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Abstract: This review paper presents an assortment of research on a family of photodetectors which
use the same base mechanism, current assistance, for the operation. Current assistance is used to
create a drift field in the semiconductor, more specifically silicon, in order to improve the bandwidth
and the quantum efficiency. Based on the detector and application, the drift field can be static
or modulated. Applications include 3D imaging (both direct and indirect time-of-flight), optical
receivers and fluorescence lifetime imaging. This work discusses the current-assistance principle,
the various photodetectors using this principle and a comparison is made with other state-of-the-art
photodetectors used for the same application.

Keywords: current-assistance; CAPD; CMOS; fast time-gated cameras; demodulation; avalanche; Geiger

1. Introduction

Over the years, the prefix “current-assistance” has been found in an increasing number
of different photonic sensors: current-assisted photonic demodulators (CAPD) for time-
of-flight imaging [1–18], fast time-gated current-assisted photonic samplers (CAPS) for
high-precision fluorescence lifetime imaging [19–22], current-assisted photodetector (CAP)
for optical receivers [23] and current-assisted single-photon avalanche diodes (CA-SPAD)
for fast and efficient single-photon detection [24,25]. This review paper focusses on research
performed at the Department of electronics and informatics (ETRO), Vrije Universiteit
Brussel (VUB) using this “current-assistance” principle.

2. Current-Assistance Principle

In Silicon photodetectors, it is always desirable to have a high quantum efficiency
in the spectral region of interest. For applications requiring high quantum efficiency in
the near infra-red (NIR) region, a quick solution is to have a thick/deep absorption layer
because more low energy (or long wavelength) photons can be absorbed. The relation
between the absorption and the epilayer thickness can be seen in Figure 1a,b. Unfortunately,
there are no free rides on the Quantum Efficiency Express. A large photon-absorption
volume will indeed result in more photo-generated carriers, but without any electric
field present in the absorption volume, the main carrier transport mechanism is diffusion.
Diffusion is where the free carriers move from a region of high carrier concentration to a
region of low carrier concentration [26]. Diffusion is not directional and does not always
lead to free carriers ending up in the region of interest, i.e., the detection node. Moreover,
diffusion is a slower process compared to drift, thus the generated photo-carriers have a
higher chance of recombination leading to a loss in quantum efficiency. In short, the pixel
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volume is “self-limiting” because if there is no electric field in the whole volume; this leads
to drop in speed and in quantum efficiency.
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The other major carrier transport mechanism is drift. Due to an electric field, carriers
move swiftly with a drift velocity (vd). At low electric fields, the drift velocity follows
the Equation (1), where it is directly proportional to the applied electric field (E) and
the mobility of the carriers (µ). Here, the movement is faster compared to diffusion
and very directional. Therefore, the generated photo-carriers can be directed, with the
required speed, to the region of interest where they can be detected. Usually, the drift
field is fast enough that almost all generated carriers can be detected before recombining.
Recombination lifetimes (τ) range from nanoseconds to milliseconds depending on the
dopant concentration and recombination-centers concentration [28].

vd = µ× E (1)

Traditionally, a p-n junction is used for photo-detection because of the built-in electric
drift field that separates the generated electron-hole pairs. The electric drift field increases
carrier speeds proportionally to the electric field strength (Equation (1)) up to carrier
saturation velocity.

However, another way of establishing a drift field is through the application of a
current through or voltage across a semiconductor material. Like with Ohm’s law, it is
hard to tell whether one applies a voltage and gets a current in return or vice versa. The
resulting current-assisted drift field distribution, is different from the built-in (and/or
applied) drift field distribution in the case of a p-n junction. Since the unavoidable assisting
current makes the distinction between the two origins of having a drift field, the qualifier
“current assistance” has been used systematically to distinguish detectors based on this
type of drift-field. The drift field due to current-assistance also follows Equation (1) up to
carrier saturation velocity.

As the origin of both types of electric field distribution are different, the possibilities,
limitations, and challenges are different in each case. The current-assisted drift fields can
be switched in direction, and in some cases allow more easily to fill a larger semiconductor
volume with a drift field. However, the cost of applying this drift field is the current-flow
between the two regions, due to a flow of majority carriers (holes in p-type semiconductor
and electrons in n-type semiconductor) and its associated power dissipation.

For example, in a p-i-p semiconductor structure, when a potential difference is applied
between the two p-type regions, there will be a flow of holes from the p-type region with a
higher potential to the p-type region with a lower potential. Now, if a photon is absorbed
in the i-region, it will generate an electron-hole pair. The photoelectron will experience a
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drift field towards the p-type region with the higher potential while the associated hole
will drift in the opposite direction. This phenomenon is illustrated in Figure 2.
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in Y) (b) and the corresponding conduction and valence band energies with overlaid illustration of
current-assistance operation (c).

The current assistance principle is illustrated in Figure 3 by a planar CMOS technology
compatible structure and is simulated in Silvaco Atlas device physics simulator [29]. This
cylindrical photodetector, situated in a high-resistivity p- epilayer (~1000 Ω·cm), has a very
small p-n junction diode in the center. The diode comprises of a n+ cathode surrounded
by a p+ annular anode. This “central” photodiode is surrounded by a larger ring of p+

doping, which we will refer to as ring. The extent of the ring marks the boundaries of the
photodetector and the area encapsulated by the ring is the photo-absorption area. The
central p-n junction is reverse biased, and the ring is biased at a lower potential than the
anode. Due to this potential difference, there is a hole current between the anode and the
ring. The photo-generated electrons in the volume between the anode and the ring will
be swiftly guided towards the anode with a drift velocity (vd). When the photo-electrons
reach the anode, they only have to diffuse a very small distance to fall into the depletion
region and get detected by the cathode. There is a depletion region in the epilayer, whose
area is proportional to the reverse bias voltage and the doping concentration, that normally
does not extend beyond the epilayer due to the high doping levels of the p+ substrate.
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Figure 3. Cross section of the example structure to demonstrate current-assistance principle with an
overlay of simulated current flowlines.

