ﬁ Sensors

Article

Static and Dynamic Verification of Space Systems Using
Asynchronous Observer Agents

Wiktor B. Daszczuk

check for

updates
Citation: Daszczuk, W.B. Static and
Dynamic Verification of Space
Systems Using Asynchronous
Observer Agents. Sensors 2021, 21,
4541. https://doi.org/10.3390/
521134541

Academic Editor: Stefano Lenci

Received: 1 June 2021
Accepted: 28 June 2021
Published: 2 July 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Institute of Computer Science, Warsaw University of Technology, Nowowiejska Str. 15/19,
00-665 Warsaw, Poland; wbd@ii.pw.edu.pl; Tel.: +48-22-234-78-12

Abstract: Formal verification of distributed systems is essential, especially in mission-critical sys-
tems that cannot be restarted. Such are space systems in which satellites read sensor values and
autonomously make actuator decisions based on them, and ground services only set general pat-
terns of behavior. The verification formalism should correspond to the essential characteristics of a
distributed system, such as node autonomy and asynchrony of actions and communication, as in
our Integrated Model of Distributed Systems (IMDS). It is also crucial that the formalism allows for
finding partial deadlocks and checking partial termination, where only a subset of the system nodes
is involved while the rest can perform their own tasks at the same time. This article presents the idea
of using monitoring agents—observers prepared in the IMDS formalism. Observers check the state
of individual system components by polling, allowing verification without knowing the global state
of the system. Such an agent is an ideal prototype of a runtime observer that checks if the actual
operation of the system corresponds to a design that has previously been proven correct.

Keywords: modeling of space systems; verification of space systems; monitoring agents; observer
agents; automated test generation

1. Introduction: Model Checking of Space Systems

Satellite control is performed by distributed systems consisting of ground services,
and the satellites work singly in groups. The satellites and planetary probes are built
themselves as distributed IoT systems of cooperating nodes: sensors, actuators, controllers,
and communication facilities. The system components work mostly autonomously, fol-
lowing defined procedures or scenarios, exchanging messages to define the goals and to
monitor the operation. Such procedures need to be formally verified to ensure proper
behavior. A poor example of a system which was tested but not formally verified was the
Pathfinder Mars explorer that stopped its operation due to software error. Fortunately, the
lander was modular and the components operated quite autonomously, which allowed it
to communicate with the lander and load new software while it was physically immobi-
lized [1]. The whole situation could have been avoided if the system had been formally
verified before departure. Dijkstra has already stated that testing is for finding bugs, not
for validating software [2]. First-year students know this well, but unfortunately, mature
computer engineers often forget this basic principle.

We do not know how general the Pathfinder case is (but the priority inversion phe-
nomenon occurs in many projects). Designers rarely boast about mistakes, but rather keep
silent about them. However, even if Pathfinder were the only space mission that was
threatened with a failure as a result of a process synchronization error, the possibility of
losing several billion dollars and several years of work as a result of a programming error
is a sufficient prerequisite for creating a methodology for formal system verification in the
design phase, and later runtime verification of compliance with specification.

Model Checking (MC) is a verification of whether the behavior of a system fulfills the
specification. The model can be a source code itself, with some reductions that allow for

Sensors 2021, 21, 4541. https://doi.org/10.3390/s21134541

https:/ /www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-7532-362X
https://doi.org/10.3390/s21134541
https://doi.org/10.3390/s21134541
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21134541
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21134541?type=check_update&version=1

Sensors 2021, 21, 4541

2 0f 24

the elaboration of reachability space of behavior, or a transition system of a form of a graph.
The specification is a set of properties given as algebraic formulas, or another graph. The
verification is based on temporal formula evaluation or similar techniques [3,4]. In general,
model checking requires:

e model of the state of the examined system; usually it is the valuation of variables of a
specific program/set of programs. The natural requirement is the finiteness of the set
of states.

e determining the sequences of states, that is, a succession graph. By transitively
generalizing the succession, we obtain the reachability of states. Exhaustive search
methods require this graph to be finite, but non-exhaustive methods do not necessarily.

e alanguage for defining properties. In the simplest MC this is defining the state that is
desired /undesired, in a true MC this is finding a sequence satisfying certain conditions.

