)
ij

indicates the weight of the lth layer connecting the jth node to the ith node in the next layer,
b(l)i0 is the bias term of the lth layer connecting to the ith node, and f (l)(·) is the activation
function of the lth layer. The rectified linear units (ReLU) and the Sigmoid function are the
two types of the activation functions that are used in this research. The ReLU and sigmoid
function can be expressed as illustrated in Equations (3) and (4), respectively.

fReLU

(
x(l)j

)
= max

(
0, x(l)j

)
(3)

fsigmoid

(
x(l)j

)
=

exp
(

x(l)j

)
exp

(
x(l)j

)
+ 1

(4)
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The prediction accuracy of the ANN depends on the number of neurons in the hidden
layer; as high numbers of neurons have been shown to enhance the closeness of model
outputs with the training data, although this is not always the case. ANN approach is
applicable to all kinds of relationships including nonlinear, piecewise, discontinuous, etc.

Figure 13. Artificial neural network architecture.

2.3.3. Gated Recurrent Units

Gated Recurrent Units (GRU) is an improved version of standard recurrent neural
network [39,40]. GRU diagram is illustrated in Figure 14.

Figure 14. Structure circuit of gated recurrent unit model.

GRU uses update gate and reset gate to decide [41] which information should be
passed to the output. The update gate zt for time step t using the formula in Equation (5):

zt = σ(Wz · [ht−1, xt]) (5)

when xt is plugged into the network unit, it is multiplied by its own weight Wz. The same
goes for ht−1 which holds the information for the previous t− 1 units and is multiplied
by its own weight. Both results are added together, and a sigmoid activation function is
applied to squash the result between 0 and 1.
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The gate is used from the model to decide how much of the past information to forget
as expressed in Equation (6).

rt = σ(Wr· [ht−1, xt]) (6)

where multiply ht−1 and xt with their corresponding weights, sum the results and apply
the sigmoid function. Current memory content will use the reset gate to store the relevant
information from the past. It is calculated as follows in Equation (7):

h̃t = tanh(W[rt ∗ ht−1, xt]) (7)

Final memory at current time step and information for the current unit is passed down
to the network for updating gate. It determines what to collect from the current memory
content that is done as follows in Equation (8):

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (8)

2.3.4. LSTM

Machine supervised learning techniques have been used to analyze the spatial distri-
bution of landslides by modeling the predictor on a probability of landslide occurrence. The
conventional RNN can memorize short-term sequence data but cannot reserve long-term
sequence data. Hence, LSTM is a memory module of RNN that preserves and transfers
the long depending data through the network. The precipitation factor is regarded as
rainfall-induced landslides. A rainfall scenario is a duration of continuous precipitation
from the rainfall periods before and after the landslide scene [41–43]. The machine will
learn the occurrence of landslide and non-landslide data in order to capture the significant
landslide pattern. Thus, Bidirectional-LSTM was employed to learn the factor data of
forward and backward information. This Bi-LSTM aimed to model the inter-relationship
among the factors from sequential observed data [44,45].

LSTM consists of three types of gates that are forget gate ( ft), input gate (it), and output
gate (ot). The gates selectively memorized the substantial parameters of the gradient-
decrease function. The overview of LSTM is illustrated in Figure 15, composed of two
major components i.e., hidden layers (h) and cell states (C), where the t and t− 1 terms
orderly represent the previous time, and the current time.

Figure 15. Structure circuit of LSTM model.
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Forget gate will decide to reject or reserve information from the cell state (C) that can
be expressed as in Equation (9). The output of the forget gate is then input vector (xt),
which corresponds to the value of the previous hidden layer.

ft = σ
(

W f · [ht−1, xt] + b f

)
(9)

where σ denotes an activation function i.e., Sigmoid function, W and b are weight matrix
and bias vector, respectively, for ft, it, jt, and ot. Input gate’s components expressed in
Equation (10) will compute the information to be updated as a new value (jt) by tanh
function in Equation (11).

it = σ(Wi· [ht−1, xt] + bi) (10)

jt = tanh
(
Wj· [ht−1, xt] + bj

)
(11)

The current cell (Ct) is obtained by adding the results from Equations (10) and (11),
which are multiplied with the multiplying results of the forget gate and the previous
cell-state value (Ct−1). The value of the current cell can be expressed in Equation (12).