Once the photoelectrons reach the vicinity of the anode region, they will have to
diffuse a small distance, due to a small potential gradient around the anode, to fall into
the depletion region between the anode and the cathode at which point they are detected.
The photo-detection bandwidth is dictated by the size of the detector, the larger the
detector the more the transit time to reach the detection area. In practice, diffusion of
the photoelectrons near the anode can be a main factor which limits the bandwidth of
current-assisted detectors with a lateral drift field. A simulated impulse response of the
example detector, when illuminated uniformly with a sharp (10 ps), 850 nm, is shown
for different ring voltages (cathode–anode voltage fixed at +5 V) in Figure 4. When the
ring voltage is the same as the anode voltage, then there is no drift field and diffusion
becomes the only transport mechanism, leading to only few photoelectrons reaching the
cathode (the rest recombine) and thereby reducing the quantum efficiency. With increasing
ring voltages (−5 V to −30 V); however, the impulse response keeps getting sharper and
converges to a maximum due to velocity saturation. This structure is very similar to that of
the current-assisted photodiode (CAP) which will be explained in more detail in the next
section (Section 3.1).
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3. CMOS Photodetectors Using Current-Assistance
3.1. Current-Assisted Photodetector (CAP)

At the basis of the majority current modulation lies the p-i-p structure, which has been
shown to exhibit photogain through accumulation or trapping of minority carriers [30–32].
Therefore, it is recognized that the assisting majority current itself is modulated significantly
by the incident light, and thus can be included to the total AC detection current. The p-i-p
structure allows trapping of electrons inside the substrate. This helps the accumulation
of holes in the substrate, which in turn reduces the overall resistivity of the detector. In
general, the high–low junction barrier height, as well as the thickness of the barrier p+

region (see Figure 5) determines how well the electrons can be trapped. This trapping of
minority carriers is known to improve responsivity dramatically, but it at the same time
reduces the bandwidth just as much. This behavior is also known to be very nonlinear
with respect to the incident optical power.
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The simplest photodetector that makes use of current-assistance is the Current-
Assisted Photodiode (CAP) [32]. Rather than trapping all electrons inside the substrate, the
CAP provides a sink for photoelectrons by means of the cathode n+ region. This structure
is shown in Figure 6. This means that the bandwidth will be improved at the cost of
photo-gain. Like with any “current-assisted” detector, we can identify three travel modes
for minority carriers determining the overall bandwidth.

Initially, most minority carriers will be generated inside the substrate. At this point,
a drift field is needed to bring them to the anode, often resulting in the need to apply a
backside potential as well. Along the anode edge, they accumulate and diffuse into the
cathode, where they can drift again once they reach the depletion region. A worst-case,
average time constant for these situations can be modeled.

τdr =
ldrift

µ

∣∣∣∣→E ∣∣∣∣ (2)

τdiff =
l2d

2ndimDn
(3)

τ2
tot = τ2

dr1 + τ2
diff + τ2

dr3 (4)
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Figure 6. The layout and dimensions of the fabricated current-assisted photodiode. The center
cathode n+ region is 1.5 µm in diameter, keeping 0.75 µm space with the anode p+ region. The ring is
biased to a negative bias voltage.

Here, ldrift is the average distance traveled while in the strong drift field, while µ is

the minority carrier mobility and
∣∣∣∣→E ∣∣∣∣ the electric field strength. ld is the average distance

traveled along the edge of the anode p+-region, ndim represents the number of dimensions,
and Dn is the minority-carrier diffusion constant. Usually, the combination of τdiff, the
average time spent diffusing, and τdr1, the average time spent drifting in the bulk towards
the anode, decides the detection bandwidth [33]. The last drift stage (the third travel mode,
τdr3) where the charge carrier is captured by the depletion region near the center cathode
is often negligible. For small pixel pitches (<10 µm), τdiff plays a more important role in
limiting bandwidth and for large pixel pitches (>100 µm) τdr1 can become large enough
to limit bandwidth. The minority carrier transport time is dependent on the location of
the photogenerated minority carriers within the device, e.g., the minority carriers that
are generated directly below the cathode n+ region drift directly towards that n+ region
without diffusion along the anode p+ region. The expected value for the total time for a
minority carrier to reach the cathode (Equation (4)) is therefore a worst-case scenario.

Figure 7 illustrates the photo-gain bandwidth tradeoff as a function of the anode
region (p+) width. We keep Vcathode = Vanode = 0 V, and have Vring = Vsubstrate = −3 V.
The simulated structure is cylindrically symmetric with a ring diameter of 50 µm.
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For small p+ regions, the uniformity of the electric field inside the epitaxial layer
determines the bandwidth. For larger p+ regions, we find that the accumulation of photo-
generated electrons near the anode p+ region causes both an increase in photo-gain, as well
as a decrease in bandwidth. For larger p+ regions, the DC biasing current also increases
which may not be desirable.

The measured responsivity shows that photo-gain is indeed feasible (shown in
Figure 8). The cathode current responsivity is quasi constant over incident optical power,
reinforcing the fact that all minority carriers are ultimately collected by the cathode n+

region. However, we see that the anode current responsivity also has a very significant
contribution towards the total photocurrent, especially at low light intensities as supported
by simulations.
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Figure 8. Measured and simulated anode and cathode current (a) and responsivity (b).
Vanode = Vcathode = 0 V, Vring = Vsubstrate = −5 V.

The discrepancies between simulated and measured anode current can be traced to
incomplete modeling of the junctions. Simulations show sensitivity to substrate doping
levels, junction depths and surface trap state densities.

The majority current contribution can also be significant at higher frequencies, as
shown in Figure 9. It was measured by exciting an OPV300 VCSEL (Optek Technology,
Carrollton, TX, USA) (λ = 850 nm) using a PRBS7 signal at multiple sampling frequencies.
The sampled signal was analyzed at the excited frequency bins after windowing to reduce
spectral leakage. The signals were measured using an Agilent Infinium DCA-J 86100C
(Agilent Technologies, Santa Clara, CA, USA) with an 86117A 30 GHz channels module
where the signals were terminated by a 50 Ω load resistance. The “true” optical input
signal was simultaneously measured using a Thorlabs DXM12DF DC−12 GHz (Thorlabs,
Inc., Newton, NJ, USA) detector using a beam splitter.
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The measured frequency response shows that the anode current supports similar
frequencies as the cathode current. To reach higher bandwidths with this type of detector,
a viable option is to combine both the cathode and anode currents into one photocurrent.
The result is a small photo-gain and an extended bandwidth through accumulation of
minority carriers [30–32].

For noise, we can expect two dominant noise sources: shot noise is expected for
minority current, while thermal noise is expected for the majority current. Since the
minority current (and its shot noise) directly modulates the majority current (and so the
generated thermal noise), a more involved approach is needed to model the overall noise
behavior. Noise performance has not been measured and is subject to further research.

