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Abstract: This invited paper demonstrated an ultra-highly sensitive ammonia (NH3) sensor based
on the light-induced thermoelastic spectroscopy (LITES) technique for the first time. A quartz tuning
fork (QTF) with a resonance frequency of 32.768 kHz was employed as a detector. A fiber-coupled,
continuous wave (CW), distributed feedback (DFB) diode laser emitting at 1530.33 nm was chosen
as the excitation source. Wavelength modulation spectroscopy (WMS) and second-harmonic (2f )
detection techniques were applied to reduce the background noise. In a one scan period, a 2f signal of
the two absorption lines located at 6534.6 cm−1 and 6533.4 cm−1 were acquired simultaneously. The
2f signal amplitude at the two absorption lines was proved to be proportional to the concentration,
respectively, by changing the concentration of NH3 in the analyte. The calculated R-square values of
the linear fit are equal to ~0.99. The wavelength modulation depth was optimized to be 13.38 mA,
and a minimum detection limit (MDL) of ~5.85 ppm was achieved for the reported NH3 sensor.

Keywords: quartz tuning fork (QTF); light-induced thermoelastic spectroscopy (LITES); ammonia
(NH3); trace gas detection

1. Introduction

Ammonia (NH3), a component gas of the atmosphere, has been widely used in various
important fields, such as medicine production, chemical industries, and so on [1]. When it
comes to a medical diagnostic, NH3 can be used as a biomarker to indicate kidney and liver
diseases [2,3]. However, on the other hand, ammonia also has lots of hazards. For example,
NH3 poses a serious threat to human health, which can burn skin, eyes, and the respiratory
mucosa. If people inhale too much, it can cause lung swelling and even death [4]. NH3 is
also the main cause of air pollution. Hence, carrying out ammonia detection is necessary for
both industrial production and the environment. Nevertheless, the typical concentration of
NH3 is at low levels of parts per million (ppm) or parts per billion (ppb). Therefore, NH3
sensors should be ultra-highly sensitive to satisfy these applications.

Various sensors have been used for NH3 detection. Chemical sensors are widely
applied in gas detection, which has the advantages of low cost and small size [5]. However,
when chemical sensors are employed to detect NH3, it may be influenced by other gasses,
such as oxygen [6]. Laser absorption spectroscopy (LAS) is an effective method with the
advantages of being non-invasive, highly sensitive, having a fast response, and selective
detection, and has been widely used for trace gas sensing. Tunable diode laser absorption
spectroscopy (TDLAS) is a serviceable LAS-based technique to detect the concentration
of NH3 [7]. To obtain an excellent detection performance, a multi-pass gas cell (MPGC) is
employed in the TDLAS technique [8]. When the laser beam travels through the MPGC,
the effective optical path length can be extended to a significant scale, which can bring
the detection limit down to ppm levels [9,10]. However, adopting an MPGC means the
total equipment is costly and bulky by virtue of the large size of an MPGC and the large
quantity of optical elements used to align the laser beam.
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Quartz-enhanced photoacoustic spectroscopy (QEPAS), which was reported in 2002
for the first time [11], is another effective method for trace gas detection. A quartz tuning
fork (QTF) is employed in QEPAS to transform acoustic wave signals to piezoelectric
signals, whose amplitude reflects the gas concentration. The QTF has the advantages of
being commercially available, low cost, having a tiny volume, a dipole structure, a high
Q-factor, a wide dynamic range, and a narrow resonance frequency band. Due to these
advantages, QEPAS could be excellent for sensitive detection and obtain great immunity
to environmental noise [12–18]. A sensitive NH3-QEPAS sensor achieving the minimum
detection limit (MDL) of ~418.4 ppb was reported in 2017 [19]. In QEPAS, the QTF needs
to be placed in the gas cell and immersed in the target gas. When using QEPAS to detect
the concentration of corrosive gases such as NH3, the QTF can be corroded, which may
finally bring sensor failure.

Light-induced thermoelastic spectroscopy (LITES), an effective technique first reported
in 2018 [20], has been widely employed for trace gas detection. This technique is also named
quartz-enhanced photothermal spectroscopy (QEPTS). In LITES, the laser beam is focused
on the QTF after traveling through the sample gas cell and being absorbed. Hence, when
the laser arrives at the QTF, its power is converted into thermal energy in the quartz
crystal [21–23]. Due to thermoelastic deformation, the periodic change of laser energy
contributes to the periodic mechanical motion of QTF prongs, which would be enhanced
by the resonance property of QTF [24,25]. Because of the piezoelectric effect, the QTF
transforms mechanical vibrations into electrical signals. By demodulating the electrical
signal, the concentration of sample gas can be obtained [26,27]. Compared to QEPAS, LITES
has the same advantages as QEPAS while avoiding the QTF damage caused by target gas
corrosiveness [28]. Therefore, LITES has been widely used in corrosive gas detection [29].
However, till now, NH3 detection using the LITES technique has not been reported.