The contribution of this paper is our approach to verify distributed IoT systems, which
consists of four principles:

e application of true asynchronous formalism because no synchrony is possible in
physically distributed systems. The model should reflect natural features of a dis-
tributed system as the locality of knowledge and autonomy of decisions; consequently,
the verification algorithms must support weak fairness (justice) and strong fairness
(compassion) [5], which are essentially referring to asynchrony and autonomy;
automated verification of basic features required in mission-critical distributed systems;
verification concerning the situations in which a subset of cooperating nodes partici-
pate as opposed to total features (like total deadlock) specific for centralized systems;

e using monitoring agents whose purpose is twofold: (i) operation just like other system
processes, without any non-local knowledge of states of the components; (ii) based
on these agents, building testing processes that verify the desired features in runtime
(because some elements of the actual system can diverge from the modeled behavior).

All the abovementioned elements of our approach are discussed in detail in Section 2.

The design of space systems includes numerous procedures and scenarios which
should be formally verified to avoid the Pathfinder experience. Such a system should be
verified in the design stage and should also be self-verifying in operation. In design, the
entire global state of the system is known and can be subject to verification. However, it
is evident that in run-time, no such global state exists, and no element of the system has
knowledge about the operation of all components. It becomes clear that the global state
assumed in the design state was only an illusion. Therefore, we introduce monitoring
agents—called observers—that are defined and operate in the system just like other opera-
tional processes. We base the verification on the knowledge collected by these processes
rather than on the global system state. Therefore, the correctness of the system decided on
the observers’ behavior in the design stage is the same as the correctness tested dynamically.

Our goal is to build an asynchronous formalism and verification methodology for
model checking of space equipment. The space equipment uses the readings on its own
equipment and other satellites in Earth’s orbit (or elsewhere) with which it cooperates to
set the values of the actuators. The cooperation of ground services, possibly distributed
over Earth’s surface, is needed. The typical approach used in model checking is based on
the knowledge of the entire state space of the verified systems, even if its components are
aware only of their local state and received messages. This approach is successful and gives
knowledge on possible deadlocks and other malfunctions. However, when monitoring the
real system in operation, different methods must be used because the global state cannot
be acquired. Instead, we use the observers that interrogate the devices for their states
and actions and conclude about correct or erroneous work. Those agents are used both in
verification and in operation. Therefore, the same model is used to prove the proper system
design and investigate if actual operation follows the design rules used in the project.

For the model checker, the entire state space (which is called the reachability space
in our case, for reasons explained in Section 2) is known, because in the verification

Sensors 2021, 21, 4541

3o0f24

some global properties are identified even if they are observed from the point of view of
individual components in run-time. We postulate adding special monitoring processes
called observers that have only limited knowledge about the system state. An observer
collects this knowledge by interrogating system modules about their progress. Thus, the
correctness of the system can be judged based on the observers’ behavior rather than by
decisions based on the system global state (which is nonexistent in distributed system
operation). Having such observers defined, we can include them into a running system
after their transformation (manual or using a software tool) to acting processes. Their
purpose is to check if the system components follow the specified behavior. If yes, observers
confirm the correct system run at the time. If not, we have an early warning that the system
is expected to diverge from its proper operation, or even that it already works incorrectly.

This is comparable to automated test generation from the specification, which is well
known from the literature (references are given in Section 8). However, the role of the tests
performed by the observers is different: checking if the system components follow the
behavior that is statically proven to be correct rather than validating whether the system
states follow the abstract specification. This rule, together with using a formalism specially
tailored for distributed systems, automated verification, and checking partial features,
demonstrates the novelty of the approach.

We verified numerous distributed systems, as other research teams have. Many
formalism and verification tools use the synchronous or quasi-synchronous paradigm,
even if they are called synchronous. They often lack other properties inherent to distributed
systems, like autonomy, locality, and checking partial features. The tender for a verification
environment for space equipment AO10416, announced by ESA (European Space Agency),
inspired us to present our approach in the context of systems that are extremely distributed.
This problem highlights the presented characteristics of our approach. The analysis of the
nature of the space system led us to the invention of observers: the migrating agents whose
progress is the base of verification both in static form and in run-time.

The sequence diagram of the system to be verified is presented in Figure 1. It copes
with a satellite operating autonomously when started by ground services (called the
“environment”). The satellite has an instrument bay whose door is opened when it goes
operational. The door is closed if the sensors report a dangerous situation. In such a case,
the door should be closed. The tender states that the system cannot be in operational
mode when an alarm has occurred. The door should close if “more than two alarms” are
recorded. The requirement is inconsistent with the sequence diagram, in which precisely
two alarm signals from sensors cause the closing of the door, rather than more than two. The
original graph can be found at http://www2.rosa.ro/index.php/ro/esa/oferte-furnizori/
4628-model-checking-for-formal-verification-of-space-systems-expro (accessed on 30 June
2021). The abbreviation FDIR is not elaborated anywhere in the ESA tender materials, so
we treat it as a proper name.