3.2. Current-Assisted Photonic Demodulator (CAPD)

The current-assistance principle allows to modulate the electrical drift field distri-
bution through modulation of the voltage sources connected to the substrate ohmic con-
tacts. This concept is employed in the current-assisted photonic demodulator (CAPD)
devices that have been successfully used in numerous indirect TOF (iTOF) distance
sensing applications.

The CAPD device was described in detail in van Nieuwenhove et al. [12], and van der
Tempel [33]. The general idea of the CAPD is illustrated in Figure 10. In this example, the
photodetector is built in the lowly doped p-type substrate designated with a “Si epi” label.
The CAPD is composed of a substrate resistor, formed between the two p+ regions (labelled
“P”), and the two n+ regions (labelled “N”) located in the close proximity to the p+ regions.
When a voltage source Vmix is connected to these p+ regions, a majority hole current
will flow through the substrate resistor creating a gradual voltage drop and, therefore, an
electric field in the silicon substrate. Light, incident on this device from the top, is absorbed
in the substrate creating electron-hole pairs. The photo-electrons are drifting along the
electric field lines towards the p region with a higher potential creating a pool of electrons
around the p+-region. These photoelectrons cannot penetrate the p+-region because of a
potential barrier stemming from the doping difference between the highly-doped p+-region
and a lowly-doped p--substrate. This electron pool is drained by placing an n+ doped
region near p+-doped region. Therefore, the minority carrier electron current stemming
from photo generation can be measured separately from the majority hole electrical current
which assists in creating an electrical drift field in the substrate. Because of such separation,
there is no extra thermal or shot noise contribution from the majority substrate current.
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When an alternating voltage is applied to the p+-regions, the photo electron current
can be guided either to one n+- region or the other, thus, an electronic shutter for the optical
signal, controlled by the voltage source Vmix, is formed.

The photo-electrons accumulate in the n+ doped regions and the signal can be read out
using circuits that are typically used in the conventional 3-transistor (3T) and 4-transistor
(4T) image pixels. Figure 10 shows an example with 3T readout circuits connected to the 2
collecting n+ doped regions (taps). The operation of the readout circuits is similar to the
conventional 2D image sensor readout. Both PD nodes are reset with reset RT transistors
at the start of the integration, and the photo-electrons are integrated on the PD nodes
which accumulate in-phase and out-of-phase photo-electron signals. At the end of the
integration the voltage signals are read out through the source follower transistors SF and
row select switches SX. The CAPD pixels can also have more complex readout circuitry
like 4T readout circuits, sample and hold circuits for improved global shutter performance,
circuits for dynamic range extension or common mode signal subtraction.

The iTOF principle is closely related to the lock-in signal detection technique de-
veloped in 1946 by R.H. Dicke to improve sensitivity of microwave radar receivers [34].
The lock-in technique allows signal recovery in noisy environments by advantageously
exploiting prior knowledge about the signal itself. The lock-in correlation signal can have a
higher signal to noise ratio (SNR) than the original signal since the signal is correlated to
the reference signal, but the random noise is not, thus, enabling signal detection in noisy
environments. CAPD devices can be used to measure the correlation signal between the
optical signal and the reference electrical signal.

Although, an arbitrary electrical reference signal can be applied to the CAPD to
modulate the drift field, a square wave signal is most often used in practice. A photonic
demodulator can be modelled as an electronic shutter device which creates a temporal
window rectCAPD(t) for the impinging optical signal what is equivalent to multiplication
of the square wave reference signal and the impinging optical signal. The signal within this
temporal window gets integrated on the sensor’s integration capacitor and the resulting
voltage signal is then sampled. Mathematically this temporal windowing and integration
processes can be described as a convolution or cross-correlation of the optical signal with
a rectangular window function and sampling can be modelled by a Dirac comb function.
Thus, the iTOF signal s(t) can be represented as:

s(t) =

[
o(t) ∗ rectCAPD

(
t

tpd

)]
×

+∞

∑
n=−∞

δ

(
t− n Tmod

m

)
(5)
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where o(t) is the incoming detected optical signal, tpd is the temporal window width, Tmod
is the modulation period, m is the number of phases, i.e., number of temporal windows
per modulation period, and n is the integer sample number n ∈ Z. In a general case, at
least three samples are required to recover the three unknown parameters in the incoming
optical signal: amplitude, offset and phase shift. The most common iTOF sensor design
with two photo-detector nodes (taps) creates two (in-phase and out-of-phase) temporal
windows. However, such a two tap iTOF sensor can still be used to find the phase shift of
the incoming optical signal: the necessary extra samples needed to find the three unknown
parameters of the incoming light signal can be created by repeating the measurement with
an extra phase shift introduced between the light signal and the CAPD electrical drift field
modulation signal. The samples from multiple measurements may be combined producing
a signal similar to the output signal from an iTOF sensor with a higher number of taps.

Figure 11a illustrates the sampled TOF signal from a four tap iTOF sensor. Each tap A,
B, C and D is sampling the signal integrated over its corresponding time window. These
samples form a periodic time domain signal s0, s1, s2, s3.
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Figure 11b illustrates a signal from two measurements using a two tap iTOF sensor.
Taps A and B are sampling the signal integrated over its corresponding time window for
two consecutive frame acquisitions, the frames having pi/2 phase shift. The four samples
acquired over two frames can be recombined to form a periodic time domain signal similar
to s0, s1, s2, s3.

In practice, the gating and integration process is repeated many times during the
integration time Tint. For brevity, we will consider just one modulation cycle in the mathe-
matical description of iTOF sensor operation.

After acquisition, the signal can be analyzed by means of a discrete Fourier transform
(DFT). The first DFT complex valued bin contains information about the amplitude and
the phase offset of the sampled iTOF signal’s first harmonic from which the TOF distance
can be calculated.