Ct = ft ∗ Ct−1 + i∗t jt (12)

The zero or one of the cell states Ct−1 means ‘discarded information’ and ‘reserved
information’, respectively. The value of output gate can be written as in Equation (13).
Next, the value of the current hidden layer computes by relying on the cell status with tanh
function as expressed in Equation (8).

ot = σ(Wo · [ht−1, xt] + bo) (13)

ht = ot ∗ tanh(Ct) (14)

2.3.5. Bi-LSTM

Bi-LSTM architecture are presented in Figure 16. The Bi-LSTMs are comprised of a

forward LSTM (
→
h t) and a backward LSTM (

←
h t) [46]. Both forward and backward layers

perform the standard LSTM by using Equations (9)–(14). The forward layer will compute a
positive input sequence from time T − n to T − 1, while the reverse time sequence from
T − 1 to T − n for the backward layer. The output of Bi-LSTMs can be expressed as the
following Equation (15)

yt = σc

(→
h t,
←
h t

)
(15)

where a σc function can be an average function, a concatenating function, a multiplication

function, or a summation function for combining the two
→
h t and

←
h t outputs from the

hidden layers. The final Bi-LSTM output is represented as a vector YT = [yT−n, . . . , yT−1].
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Figure 16. Architecture of Bi- LSTM model.

2.4. Landslide-Risk Model Measurement

Landslide-prediction performance was measured by evaluating confusion metrics into
the statistical indexes [17]. The statistical indexes can be expressed in Equations (16)–(18)

PPR =
TP

TP + FP
(16)

NPR =
TN

TN + FN
(17)

TA =
TP + TN

TP + TN + FP + FN
(18)

where PPR, NPR, and PA denote the positive predictive rate of the corrective predicted
landslides, negative predictive rate of the corrective predicted non-landslides, and total
predictive rate of the corrective predicted results of landslides and non-landslides, respec-
tively. The TP (true positive) and FP (false positive) terms orderly signify the correct and
mistaken number of landslide grids. TN and FN terms indicate the non-landslides that are
correctly and inaccurately forecasted. The scores of PPR, NPR, and PA are in the range of
[0, 1] where the higher value means the better stability of the model.

In addition, Receiver Characteristic Operator (ROC) curve illustrates the performance
of a classification model at all classification thresholds based on two parameters i.e., true
positive rate and false positive rate. Area Under the ROC Curve (AUC) provides an
aggregate measure of performance across all possible classification thresholds. AUC
denotes the capability of distinguishing between classes. The Higher the AUC, the better
the model is at distinguishing between locations with the landslides and non-landslides.
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2.5. Proposed Automated Landslide-Risk Web GIS Application
2.5.1. QGIS for Geospatial Information

QGIS is a free and open-source software tool for manipulating geographic information
systems (GIS). QGIS stands for Quantum GIS. QGIS functions are map viewing, adding,
and editing geospatial data into maps, analysis associated map information, and exporting
graphical maps or data files. Additionally, QGIS supports various types of GIS formats;
for example, raster, vector, dxf, shapefile, coverage, and also integrates with geodatabases;
such as MapInfo, PostGIS, SpatiaLite, Oracle Spatial, and MySQL Spatial databases. QGIS
function is versatile as its capabilities can be extended with plugin software packages or
written Python or C++ script for performing some specific functions. QGIS have been
employed for numerous landslide studies, for example in [47–49]. Other GIS software are
ArcGIS [50] and SuperMap. However, ArcGIS and SuperMap are license software.