In this invited manuscript, an ultra-highly sensitive NH3 sensor based on the LITES
technique is demonstrated for the first time. By means of wavelength modulation spec-
troscopy (WMS) and second-harmonic detection (2f ) techniques, the background noise of
the sensor was able to dropdown. One current scan period covered two different absorption
lines of NH3. By changing the concentration of NH3 in the analyte, a linear relationship
between 2f signal amplitude and concentration was demonstrated. After optimizing the
response time and modulation depth, an MDL of ~5.85 ppm was achieved for this reported
NH3-LITES sensor.

2. Experimental Setup
2.1. Absorption Line Selection

Diode lasers have many merits, such as a wide tunable range from near-ultraviolet
to near-infrared, small size, narrow linewidth, and high optical efficiency, making them
have important applications in single-chip laboratory, medical diagnosis, dermatology,
and gas sensing. In this experiment, a fiber-coupled, near-infrared, continuous wave
(CW), distributed feedback (DFB) diode laser emitting at 1530.33 nm was chosen to be
the excitation source. By changing the injection current at different temperatures, the
emission characteristic of this diode laser was measured. The results are shown in Figure 1.
Considering that the LITES signal has wide dynamic responses to laser power [20], the
output power of the CW-DFB diode laser can meet the demand.

Considering that different gases may influence the detection, the absorption lines of
NH3, H2O, and CO2 located between 1425 nm and 1600 nm were calculated respectively
based on the HITRAN 2016 database [30]. As is shown in Figure 2a, the existence of CO2
or H2O could not influence the NH3 detection. Considering that the CW-DFB diode laser
chosen in this experiment is able to cover the wavelength from 1530.69 nm (6533 cm−1) to
1529.99 nm (6536 cm−1), two absorption lines of NH3, which are respectively located at
1530.33 nm (6534.6 cm−1) and 1530.60 nm (6533.4 cm−1), were chosen in this investigation.
The selected absorption lines are depicted in Figure 2b.
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Figure 1. Emission characteristic of the 1530.33 nm CW-DFB diode laser.

Figure 2. Simulation absorption spectra based on HITRAN database: (a) absorption line strength of
different gases; (b) absorption coefficient of NH3 at 296 K, standard atmospheric pressure, and an
optical path length of 1 cm for 10,000 ppm NH3:N2.

2.2. The Configuration of Experimental Setup

A schematic diagram of the LITES sensor system is exhibited in Figure 3. A fiber
collimator (FC) was employed in order to collimate the laser beam generated by the fiber-
coupled, CW-DFB diode laser. Afterward, the laser beam traveled through the absorption
cell with a length of 20 cm and filled with target gas. To avoid optical interference, two
wedged CaF2 windows were installed on both sides of the absorption cell. Subsequent
to propagating through the cell, the laser beam is focused by a lens with a focal length of
40 mm on a QTF with a low intrinsic resonance frequency f 0 of 32.768 kHz in a vacuum.
For the purpose of acquiring the maximum signal, the position where the laser beam
focuses on the QTF’s surface is supposed to be optimized. As was reported in [31], the
optimum laser focusing position is the bare surface area on the base of QTF’s prongs. WMS
and 2f detection techniques were adopted in this LITES sensor system. An adder was
employed for the CW-DFB laser, which added a low-frequency ramp wave generated by a
signal generator and a high-frequency sinusoidal wave (f = f 0/2 = 15.36 kHz) generated



Sensors 2021, 21, 4548 4 of 8

by a lock-in amplifier together. The ramp wave contributed to continuously changing the
emission wavelength of the CW-DFB diode laser across the absorption lines of NH3. The
demodulated 2f component of the LITES signal could be acquired by a lock-in amplifier. In
this reported NH3-LITES sensor system, the integration time of the lock-in amplifier was
200 ms. The experiment was accomplished at room temperature and atmospheric pressure.
The LITES technique has wide dynamic responses to gas concentration [20]; therefore, a
certified gas mixture of 10,000 ppm NH3:N2 was utilized as the analyte. The experimental
results were verified by repeated measurements.

Figure 3. Schematic diagram of the LITES sensor system.