For an m phase iTOF sensor, the DFT coefficients can be expressed as:

Sb =
m−1

∑
k=0

sk e−jθk b =
m−1

∑
k=0

sk [cos(θk b)− j sin(θk b)], (6)
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where θk = 2π k
m , and sk is the k-th iTOF sample. The DFT complex valued bins can be

represented using the real and imaginary components Ib and Qb:

Sb = Ib − jQb (7)

where Ib =
m−1
∑

k=0
sk cos(θk b), and Qb =

m−1
∑

k=0
sk sin(θk b). The TOF phase shift and ampli-

tude signals can be then calculated using the first DFT bin as:

φ = atan2(Q1, I1) (8)

A =
√

I2
1 + Q2

1 (9)

For example, for the case of 4 tap iTOF pixel (m = 4), the phase φ and amplitude A
can be calculated as:

I1 = s0 − s2, Q1 = s1 − s3 (10)

φ = atan2(s1 − s3, s0 − s2), (11)

A =

√
(s0 − s2)

2 + (s1 − s3)
2 (12)

The TOF distance to the object d is:

d =
φ

4π
× c × Tmod (13)

The second and higher order DFT bins can also be used to extract other useful iTOF
signal indicators such as motion or saturation depth [35,36]. The iTOF distance error and
SNR can be calculated as [6]:

σdepth ≡
1√

2 · SNR
× 1

2π
× c

2 · Fmod
(14)

SNR ≡
Apix × R × FF × Cmod × Φactive × tint × 1

q√
Apix × R × FF × (Φactive + Φambient)× tint × 1

q + N2
system

(15)

where Apix is the pixel area, FF—fill factor, R—responsivity, Cmod—demodulation contrast,
Fmod—modulation frequency, tint—integration time, N2

system—variance of the system noise
floor, Φactive is sensor irradiance due to the active illumination and Φambient is the sensor
irradiance due to the ambient illumination.

To achieve the lowest distance noise, the product
[√

Apix × R × FF
]
× [Cmod × Fmod]

should be maximized. The first factor
[√

Apix × R × FF
]

is defined by the optical to elec-
trical signal conversion efficiency, and the second factor [Cmod × Fmod] is defined by the
CAPD speed.

The current assistance principle allows to create electric drift field across large semi-
conductor volumes to achieve high Apix, R and FF, thus maximizing

[√
Apix × R × FF

]
.

The CAPD speed factor [Cmod × Fmod] can be estimated from solution of the continu-
ity equations [26] that govern the transport of the photo electrons:

∂np

∂t
= Gn − Rn +∇× Jn + GL (16)

where np is the minority carrier concentration in the p substrate, Gn and Rn are generation
and recombination rates, GL is the generation rate due to impinging light signal, and Jn is
the electron current density:

Jn = qnµnEdrift + qDn∇n (17)
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Detailed modelling of the photo currents is done in Estrada et al. [8]. An approximate
estimation of the electron transient time across the length of the device can be done assum-
ing linearly distributed electrical drift field across the device. For example, for a 15 µm
device biased by a 1 V voltage source, its electron detection time can be approximately
calculated as:

[Cmod × Fmod]
−1 ≡ t ≡ d

E× µe
=

d2

V × µe
=

15× 15 µm2

1V × 1400 cm2 V−1 s−1
≈ 1.6 ns (18)

The above calculation gives a reasonable estimation of the average photoelectron
detection time for an electron generated not far from the surface if the internal potential
along the photoelectron travel paths towards n regions is monotonous and the electric
field (V/d) is constant along the photoelectron travel path. However, in practice, this
assumption does not always hold true.

Firstly, in case of NIR light, the optical signal can penetrate deep into the substrate
where the electric field is weaker. To overcome this effect, CAPD devices that are designed
for NIR wavelengths can have an extra negatively biased bottom electrode to create a
vertical electric field component [37]. Alternatively, the backside illumination may be
used to confine the generated photoelectrons to a smaller volume [6]: the light, that
passed through the photosensitive silicon layer, is reflected from the metallization layers
and then reenters the photosensitive volume effectively increasing the photosensitive
silicon thickness.

Secondly, when a modulation voltage source Vmix is connected to the biasing ohmic
contacts (p+ regions) near the silicon surface, a slow drift region is formed under the ohmic
contact with lower potential (illustrated with a dashed triangle in Figure 10) where the
electric field is directed towards the substrate. Photo-electrons which are generated in this
region are drifting towards a slow drift field region near the epi-substrate boundary and,
when the polarity of the modulation voltage source Vmix is reversed, the photo-electrons
are drifting towards the wrong detector n+-region lowering the demodulation performance.
CAPD demodulation performance can be improved if the photogeneration under the ohmic
contacts is prevented either by shielding, or by placing a microlens on top of the pixel
focusing the light in the region with the strongest drift field ([6]), or by negatively biasing
the substrate. Figure 12a–c [37] illustrates a CAPD architecture with a ring contact which
is biased at a low potential and a modulation voltage Vmix is applied to the two ohmic
contacts in the center. Such architecture reduces the mean travel path and the adverse effect
of the slow region that may form under the negatively biased ohmic contact.

The assumption about monotonicity of the electrostatic potential may not hold in real
devices leading to formation of charge pockets which deteriorate the device performance.
Figure 12d illustrates the electrostatic potential under shallow trench isolation (STI). The
potential around the p+-region, connected to the higher voltage, may have a local maximum
due to the effect of the STI fixed positive charge. The Si/oxide interface has a positive
surface-state charge which can vary in the order of 1 . . . 1011 Q/cm2 depending on the
technological conditions [38]. This positive charge bends energy bands forming charge
pockets around the p+-region illustrated by the dashed red circle in Figure 12d. The charge
pockets can trap photoelectrons leading to deterioration of the demodulation performance
of CAPD sensor, as these trapped electrons can be detected by the wrong collector n+-region
after the polarity of the modulation voltage source Vmix is reversed. The charge pockets
around the p+-regions can be avoided by placing a negatively biased transparent electrode
over the CAPD, as illustrated by Figure 12b, or by placing a donut shaped electrode around
the p+-region where the charge pockets are formed [37], as illustrated by Figure 12c. The
donut shaped electrode has an advantage over the solid electrode since reflection and
absorption from polysilicon electrode does not lower the sensor responsivity as much,
and the CAPD power consumption is not significantly increased because of formation of
hole accumulation layer under the negatively biased electrode. Figure 12e illustrates the
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electrostatic potential under STI in the presence of the negatively biased electrode where
the charge pocket was successfully removed.
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Figure 12f–h show measurement results of CAPD windowing function rectCAPD mea-
sured by illuminating the sensor with a narrow (~3 ns) optical pulse train signal and
sweeping its phase while applying 50 MHz square-wave signals to the p+-regions. The
characterized CAPD devices have 15 µm pitch and were manufactured in 180 nm technol-
ogy. The CAPD without a transparent electrode over STI (f) shows poor demodulation
performance due to charge pockets while having high signal amplitude (measured respon-
sivity R = 0.3 A/W). The CAPD with a transparent polysilicon electrode shows near ideal
demodulation; however, the signal swing is reduced (measured responsivity R = 0.2 A/W)
compared to (f) due to reflection and absorption in the electrode. The CAPD device with the
donut electrode (h) combines good demodulation performance with higher responsivity
(measured responsivity R = 0.3 A/W).