2.5.2. Automated Landslide-Risk Web GIS Application

An automated web application has been developed to present the degree of landslide
risk in study areas A, B, and C. The website will automatically update the risk of landslides
every day by fetching the rainfall via an application programming interface (API) from the
Bureau of Research, Development and Hydrology in Department of Water Resources. The
probability results from the landslide-risk prediction are categorized into one of 5 degrees
of landslide risk. The architecture of the website system is shown in Figure 17.

Figure 17. Proposed architecture of landslide-risk automated web application.

APIs simplifies a complex development of a dynamic GIS website more easily by ab-
stracting more complex code away [51,52]. API cooperates with websites via Hypertext
Transfer Protocol (HTTP) methods and JavaScript language [53,54]. According to Figure 17,
the working process of the website starts from receiving the rainfall through API as a json file
then selecting and fetching the precipitation data of the specified rainfall monitoring stations.
The web server is executed in JavaScript language via Node.js tools. Once the daily rainfall
has already been obtained, the system calculates the accumulated rainfall for 4 days. The
accumulated rainfall along with static landslide-factor data are then passed into the predicting
algorithm based on Python language. The predicting algorithm will scale the input data. The
scaled accumulated rainfall will be normalized by mean and standard deviation values which
are obtained from the training phase. Next, the trained landslide-risk model will be loaded
for predicting the landslide-risk probability of the studied areas. Landslide-risk probabili-
ties, latitudes, and longitudes will be sent to front-end section for displaying landslide-risk
probabilities of grid cells on Google Maps API. The overview of the proposed landslide-risk
prediction algorithm is indicated in the following table Algorithm 1.
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Algorithm 1. Overview of the proposed landslide-risk prediction algorithm

(1) Build the landslide dataset by using QGIS:

(1.1) generate grid-based maps of 3 historical landslide occurs of Study areas given by
Aerial photographs, Google Satellite, and site survey photographs.

(1.2) identify 5 types of land cover from Google Satellite and Aerial photographs and render
land cover digital map.

(1.3) determine physiographic by using Aerial photographs and site survey photographs.
(1.4) compute and render elevation and slope from Aerial photographs and site survey

photographs.
(1.5) fetch historical rainfall data from Department of Water Resources, Ministry of Natural

Resources and Environment, Thailand.
(1.6) export all attributes into the CSV files.

(2) Determine the optimal values of batch size, epochs, and the number of nodes in full-connected
network of ANN, GRU, LSTM, and Bi-LSTM.
(3) Build and train the machine learning model i.e., LR, ANN, GRU, LSTM, and Bi-LSTM by using
the optimal values of parameter from Step 2 given by the landslide dataset. The landslide dataset
was split into a training dataset (80% of landslide dataset) and a testing dataset (20% of the
landslide dataset)
(4) Choose the model that delivers the best prediction performance for constructing the web
application.
(5) Implement and test the automatic landslide-risk prediction web GIS by using JavaScript,
Node.js, and MySQL as web programing language, web development tool on server side, and
database.
(6) Deploy the proposed landslide-risk prediction web GIS on Google Cloud platform

3. Experimental Results and Analysis

The prediction performance of proposed landslide-risk algorithm is investigated in this
section, presented in four sections. The first section shows the optimal parameters of LR,
ANNs, LSTM, and Bi-LSTM. The second section presents the landslide-predicting performance
comparison of the various machine learning methods. An enhanced prediction using two-stage
classifiers is proposed in the third section. The fourth section reveals the automation web
application for predicting and visualizing landslide risk in Chiang Rai, Thailand. The three
historical landslide locations and their landslide factors are presented in Figures 18–20.

Figure 18. Phu Chifa at Thoeng District, Chiang Rai, Thailand.
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Figure 19. Ban Pha Duea at Mae Salong Nai, Chiang Rai, Thailand.

Figure 20. Mai Salong Nok in Mae Fa Luang District, Chiang Rai, Thailand.