3. Experimental Results and Discussion

Firstly, the QTF’s properties were investigated. There are two methods to investigate
the QTF’s properties. The first one applies a laser beam as the excitation source [27]; the
other one applies electric excitation [32]. The first method was adopted in this experiment.
As is shown in Figure 4, the intrinsic resonance frequency f 0 and bandwidth ∆f were
measured as 32.763 kHz and 2.25 Hz, respectively. The quality factor Q = f 0/∆f was
calculated as 14,541, indicating its good performance.

Figure 4. Normalized and squared amplitude as a function of frequency.
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Considering that NH3 is able to be adsorbed onto the inner surface of the absorption
cell, the detected 2f signal is unstable before NH3 is in a saturation adsorption state. Hence,
it is crucial to investigate the relationship between the 2f signal value and ventilation time.
The measured results are exhibited in Figure 5. The results indicate that the normalized
signal value is essentially stable after 400 s. Hence, to acquire stable experimental data, the
experiment is expected to be carried out at least 400 s after the NH3 injection.

Figure 5. The correlation between normalized 2f signal value and ventilation time.

Figure 6 reflects the correlation between the NH3-LITES signal value and wavelength
modulation depth. In this paper, wavelength modulation depth is described by injection
current. It could be seen that the NH3-LITES signal amplitude rose to a maximum first and
then fell down with the increase in injection current. When the wavelength modulation
depth was 13.38 mA, the 2f signal achieved the maximum value. Therefore, the optimum
modulation depth of 13.38 mA was used in the following investigations.

Figure 6. The correlation between wavelength modulation depth and 2f signal value.

When the modulation depth was 13.38 mA, the 2f signal was measured and exhibited
in Figure 7. The 2f signal had two peaks corresponding to the two absorption lines located
at 6534.6 cm−1 (1530.33 nm) and 6533.4 cm−1 (1530.60 nm), respectively. The peak value
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at 6533.4 cm−1 was 75.23 µV, while the other peak value was 24.89 µV. Obviously, the
peak value at 6533.4 cm−1 was much bigger than what was located at 6534.6 cm−1, which
agreed with the absorption line strength data from the HITRAN database well. Hence, the
absorption line located at 6533.4 cm−1 was selected to carry out further investigation. The
background noise level was determined by continually monitoring the amplitude for 120 s
when the absorption cell was filled with nitrogen (N2). The results are shown in Figure 7b.
The calculated 1σ noise value was 0.044 µV. In terms of the data depicted in Figure 7, a
signal-to-noise ratio (SNR) value of ~1709 was calculated. In view of the definition that
minimum detection limit (MDL) = analyte concentration/SNR, an MDL of ~5.85 ppm was
acquired for this NH3-LITES sensor.

Figure 7. (a) 2f signal of 10,000 ppm NH3:N2; (b) noise level of NH3-LITES sensor.

To verify the linear response of the LITES signal on the NH3 concentration, the 2f
signals for different NH3 concentrations are shown in Figure 8. To obtain a mixture gas of
different concentrations, two mass flow controllers were employed to control the gas flow
rate of 10,000 ppm NH3:N2 and pure N2, respectively. Linear fits of LITES signal amplitude
and NH3 concentration are shown in Figure 9, respectively, for the two absorption lines.
The calculated R-square values are equal to ~0.99, indicating that the LITES signal performs
a splendid linear response of NH3 concentration levels for the two selected lines.

Figure 8. 2f signal of mixture gas with different NH3 concentrations.
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Figure 9. Linear fits of 2f signal peak values and NH3 concentration.

4. Conclusions

This paper demonstrated an ultra-highly sensitive NH3 sensor based on the LITES
technique for the first time. A fiber-coupled, near-infrared, CW-DFB diode laser emitting
at 1530.33 nm was chosen to be the excitation source. A QTF with an intrinsic resonance
frequency f 0 of 32.768 kHz was used as a detector to transduce mechanical vibrations into
electrical signals. By means of WMS and 2f detection techniques, the background noise of
the sensor was reduced to a low level. Two different absorption lines of NH3 located at
6534.6 cm−1 and 6533.4 cm−1 were chosen and investigated. The response of the LITES
signal on the NH3 concentrations was investigated, which indicated an excellent linear
response. The wavelength modulation depth was optimized to be 13.38 mA, and finally, an
MDL of ~5.85 ppm was achieved for this NH3-LITES sensor. This ppm-level NH3-LITES
sensor has the potential to be applied in environmental monitoring, medical diagnostic,
and other fields.
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