Conclusions

The current-assistance principle allows to create strong electric drift fields in CAPD
devices which are linearly distributed across large semiconductor volumes and which can
penetrate deep in the semiconductor enabling high NIR sensitivity and cost-efficient manu-
facturing. CAPD devices are already widely used in numerous consumer and automotive
applications.

Table 1 compares different CAPD implementations and the Kinect2 photonic demodulator.

Table 1. CAPD performance parameters.

Parameter MLX75023 MLX75024
(Donut Variant) Kato et al. [39] Kinect2

Tech. node 0.35 µm 0.18 µm 90 nm 0.13 µm
Pixel pitch 15 µm 15 µm 10 µm 10 µm

Cmod@50 MHz 60% 85% 91% 68%
R @ 850 nm 0.2 A/W 0.3 A/W 0.34 A/W -

Pixel FF 35% (native) 70% (native) >80% (µlens) 60% (µlens)

One of the further research frontiers for CAPD is extension of the spectral sensitivity
range. The unique advantage of CAPDs over other common types of photonic demodula-
tors is that the CAPD devices do not require high-quality oxides and can be manufactured
in semiconductors like germanium which will allow sensing beyond the silicon sensitivity
limit of ~1100 nm. Another potential research frontier is building CAPD sensors with a
high number of taps that can be achieved, for example, by combining a gated demodulator
with a current assistance principle [40].

3.3. Current-Assisted Photonic Sampler (CAPS)

The demodulation possibilities of current-assistance can also be optimized towards
the creation of a sensor which operates as a fast shutter, i.e., in one state incoming light is
detected with maximum efficiency and in a second state it is blind. Because photoelectrons
generated in the second state do not need to be collected for readout but can just be
disposed of, more compact and efficient structures can be employed for fast collection.

This way, a gated sensor was created and called the current-assisted photonic sampler
as it samples the light in a certain gate time-window. Operation is equivalent to that
of an ICCD, but without the gain. The CAPS was developed for fast-gated detection of
NIR fluorescence lifetime in which sub-nanosecond decay rates of fluorescent molecules
are imaged. The requirement for very fast time-gate edges was the incentive to create a
current-assisted sensor optimized just for gating.

3.3.1. Gated Detection of Fluorescence Lifetime

The fluorescence lifetime (τ) is a parameter which describes the exponential decay
rate of fluorescence after being excited with a pulse of light (Figure 13a). The fluorescence
lifetime is the average time the molecule stays in an excited energy state after absorption
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of a photon and is an independent parameter which can be measured additionally to the
spectral properties of fluorescence. The fluorescence lifetime depends on a number of
things which each can be exploited for imaging:

1. The structure of the fluorescent molecule: imaging the lifetime can aid in revealing
which fluorescent molecule is present or distinguish different fluorescent molecules [21].

2. The chemical environment of the fluorescent molecule: fluorescence lifetime has a
sensitivity to chemical conditions such as pH or Ca+ or O2 concentrations and can as
such be used as a probe for these conditions [41].

3. The distance to other fluorescent molecules: the fluorescence lifetime of a fluorescent
molecule is influenced by another fluorescent molecule whose absorption spectrum
overlaps with the emission spectrum of the first molecule and the influence is depen-
dent on the proximity of the molecules. This property is exploited in a technique called
time-domain FRET which is one of the most popular applications of fluorescence-
lifetime imaging because the fluorescence-lifetime offers an absolute measure for the
proximity in contrast to the relative intensities used in classic FRET [42].

4. The mobility of the fluorescent molecule: a molecule which is mechanically bound
will lose less energy through non-radiative processes [43].
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The fluorescence lifetime is typically in the nanosecond range and lifetimes as short
as several hundreds of picoseconds are not an exception for NIR fluorescent molecules.
This poses severe challenges for any system measuring and even imaging lifetimes. The
gold standard in fluorescence-lifetime measurements is time-correlated single-photon
counting (TCSPC) in which the arrival time of single photons is recorded and stored in a
histogram which can then be analyzed with computationally expensive fitting methods.
Implementing the electronics required for TCSPC in every pixel of an image sensor is
difficult and TCSPC is usually either performed with a discrete single-photon detector for
the analysis of a substance or with a scanning system for imaging in microscopy.
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Fluorescence lifetime can also be detected with a gated detector in a family of methods
which is called Rapid-Lifetime Determination (RLD). Figure 13b demonstrates the simplest
incarnation of RLD in which the fluorescence intensity is measured in two equal time-
windows at two different positions in the fluorescent decay separated by a time ∆t. In
the ideal case of a mono-exponential decay without background, the fluorescence lifetime
can simply be calculated from ∆t and the ratio of the signal detected in the two windows.
The method can be extended to three windows to account for background signal and
optimized window spacings and widths can be used for optimized lifetime measurement
precision. Imaging fluorescence lifetime with an image sensor which implements a single
gate-window can be performed by taking two frames at two different gate-window time
positions. In each frame signal is collected from many consecutive fluorescence excitations.
Finally, the lifetime is calculated from the integrated signal from frame 1 and frame 2
(Figure 13c).

3.3.2. CAPS Operation Principle

The CAPS sensor has some features in common with the CAPD: the sensor is placed in
a lowly-doped p--substrate and around the sensor is a ring substrate contact at a negative
potential, creating a substrate drift field that accelerates photo-generated electrons towards
the center of the sensor.

The CAPS sensor consists of a centrally placed detection node surrounded with
four drain nodes as shown in Figure 14a. The detection node consists of a n+ cathode
surrounded by a p+ anode. Since the drain node is used to evacuate the carriers, a more
compact structure is used, where n+ and p+ regions are abutted. Because the silicide
layer provides conduction between the n+ and p+ region, a single contact can both drain
away photo-generated electrons and apply the necessary hole currents for the generation
of the drift field. As such, the p+ zone can be made narrower, resulting in a very short
diffusion distance.