Each site is segmented into 5 m × 5 m grid cells where the grid cell maps are used
for training and validating the prediction model. Landslide and non-landslide data were
prepared for the supervised learning where landslide transactions were marked as 1 and 0
for non-landslide transactions. Three landslide areas were converted into 1967 grid cells
in QGIS software. The landslide dataset was exported from QGIS into a csv format as
illustrated in Figure 21, where A–D columns represent static landslide factors, E–G columns
contain dynamic factors, and H column is the classes of landslides (1) and non-landslide
(0). The numbers of landslide and non-landslide grid cells are 1074 and 893 transactions.
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The grid data were randomly partitioned by 80% and 20% to be the training and evaluating
datasets. The values of 4 static factors and a dynamical rainfall factor: i.e., 3 rain stations for
each area; were collected as independent parameters for the machine-learning mode. All
input data was normalized to match for reducing the bias learning. The dependent output
is likelihood of landslide of each grid that will occur. In determining whether a landslide
will occur or not, the outputs were compared to a threshold at 0.5. If probability outputs
were less than 0.5, the corresponding grid was marked as non-landslides. Otherwise, the
results were marked as landslides.

Figure 21. Sample of landslide transaction.

The experiments were conducted in the following hardware and software environ-
ments, hardware environment: AMD Ryzen 9 4900H with Radeon Graphics 3.30 GHz,
Nvidia GeForce GTX 1660 Ti, 16.00 GB DDR4, Windows 10, Anaconda v3, Python v3.8.8,
TensorFlow-GPU v2.3.0, Keras v2.4.3, and QGIS v3.14.

3.1. Determining the Optimal Parameters of Machine Learning Methods

Experiments were established to identify the optimal batch size, epochs, and the
number of nodes for individual machine learning model i.e., LR, ANN with a single hidden
layer (ANN1), ANN with 2 hidden layers (ANN2), ANN with 3 hidden layers (ANN3),
GRU, LSTM, Bi-LSTM. The optimal parameterization was conducted according to the
following sets [55] i.e., batch size: [8, 16, 32, 64, 128], epochs: [10, 20, 30, 40, 50], and each
hidden layer the number of neurons were set as [8, 16, 32, 64, 128, 256, 512]. For all the
experiments the parameters of the ANN were configured as the following: an initializing
function is a uniform function; activation functions used the ReLU function in hidden
layer and the sigmoid function for the output layer. The optimal parametrial results of the
machine learning methods are illustrated below. The best landslide-prediction performance
of ANN methods was obtained when the number of batch size, epochs, and neurons in the
hidden layer were 8, 50 iterations, and 512 nodes as illustrated in Figure 22.
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Figure 22. Accuracy of various numbers of batch sizes, epochs, and nodes of ANN1.

The results of ANN with 2nd hidden layers are shown in Figure 23. The best pre-
dicting performance was obtained when the number of batch sizes, epochs, and nodes
in the 1st hidden layer and the 2nd hidden layer were 8, 50 iterations, 256 nodes, and
128 nodes, respectively.

Figure 23. Accuracy of various numbers of batch sizes, epochs, and nodes of ANN2.
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To determine the number of nodes in the 3rd hidden layer, the nodes in the 1st and 2nd
layers were orderly set at 256 nodes and 128 nodes according to the previous results. The
best landslide-prediction performance of ANN methods was obtained when the number of
batch size, epochs, and neurons in the hidden layer were 32, 50 iterations, and 512 nodes as
illustrated in Figure 24.

Figure 24. Accuracy of various numbers of batch sizes, epochs, and nodes of the 3rd hidden layer ANN3.

As per the results in Figure 25, the GRU architecture was configured by batch size at
64, 20 epochs, and 8 nodes for GRU units and full-connected network.

Figure 25. Accuracy of various numbers of batch sizes, epochs, and nodes of GRU.
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According to the plots in Figures 26 and 27, both LSTM and Bi-LSTM obtained the
best prediction performance when the number of nodes was at 8 nodes for both features
extracting section and full-connected network. The number of batch size and epochs were
128 and 20 iteration for LSTM method and 64 and 30 iterations for Bi-LSTM method.

Figure 26. Accuracy of various numbers of batch sizes, epochs, and nodes of LSTM.