The idea of static verification and dynamic testing on the same model with monitoring
agents is important when making updates to the software, if changes are made in ground
services software, or uploaded to satellites’ software. This is typical when new experiments
are planned for existing equipment or its mode of operation is modified, or if the sensor
readings cause a different action of actuators. Using the idea of observers, the new way of
work can be checked statically for errors and then applied to acting devices to test if they
follow the assumed changed behavior.

http://www2.rosa.ro/index.php/ro/esa/oferte-furnizori/4628-model-checking-for-formal-verification-of-space-systems-expro
http://www2.rosa.ro/index.php/ro/esa/oferte-furnizori/4628-model-checking-for-formal-verification-of-space-systems-expro

Sensors 2021, 21, 4541 4 of 24

Environment Mode_Manager FDIR Instrument_Manager

|
|
| Go_operational _ |

— ”

alarm

!

alarm

’\C'Oﬁe-dw\ﬁ

)

Figure 1. The sequence diagram of the example space control system.

2. Informal View on Integrated Model of Distributed Systems

Our modeling formalism is specially tailored for distributed systems, as it reflects their
natural features: locality of actions, the autonomy of decisions, and asynchrony in several
aspects. The distributed systems used in space equipment operate locally, autonomously
controlling their devices by employing sensors and actuators on general demand acquired
from ground services. They report their current state and actions to ground services in
the reverse direction. The mode of communication is of asynchronous nature, i.e., the
components of the system operate locally and send asynchronous, non-blocking messages
to each other, hoping they get an answer. The answer informs the caller about the reporter’s
state at the moment of issuing, which can no longer be valid when the message reaches
its destination. Weak and strong fairness in verification, which reflect the asynchrony and
autonomy, liberate from false deadlocks resulting from postponing the progress of some
system components.

Synchronous communication based on pairs of asynchronous messages can be built
on a higher level of abstraction and upon lower asynchronous communication. However,
such communication cannot be considered in space systems. For example, the entire round
time of communication with Mars explorers takes more than 20 min.

Automated verification concerns a subset of features of distributed systems. At the
cost of limiting the verified properties, the checking in “push the button” style is available,
which does not require the designer to learn of formalisms like temporal logic. We decided
to choose four properties: communication deadlock, resource deadlock, the inevitability
of distributed termination, and the possibility of distributed termination. Deadlock is a
feature automatically searched in many model checkers, for example, Spin [6] or Uppaal [7]
(however, they do not distinguish between deadlocks in communication and deadlocks
over resources). Other properties like distributed termination are seldom automatically
verified, and if so, the shape of the system model is limited, for instance, to cycling
systems. We have included the possibility and inevitability of termination in systems of
arbitrary schemes to automatically verified features. For verification, the Integrated Model
of Distributed Systems has been elaborated, in which a distributed system can be specified
and two views of the system—communicating nodes or traveling agents—can be observed
and verified.

The most important aspect of verification in IMDS is the verification of situations in
which a subset of system processes participate. These properties are partial deadlock and
partial termination. They are crucial in verifying distributed systems, as several processes
can fall into a deadlock while the rest of the system operates. According to termination, it
is expected that not all components of the system are supposed to terminate, as the system
can contain components performing some services continuously, and other components
which finish their operation on completion of their mission. We believe that the enumerated

Sensors 2021, 21, 4541

50f24

set of properties—including partial features—is enough, because typically other kinds
of behavioral errors finally manifest themselves as deadlocks or lack of termination. Of
course, this type of verification is not suitable for most data errors, for which different
kinds of checking are addressed.

There are many model checking methods, and the most advanced are those based on
temporal logic, as they allow properties to be expressed in different states or sequences.
Model checking is performed over the reachability graph of the system, which consists of
the vertices being system states and transitions which are actions. Every model checker
uses a single graph for verification, on which temporal formulas are evaluated, or a similar
checking mechanism is applied. Of course, in a distributed system such a graph must
be elaborated as a net effect of a composition of individual components” graphs. The
global graph is stored in the checker or calculated partly using non-exhaustive verification
methods. However, it is never directly observed as a whole due to its size (except for
tiny cases).

A verification method based on the IMDS (Integrated Model of Distributed Systems)
formalism has been developed in the Institute of Computer Science of the Warsaw Uni-
versity of Technology [8]. It addresses primarily the verification of distributed systems.
Both the state of distributed components (called in formalism as servers or modules) and
messages on the way or received and waiting for acceptance must be taken into account.
This is obvious because the behavior of the module depends not only on its current state,
but also on what messages are “on the input.” Different messages can trigger different
module actions. Therefore, a node in the reachability graph is described by the state values
of all modules of the distributed system and all messages in transit or waiting at the module
input. To distinguish such a graph vertex from a state, which is a combination of local
states of the modules, we call it a configuration. We call a global graph a reachability space,
rather than a state space, for the same reason.