By setting the drain nodes to a higher potential than the detection node, the detection
node becomes completely shielded from photo-generated electrons. In this situation the
gate is said to be OFF. If instead the detection node is set to the highest potential, electrons
will be allowed to flow into the detection node and the gate is turned ON [20].

Figure 14b,c show the gating effect in more detail. On the left, the complete shielding
of the detection node can be seen when the gate is OFF. Electrons travel towards higher
potentials and as such electrons from anywhere in the detector will end up at the drain
nodes and not at the detection node. This results in very good gate OFF quality or high
gating contrast (difference in detected signal between detector in ON and detector in OFF
state). When the gate is ON, following the highest potential leads directly to the detection
node and leads to high-speed detection of electrons.

This fast gating mechanism does not require the use of an image intensifier, avoid-
ing the photocathode efficiency loss found in ICCD cameras. Furthermore, this gating
mechanism requires modulation of only low voltages which can be handled by high-speed
electronics at high repetition rates.

Figure 15 shows the typical potentials involved in the CAPS operation. The detection
node is connected to a 3T-readout circuit for resetting of the detection node and buffering
of the sense-node voltage by a source follower. At the start of every measurement, the
sense node is reset by asserting the RST-signal. After having reset the sensor, the gate signal
will be asserted at a fixed position in time with respect to the measured light and this for n
cycles. In practice, this usually means that the gate is synchronized to the pulsed laser that
excites the fluorescence and that the emission is gated for n repetitions of the laser pulse,
during which the signal is integrated. The voltage on the sense node is then sampled by an
ADC and stored as measurement result for the gate in position 1. After this first integration
period, a new integration period starts with the gate in another position and the resulting
voltage is sampled again. These two results can then be used to estimated fluorescence
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lifetime as described in Section 3.3.1 or the integration process can be repeated with the
gate in more positions for extra measurement points.
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3.3.3. CAPS Sensor Characteristics

Unlike the CAPD, the CAPS is not a symmetrical device. Due to its design with a
centrally placed detection node surrounded by drains, it will be easier to direct electrons
into the drains than into the detection node. This can be seen in the DC gating behavior,
shown in Figure 16a: with increasing positive differential gating voltages, the photocurrent
into the detection node rises more slowly than it decreases for negative voltages. The
reason for the slower increase in detected electrons at positive gating voltages is the fact
that electrons have to be directed past the drain nodes. It can also be seen that the ring
voltage should not be too negative to achieve a high gating contrast and a sharp curve.
The latter is important when the pixel is placed in an array: a voltage drop over the gating
signal lines should not result in a different gating behavior.
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Figure 16. Gating behavior of the CAPS sensor in DC (a) and instrument response function (IRF) for a 4 ns gate (b).

Figure 16b shows a plot of the Instrument Response Function (IRF) for a 4 ns gating
width at multiple ring voltages. This measurement allows to directly assess the lifetime
measurement capabilities: the slope of the falling edge is used to determine the intrinsic
decay time, while the rising edge determines the minimum gate window. It can be seen
that at less negative ring voltages, the IRFs decay rate becomes slower, but also the IRF
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rises slower and at some point does not reach full amplitude. Therefore, more negative
ring voltages are used for a higher QE and short gate widths. In practice, an optimum
voltage is found where both a high gating contrast and high speed are achieved.

3.3.4. Fluorescence Lifetime Imaging

A first-generation 32 × 32-pixel CAPS array has been realized in a standard 350 nm
CMOS process on a high resistivity (~1000 Ω·cm), thick p-type epilayer (14 µm). A camera
is developed around this to demonstrate the capabilities of the CAPS-array [21]. The pixels
in the array measure 30 × 30 µm with an active area of 480 µm2 resulting in a fill factor
of 53%. The camera characteristics, listed in Table 2, are results for pixel [16,16] located
in the center of the array. These characteristics are compared to commercially available
Intensified CCD cameras in Table 3. A micrograph of the sensor die and the camera setup
can be seen in Figure 17.

Table 2. Proof-of-concept CAPS camera characteristics.

Resolution 32 × 32

Pixel size 30 × 30 µm
Fill factor 53%

External (effective) quantum efficiency
@780 nm 25%

Internal (effective) quantum efficiency
@780 nm 71%

Minimum gate width 500 ps
Maximum gate width Up to the laser repetition period

Gate position time resolution 11 ps
Gate position range Full laser repetition range

Maximum gate repetition rate >100 MHz

Table 3. CAPS proof-of-concept camera compared to commercially available Intensified CCD cameras.

Camera Photocathode NIR QE
@ 780 nm

Minimum Gate
Window

Maximum Gate
Repetition Rate

La Vision PicoStar HR [44] Gen II <8% 300 ps 110 MHz
Andor iStar U [45] Gen II <10% 2 ns 500 kHz
Andor iStar U [45] Gen III <24% 2 ns 500 kHz

Princeton Instruments PI-MAX4 [46] Gen II <12% 500 ps 100 kHz
Princeton Instruments PI-MAX4 [46] Gen III <27% 500 ps 100 kHz

CAPS camera today NA <25% 500 ps >100 MHz
CAPS camera possibility NA <71% 500 ps >100 MHz

Practical use of this 32 × 32 CAPS image sensor has been demonstrated in a proof-of-
concept for fluorescence-guided surgery [18]. Fluorescence contrast is increasingly used in
surgical guidance to light up blood flow, tumors, nerves, and more. Because of its ability
to penetrate a few millimeters of tissue, the wavelength of preference is around 800 nm.
This leaves little spectral room to image more than one contrast agent based on spectral
differences. In the proof-of-concept, the CAPS image sensor is used for fluorescence-lifetime
imaging of an ex-vivo mouse phantom with two 800 nm fluorescence inclusions of dyes
(ICG and IRDye-800CW) but with a different fluorescence lifetime [18]. The CAPS camera
is able to distinguish both dyes based on a difference in fluorescence lifetime whereas a
conventional fluorescence camera cannot. More recently, at the EMIM 2020 conference on
molecular imaging, the same camera has been demonstrated in an in vivo experiment. In
the experiment, a tumor-bearing mouse was injected with an anti-EGFR nanobody-based
fluorescence contrast agent. When imaged in conventional fluorescence mode the tumor
lights up. However also the kidneys light up. Only in the CAPS fluorescence-lifetime image
can the difference between kidneys and tumor be seen, demonstrating that fluorescence-
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lifetime can be used as modality to distinguish Fluorescence emission from the targeted
tissue (tumor) and non-specific emission (in this case kidneys) (Figure 18).