Figure 27. Accuracy of various numbers of batch sizes, epochs, and nodes of Bi-LSTM.
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The weight values of the trained models from each method illustrate the importance
of landslide-risk factors in causing landslide occurrence. The weight scores of each method
are presented in Figure 28. All models showed that rainfall was a significant risk factor
of landslides. Moreover, in all models, bare soil, building, and tall trees will affect for
landslides as well.

Figure 28. Average weight values of landslide factors of studied machine learning models.

3.2. Landslide-Predicting Performance Comparison between Studied Machine Learning Methods

Based on the experimental results of various parameterization in Section 3.1, the
landslide-prediction performance of the trained methods are compared to one another i.e.,
LR, ANNs, GPU, LSTM, Bi-LSTM. The results are illustrated in Figure 29.

Figure 29. Comparison the values of PPR, NRP, and TA of studied machine learning models.

GRU, LSTM, and Bi-LSTM yield the best three of PPR at 0.83, 0.92, and 0.83, respec-
tively. The PPR (which can be called a sensitive test) correctly identifies landslides from
the all-landslide cases. On the other hand, the best three NPR are the ANNs with triple,
double, and single hidden layers at 0.60, 0.52, and 0.53, respectively. The NPR represents



Sensors 2021, 21, 4620 25 of 32

the correct identification of non-landslide from all non-landslides. The ANN3 model yields
the highest TA score at 0.65 which is 0.12 score higher than GRU, 0.09 score over LSTM
and 0.06 score over Bi-LSTM. Figures 30 and 31 present the probability curve with various
threshold values and AUC scores. The thresholds of the plots have AUC scores more
than 0.5 that can be interpreted as all trained models having a high chance to classify the
landslides from non-landslides. The ROC curves of the ANN models are closer to the
top-left corner which illustrate better prediction performance and obtain the largest AUC
areas among the comparison methods.

Figure 30. ROC Comparison of landslide-risk prediction among studied machine learning models.

Figure 31. AUC of studied machine learning models for landslide-risk prediction.

3.3. Enhanced Prediction: Two-Stage Classifiers

The class of LSTM approaches has superior performance in terms of the positive
prediction on many landslide scenarios. However, false alarms have also occurred. Thus,
two-stage classifiers have been investigated to improve the performance of LSTM and Bi-
LSTM methods given by the limited landslide dataset. Two-stage classifiers are comprised
of two sequential steps. The first step is LSTM or Bi-LSTM classification, which aims
to estimate the landslide probability of individual grid cells. The next step involves a
second classifier connected to the output of the LSTM or Bi-LSTM. The second classifier
aims to correct the error resulting from the LSTM or Bi-LSTM and then find the optimal
determination of the predicted probabilities from LSTM or Bi-LSTM in order to make a
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final decision as to whether there is landslide or non-landslide. LR and Random Forest (RF)
models have been used for the second classifier step. The output of the first classifier is the
independent input of LR and RF model where the actual landslides and non-landslides
information are passed to the models as the dependent output. The ROC results of two-
stage classifiers (Bi-LSTM-LR and Bi-LSTM-RF) are illustrated in Figure 32.

Figure 32. ROC Comparison of 2-stage classifiers with ANN3, LSTM, and Bi-LSTM.

3.4. Landslide-Risk Prediction Model Accuracy

The importance of landslide-risk factors will cause landslide occurrence that are
represented by the weight scores as presented in Figure 28. In general, a positive weighting
value means that the factor is directly related to the occurrence of landslides or, on the
contrary, when it is negative. The site of all three landslides occurred on the middle-
elevation area, while at high altitudes there was no landslide. This is because the high-
altitude areas are mountains that are covered with rock or forests. This leads to topsoil
binding that is stronger than the lower-elevation areas that are residential communities. As
a result, elevation does not directly correlate with landslides, which is shown in negative
values. In this research, the rock type was comprised of Chert and Quartz where the
landslide sites in Study Area: A and C are Chert, while Area B is Quartz. These will
cause the weight values of the rock types as both positive and negative values. The
results from ANN models show in a consistent direction that land cover is a significant
factor for landslides, followed by the rainfall. Factors affecting the formation of landslides
of Bi-LSTM model are bare soil, building, tall trees, and rainfall that correspond to the
actual environment.