The idea of IMDS is based on defining:

set of module states; a module can be in one of its local states,

a set of messages that can appear at the input of the modules; multiple messages can
be pending at the input of a module, and they are not structured in any way: they are
simply the input set of messages,

e distributed module is considered as a set of actions; action is a call to a specific
module service by a message on its input: executing an action causes the module’s
state to change to the new one, then the message is consumed and a new one is
generated on the action output. This message can be directed to the same or (usually)
to another module.

In the theory of distributed systems, two basic paradigms of computing are considered:

e client-server model, in which we distinguish modules offering services (servers) and
modules that trigger these services using messages (clients). The server may be a
client of another server;

e aremote procedure call (RPC) model in which processes move from one module to
another to execute a specific procedure in a target module, and the target module may
call for further procedures on subsequent modules.

The IMDS formalism combines both models by introducing the concept of agents;
these are comparable to the processes considered in the RPC paradigm. A module is
represented by its set of states, and the agent is represented by its set of messages. It is
assumed that the module action changes the state to the new one, and at the same time,
it changes the input message to the output message belonging to the same agent. This
rule ensures the continuation of both the module and the agent. A distributed system is
simply a set of module actions in the context of sets of states and messages. The set of
actions can be decomposed into subsets. Suppose it is decomposed into subsets of actions
of individual modules: it is a module view, in which modules cooperate using messages
(as in the client-server paradigm), while if it is decomposed into subsets of actions of

Sensors 2021, 21, 4541

6 of 24

individual agents, we get an agent view similar to the RPC paradigm (however, this is more
general than RPC, as the agent does not need to return to the invoking module). Thus, in
the formalism, every node in the node view is identified with a node process consisting of
actions having this node state on input. Likewise, the agent in the agent view is a set of all
actions invoked by messages with this agent identifier. Agent messages are the carriers
of agents, while node states are the carriers of node processes. The details of IMDS are
given in [8]. Regardless of the adopted view, it is still the same system defined as a set of
actions. It is an implementation of the famous Lauer-Needham postulate of two equivalent
implementations of a parallel system based on data (states) and messages [9]. However,
the IMDS formalism goes even further, proposing one uniform system with two views.

In IMDS, messages “on the way” are not modeled—the sent message is immediately
placed on the input of the target module. However, this does not apply to the real-time
verification in which the message flow is modelled, which is discussed below.

The IMDS formalism adopts the interleaving semantics of the system behavior, which
means that only one action is performed at a time. In a distributed environment, this may
seem to be too strong a limitation, but the coincidence semantics can be transformed into
an interleaving one [10].

A significant feature of IMDS is its asynchrony: note that in an action, the message
is sent without caring about the current state of the message’s target module, which
reflects the actual way of cooperation between distributed Earth and space nodes. It is
unimaginable that the sending module guesses the state of the target module. Of course,
the module can ask another module about its status using a message, but after receiving
the response, it is not even known if the other module is still working. Many verification
systems are based on synchronous formalisms, but they are unrealistic for distributed cases.
In synchronous models, components agree on their states to communicate. The examples
are Biichi automata [6] and Timed Automata [11], in which the components perform
their local actions independently, in arbitrary order, but communication (implemented
as joint actions on channel variables) requires synchronized common transition of both
components. In those models, synchronization is used to communicate, while in our
approach, communication is used to synchronize.

Model checking in IMDS is performed as an evaluation of temporal logic formulas
over the reachability space. In particular, temporal formulas for a deadlock have been
defined [12]. In the module view, a deadlock is such a state of the server that a different
state will never replace, i.e., no action will be performed. An additional condition is the
presence of a message at the module’s input because the lack of any action in the future
means that the message will never be handled. The lack of messages in the module (now
and in the entire future) means that the module is simply idle.

In the agent view, a deadlock means that the agent has a current message on the input
of a module, but that module will never perform an action for that message (it can perform
actions for other agents). Typically, an agent deadlock is also a module deadlock, but not
necessarily: the agent may be deadlocked due to lack of resources for it in the system, while
other agents are working (their actions are being performed), and no module is deadlocked.

This definition of deadlocks is fundamental because a deadlock does not have to be
total, as in most formalisms [13]. It is common for some modules/agents to deadlock in a
distributed system while others are still running. We call such a deadlock partial. Total
deadlock is just a partial deadlock of all processes (modules or agents).