Sensors 2021, 21, 4576 21 of 29 
 

 

 

Figure 16. Gating behavior of the CAPS sensor in DC (a) and instrument response function (IRF) for a 4 ns gate (b). 

3.3.4. Fluorescence Lifetime Imaging 

A first-generation 32 × 32-pixel CAPS array has been realized in a standard 350 nm 

CMOS process on a high resistivity (~1000 Ω·cm), thick p-type epilayer (14 µM). A camera 

is developed around this to demonstrate the capabilities of the CAPS-array [21]. The pixels 

in the array measure 30 × 30 µM with an active area of 480 µM2 resulting in a fill factor of 

53%. The camera characteristics, listed in Table 2, are results for pixel [16,16] located in the 

center of the array. These characteristics are compared to commercially available Intensi-

fied CCD cameras in Table 3. A micrograph of the sensor die and the camera setup can be 

seen in Figure 17. 

 

Figure 17. Micrograph of the 32 × 32-pixel CAPS array (a) and camera setup (b). 

Table 2. Proof-of-concept CAPS camera characteristics. 

Resolution 32 × 32 

Pixel size 30 × 30 µM 

Fill factor 53% 

External (effective) quantum efficiency  

@780 nm 
25% 

Internal (effective) quantum efficiency  

@780 nm 
71% 

Figure 17. Micrograph of the 32 × 32-pixel CAPS array (a) and camera setup (b).

Sensors 2021, 21, 4576 22 of 29 
 

 

Minimum gate width 500 ps 

Maximum gate width Up to the laser repetition period 

Gate position time resolution 11 ps 

Gate position range Full laser repetition range 

Maximum gate repetition rate >100 MHz 

Table 3. CAPS proof-of-concept camera compared to commercially available Intensified CCD cameras. 

Camera Photocathode 
NIR QE  

@ 780 nm 

Minimum Gate Win-

dow 

Maximum Gate Repe-

tition Rate 

La Vision PicoStar HR [44] Gen II <8% 300 ps 110 MHz 

Andor iStar U [45] Gen II <10% 2 ns 500 kHz 

Andor iStar U [45] Gen III <24% 2 ns 500 kHz 

Princeton Instruments PI-MAX4 

[46] 
Gen II <12% 500 ps 100 kHz 

Princeton Instruments PI-MAX4 

[46] 
Gen III <27% 500 ps 100 kHz 

CAPS camera today NA <25% 500 ps >100 MHz 

CAPS camera possibility NA <71% 500 ps >100 MHz 

Practical use of this 32 × 32 CAPS image sensor has been demonstrated in a proof-of-

concept for fluorescence-guided surgery [18]. Fluorescence contrast is increasingly used 

in surgical guidance to light up blood flow, tumors, nerves, and more. Because of its abil-

ity to penetrate a few millimeters of tissue, the wavelength of preference is around 800 

nm. This leaves little spectral room to image more than one contrast agent based on spec-

tral differences. In the proof-of-concept, the CAPS image sensor is used for fluorescence-

lifetime imaging of an ex-vivo mouse phantom with two 800 nm fluorescence inclusions 

of dyes (ICG and IRDye-800CW) but with a different fluorescence lifetime [18]. The CAPS 

camera is able to distinguish both dyes based on a difference in fluorescence lifetime 

whereas a conventional fluorescence camera cannot. More recently, at the EMIM 2020 

conference on molecular imaging, the same camera has been demonstrated in an in vivo 

experiment. In the experiment, a tumor-bearing mouse was injected with an anti-EGFR 

nanobody-based fluorescence contrast agent. When imaged in conventional fluorescence 

mode the tumor lights up. However also the kidneys light up. Only in the CAPS fluores-

cence-lifetime image can the difference between kidneys and tumor be seen, demonstrat-

ing that fluorescence-lifetime can be used as modality to distinguish Fluorescence emis-

sion from the targeted tissue (tumor) and non-specific emission (in this case kidneys) (Fig-

ure 18). 

 

Figure 18. In vivo fluorescence experiment using a CAPS fluorescence-lifetime camera. A mouse bearing a xenograft tumor
with EGFR expression and injected with an anti-EGFR nanobody-based NIR fluorescence contrast agent (a). Both tumor and
kidneys light up under conventional fluorescence imaging (b). CAPS fluorescence-lifetime imaging reveals a fluorescence
lifetime difference between the tumor and kidneys (EMIM 2020) (c).

3.3.5. Conclusions

By combining good NIR quantum efficiency with fast gating, the CAPS image sensor
seems a good candidate for in vivo fluorescence imaging in which NIR dyes play a crucial
role and in which a fluorescence-lifetime imaging capability can enable new possibilities
for future applications such as the imaging of fluorescence contrast agents simultaneously
in complex surgical procedures or increasing the contrast specificity by taking fluorescence
lifetime contrast into account.

3.4. Current-Assisted SPAD (CA-SPAD)

Single-photon avalanche diodes (SPADs) are widely popular due to their single-
photon sensitivity and CMOS compatibility [47–53]. CMOS compatibility and inherent
digital nature of the SPAD detection leads to quenching and timing processing circuitry
to be constructed around the SPAD pixel. A recent work presenting the realization of
a Megapixel SPAD imager further demonstrates the advancements made in the field of
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SPADs fabricated in CMOS technologies [47]. Frontside-illuminated (FSI) SPADs have
limited NIR sensitivity, often because the device is enclosed in a deep N-well, in order
to isolate the moderately high voltages of the SPAD. As seen in Section 2, increasing the
absorption layer thickness alone does not lead to an increase in photo-sensitivity. Therefore,
an idea of a novel SPAD detector with a small p-n junction and a large photo-absorption
volume with drift field was conceived. The drift field is due to the potential gradient
in the absorption volume, arising from applying a bias between two terminals. In short,
we integrate the current-assistance principle with a small junction SPAD to increase its
photo-absorption volume with swift response speed. To stick with the convention, this
novel SPAD is called “current-assisted SPAD (CA-SPAD)”.