LR is the simplest method for constructing a model and has low computational
complexity among all other methods. However, LR is suited for linear relationship between
the dependent variable and the independent variables. It is challenging for LR to deal with
complex problems or non-linearity in real-world scenarios, such as landslide-prediction
problems. The learning network-based models are ANN, GRU, LSTM, Bi-LSTM, and
Bi-LSTM-RF. These learning network-based approaches consist of two components which
are made up of a learning network and a result. For the first component, determining
the optimal learning network architecture and parameters of all models for the problem
is critical as it affects the model performance [56]. The network is capable of learning
linearity or non-linearity data. At this stage, this dominates the computational complexity
of the methods which are generally time consuming compared to LR with the same input
dataset. While GRU, LSTM, and Bi-LSTM models are the special cases of the learning
network-based approaches, they have memory logics for previous significant data in the
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learning network model. Therefore, these models will be appropriate for learning a long
time-series data. Secondly, in the result decisioning stage, the output can be binary classes,
discrete or continuous outcomes which are based on the selected method.

AUC scores in Figure 31 of the landslide-prediction performance show that ANN
models yield the highest performance. Due to the occurrence of landslides from the study
area surveyed in the past 3 years, only 1 landslide occurrence was found in each area.
Therefore, this causes the landslide dataset to have a small amount of transaction. The
ANN methods are learning to extract landslide patterns from all datasets, while GRU,
LSTM, and Bi-LSTM methods select some data and remove some during learning processes
based on the reset or forget gates in the model mechanisms i.e., rt = σ(Wr· [ht−1, xt])

and ft = σ
(

W f · [ht−1, xt] + b f

)
, respectively. Thus, GRU, LSTM, and Bi-LSTM models,

which are suitable for long-time scenario dataset, perform landslide-risk prediction at low
accuracy when given by the small size of the landslide dataset. If the dataset has added
the cumulative rainfall, monthly or throughout the year, it will result in an imbalance
classification of the dataset. This is because there is tremendous non-landslide data in
comparison with landslides. In addition, an imbalance classification will lead the machine-
learning model to over-fit. Therefore, it can be concluded that in the case of the available
landslides, landslide influence data are small or limited.

The enhanced prediction model as shown Figure 32 is called the 2-stage classifier
Bi-LSTM-RF, and yields superior performance compared to other classifiers. It is also
observed that if the second stage classifier is a linear classifier, the ROC performance does
not significantly improve. This is evident in the case of 2-stage classifier Bi-LSTM-LR where
the ROC result does not differ from Bi-LSTM. As a result, both ROC lines overlap. Since
the RF classifier operates a non-linear classification, the probability values from LSTM or
Bi-LSTM have been partitioned into multiple ranges of landslide and non-landslide by
decision trees in the RF model. Therefore, the 2-stage classifiers can optimally categorize the
nonlinearly overlapping results. On the other hand, the LR performs a linear classification
and so divides the landslide probabilities into only two ranges: one for landslide and
another one for non-landslide. This leads to similar performance with the former LSTM
and Bi-LSTM by using the threshold.

One reason that LR, ANNs, GRU, LSTM, and Bi-LSTM obtained an AUC accuracy
below 0.8 is due to the challenging dataset that contains small amount of landslides
occurrence data. The percentage of landslide and non-landslide in the dataset are 55%
and 45%. This dataset has rendered these learning models difficult to discover the correct
pattern of landslides. Based on the three historical landslides acquired from the survey
site, this limited the number of landslide data, while non-landslide data can be increased
by extending the study area in the individual site. As the amount of non-landslide data
increases, the AUC score becomes higher to a certain extent. However, our research aims
to predict landslides rather than non-landslides. Therefore, we are unable to rely on
increasing the amount of non-landslide data. Secondly, this is due to the limitation of the
learning method of the model from the small dataset. For example, LR requires the linear
assumption, but landslides are nonlinear phenomena. ANNs, GRU, LSTM, and Bi-LSTM
require a large amount of data for training the models. Moreover, different locations
may naturally have different threshold levels for landslides. When the decision stage of
the learning models has a single threshold for determining the estimated probability of
landslide or non-landslide for all locations, this impacts on the prediction performance.
Hence, we have proposed the Bi-LSTM-RF model which has multi thresholds from the
random forest classifier. As the results, the AUC accuracy of the Bi-LSTM-RF method is
improved over LR, ANNS, LSTM, and Bi-LSTM by 0.42, 0.27, 0.46, and 0.47, respectively.

3.5. Automated Landslide-Risk Web GIS Application

A well-learned model has been integrated into the website system to create a map-
based landslide-risk website. Landslide-risk visualization websites can provide automated,
daily updated landslide surveillance through the synergies of various components in the
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web system by using software tools, i.e., HTML, JavaScript, React, Python, and Python
libraries. JavaScript handles interfacing of multiple components in both backend and
frontend web processing. The web GIS was deployed on Google Cloud and can be accessed
on the landslide-risk website via this link: https://landslide-chiangrai.net (accessed on
30 May 2021). The landslide-risk website presents spatial landslide-risk visualization of
the individual study areas i.e., A, B, and C via Google Maps API. Landslide-risk was
categorized into 5 levels: negligible risk, very low risk, low risk, medium risk, high risk,
and very high risk, corresponding to the estimated landslide-risk probability as in the
range of 0.00–0.10, 0.11–0.30, 0.31–0.50, 0.51–0.70, 0.71–0.90, and 0.91–1.0, respectively. Each
level is represented on Google Maps by color: white, blue, green, yellow, orange, and red,
from negligible risk to very high risk, respectively. The landslide-risk webpage is shown in
Figure 29. Examples of GIS map of each study area are presented in Figures 33 and 34.

Figure 33. Automated landslide-risk web GIS application.

Figure 34. Cont.

https://landslide-chiangrai.net
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Figure 34. Landslide-risk visualization on Google Maps of Study area A (a), B (b), and C (c).

The latitude and longitude locations, along with the landslide-risk values of all grid
cells, have been sent to the Google Maps API for display on the map.

4. Conclusions

In this paper, well-known model-based learning methods were conducted for pre-
dicting landslide-risk in Chiang Rai, Thailand. Five landslide factors were formulated via
QGIS software tool given by Aerial digital images, Google Satellite, and site surveys. The 5
landslide factors were combined with 3 historical landslide occurrences corresponding to
3 Study Areas, exporting CSV files as the landslide dataset via QGIS. The 5 model-based
learning methods, LR, ANN, GRU, LSTM, and Bi-LSTM, were evaluated by their predictive
performance. Each model determined its optimal parameters given by the set of testing
parameters. Enhanced predictive performance using two-stage classifiers—Bi-LSTM com-
bined with Random Forest—were investigated. The best predictive model was selected and
combined with variety software components to build the automated landslide-risk web GIS.
The experimental results unveil that the 2-stage Bi-LSTM with RF yields the best learning
method that is capable of extracting the landslide pattern of the small landslide dataset.
The advantages of the proposed landslide-risk web application are: (1) the geographic
software tool i.e., QGIS can merge diversity geographical sources into the landslide dataset.
The QGIS has user interface that is easy for users to work with. (2) In the case of limited
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data of historical landslides and few landslides-related factors, the 2-stage Bi-LSTM-RF
method is appropriate to create a model for forecasting landslides as demonstrated by the
ROC performance. (3) The complexity of automated web GIS is simplified by employed
APIs interfacing to other software components of the web application. This has led to
increasing the speed of the web development process. (4) The proposed landslide web
algorithm can be regarded as a platform for implementing a landslide-risk web GIS in
other areas.
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