The first proof-of-concept device (we will refer to it as CA-SPAD-1 [24]) was fabricated
in X-fab foundry’s 350 nm CMOS (XO035). Mask layers readily available for standard
transistor formation were used and no special layers were used. Hence, the fabrication is
done in a relatively low-cost and accessible CMOS technology. This technology has a high
resistivity (~1000 Ω·cm), thick p-type epilayer (14 µm) which enables possibility of good
NIR sensitivity. The illustrated cross-section is shown in Figure 19a. The central SPAD
is comprised of a N-well cathode surrounded by a p+ anode. N-well is chosen covering
the n+ doping, to form the cathode (detect node in other current-assisted detectors), to
reduce band-to-band tunneling at large reverse bias voltages. A consequence of having
an N-well is the increased breakdown voltage. This central p-n junction is surrounded
by a much larger p+ “ring”, which marks the boundary of the photo-detection area. A
potential difference is applied between the anode and the ring, which results in drift field
between them. The anode is biased more positively with respect to the ring in order to
attract the photo-generated electrons towards the anode. The photoelectrons which reach
the anode will have to only diffuse a small distance before falling into the depletion region
and commencing an avalanche breakdown. There is a steady hole current between the
anode and the ring, due to the potential difference, leading to a steady power dissipation
per pixel which is a small price to pay to enable a high-speed operation.
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CA-SPAD-1 had square structures which are spaced adequately (shown in Figure 19b)
to comply with the design rules with some margin. Passive quenching (external to the chip)
was used to characterize the device behavior and a few important issues were identified.
The primary issue was the sharp corners created by the square geometry. Sharp corners
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are known to concentrate the electric field which lead to selective breakdown [54–56]. This
resulted in limited photon detection probability (PDP) and increased timing jitter due to
the non-uniform electric field. Light emission tests show discrete light emission spots
from sharp corners, further suggesting that the breakdown occurs primarily at the sharp
corners (shown in Figure 20). The secondary issue was the lack of on-chip quenching
circuitry which resulted in large deadtimes (~50 ns) due to increased parasitic capacitance
from the bondpads (~1 pF). While the SPAD p-n junction capacitance is estimated to be
~1 fF, large parasitic capacitance also means that there is more current required to quench
the avalanche operation. This results in more carriers flowing through the p-n junction
during an avalanche event which increases the after pulsing probability (APP). Although
the device did not perform up to the existing FSI SPADs, it was vital in demonstrating that
the principle works as expected and the main issues were identified.
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Figure 20. Light emission test to demonstrate reverse breakdown occurring at sharp corners at
Vex= 2.1 V (a) and Vex= 2.8 V (b).

The second iteration (we will refer to it as CA-SPAD-2 [25]) was also fabricated in
X-Fab’s XO035 technology. A few changes were made in the design of the pixel: (1) The
junction was made with a cylindrical symmetry to avoid sharp corners (shown in Figure 21),
(2) The “ring” terminal is chosen to be a P-well (with a p+ contact) to realize a more ohmic
contact, (3) The pixel pitch was reduced to 30 × 30 µm. An on-chip passive quenching
resistor (100 kΩ) was used for quenching.
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A light-emission test for CA-SPAD-2, shown in Figure 22, shows one uniform light
emission spot suggesting that breakdown is uniform in the p-n junction. This is also
confirmed by the improved timing precision shown in Figure 23b and photo detection
probability shown in Figure 23d. Dark count rate is still large, shown in Figure 23a and is
primarily due to the N-well/p+ junction construction. Afterpulsing probability at Vex of
2.5 V is 13% which could possibly be reduced by efficient quenching circuits.
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Figure 23. Dark count rate as a function of excess bias voltage for CA-SPAD-2 (a), Timing response for different wavelengths
for CA-SPAD-2 (b), Inter-avalanche histogram to characterize after-pulsing probability for CA-SPAD-2 (c), and photon
detection probability (PDP) as a function of wavelength for CA-SPAD-2 (d).
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A main concern influencing CA-SPAD-2 performance parameters, such as afterpulsing
and PDP, is the ineffective quenching. At larger excess bias voltages, the deadtime was
much larger. This could be due to the small junction capacitance of the CA-SPAD-2 and
re-triggering of the SPAD by carriers, generated by an avalanche event, due to fast recharge.
This effect is further explained in Jegannathan et al. [25]. This “re-triggering” leads to
extended deadtimes which could saturate the detector at high counting rates. An effective
active quench and recharge circuit would possibly eliminate this effect and the performance
can be further improved.

The performance of the CA-SPADs can be further improved when having the control
over the device process (such as doping levels, thickness). Compared to conventional
SPADs, CA-SPADs can offer benefits such as a scalable pixel pitch that has an absorption
region decoupled from the avalanching region, a low-capacitance p-n junction and swift
and efficient photo-response for NIR wavelengths. The two major challenges with the
CA-SPADs fabricated in the 350 nm CMOS technology include high breakdown voltage
which makes it difficult to place circuitry close by and a high dark count rate due to the
topology of the p-n junction. Both these challenges can be addressed when going to a back-
side illuminated CA-SPAD pixel engineered with custom doping layers. The performance
parameters of the two CA-SPAD iterations are compared in Table 4.

Table 4. Performance parameters of CA-SPADs.

Device CA-SPAD-1 [24] CA-SPAD-2 [25]

CMOS process 350 nm 350 nm
Foundry, Technology X-Fab, XO035 X-Fab, XO035

Pixel pitch, shape 40 µm, square 30 µm, square
Junction, shape N-well/p- epi/p+, square N-well/p- epi/p+, cylindrical

Breakdown voltage 51 V 48 V
Excess bias voltage Vex 0.86 V 2.5 V

Timing jitter 370 ps 220 ps
PDP @ 785 nm [Vex] 5.6% [1.1 V] 11.6% [2.5 V]

Afterpusling probability 5.7% 13%

4. Conclusions

The use of current assistance in several types of photodetectors for different applica-
tions has been reviewed (overview in Table 5). Most of the given examples were based on
available drain-diffusions, N&Pwells and epilayer that are available in standard 350 nm
CMOS for making NMOS and PMOS transistors. Advanced technology options available
in finer feature-size CMOS could further enhance the detection/demodulation/sampling
specifications. Custom doping profiles could also lead to far better field application topolo-
gies and improve operation even further, however at the cost of additional investment.

Table 5. Summary of current-assisted photodetectors.

Device Year Number of
Pixels (Recent) Applications

CAPD 2005 320 × 240 [39] Indirect time-of-flight imaging

CAPS 2015 32 × 32 [21] Fast time-gated imaging,
fluorescence lifetime imaging (FLI)

CAP 2019 1 [23] Optical receivers

CA-SPAD 2019 1 [25] Direct time-of-flight imaging,
low-light imaging, FLI
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