There are only three features verified in IMDS: distributed (partial) module/agent
deadlock, the inevitability of distributed (partial) agent termination, and the possibility of
distributed (partial) agent termination [13].

Partial deadlocks are challenging to identify. Usually, the methods of verification
described in the literature find them only for systems with a specific general structure or
leave the appropriate temporal formula to be written by the user. Formulas developed for
IMDS are general and structure-independent and can therefore be evaluated automatically.

Sensors 2021, 21, 4541

7 of 24

The limitations of temporal verification to deadlocks (and termination) may seem like a
significant limitation to the user, however:

e deadlock is a frequent design error, especially in distributed systems, and it is a fatal
error (out of approx. 300 students who checked their solutions for synchronization
tasks, approximately 10% detected deadlocks, even though the teachers previously
positively assessed these solutions);

e other types of errors, such as performing operations in the wrong order, leads to later
deadlocks;

e if we check the system for reaching a particular situation or completing a specific
sequence, then at the end we can put a “deliberate” deadlock or put a process termi-
nation that the verifier will check; we often use both techniques.

An essential result of the temporal verifier operation, apart from the evaluation of
the temporal formula, is a counterexample which is the history of the run of the verified
system from the initial configuration until the error occurred. In this way, the designer is
assisted in finding bugs and can quickly fix the system. In the case of a distributed system,
the counterexample is a sequence of state changes and messages transmitted that can best
be represented in the form of a message sequence chart.

The IMDS formalism has a timed version (T-IMDS [14]) in which time ranges can be
attributed to actions executed in nodes, for example, the time between the signal from a
sensor to the reaction of the actuator, and to messages sent between the nodes. This allows
verifying if the system acting in given time conditions works appropriately. It is crucial
because time constraints can prohibit some deadlocks, but new deadlocks can arise.

We have successfully verified many distributed systems, including aviation equipment.
We have identified numerous errors and ambiguities in those systems. Until now, we
have no experience with space equipment, but we are sure that our IMDS formalism,
automated verification, and the idea of observers match the requirements for space systems
verification.

3. Monitoring Agents: Observers

In an actual space system, it is impossible to obtain a global state. We can observe
such a state (precisely: a configuration of IMDS) in the model, but other methods not
based on the global state must be applied for online testing. No global state exists in a
disturbed system. To match the model for static verification with the online testing model,
in IMDS we can introduce additional monitoring agents called observers. The verification
can be based on the behavior of those agents, which have only limited knowledge about
the system operation. Namely, they have only the knowledge collected by interrogating
individual modules about the values of sensors and the actions performed by the actuators.
The observers act as ordinary agents and use a regular format of messages to migrate
between modules. The operation of the modules is disturbed by observers only slightly, as
they answer the observers’ questions about the actions performed.

If we prove the properties of the system based on the behavior of observers, we can
implement the actual observers in the running system. The run-time observers act as
ordinary agents just like in the verification model. If an action is skipped or executed in the
wrong order, the observer can report and prevent damages that follow improper behavior.
We can say that a model is a prototype of the actual space system, while observers are
prototypes of online testing equipment.

Let us consider the idea of an observer collecting some events, presented in Figure 2.
Suppose that there are two modules 51, S2 representing the satellites and a module G
representing the ground services. The usual cooperation between the modules is shown as
bold arrows because the exchange of messages between these modules is not important
from our point of view. It is important that these modules reach the correct states in the
correct order. This is the case in the ESA tender, where the way of cooperation between the
MM, FDIR, and IM modules is not defined at all. Only alarm signals from sensors that are
counted are included. The observer O interrogates the module S1 for some event E1, and if

Sensors 2021, 21, 4541

8 of 24

0 T ———— -y

it gets a notification, it asks the module 52 if it undertakes an action E2 that should follow
E1. The sequence of messages that together make up an observer agent is shown as thin
arrows with sequence numbers of proper behavior.

1.
2.

The static verification consists of confirming:

If any deadlock occurs in the system.
If the observer terminates successfully after reporting the appropriate sequence of
events.

4.E2

\-————————-'

Figure 2. The idea of an observer interrogating two modules S1 and S2 for their states.

4. The Model Checking Environment

The Dedan [15] environment was built in the Institute of Computer Science of the

Warsaw University of Technology for verification in the formalism of the IMDS. The Dedan
environment includes:

the subsystem for constructing the reachability space,

temporal verifier,

counterexample editor,

compiler of the imperative language Rybu to the IMDS notation [16],

compiler of the BPMN workflow specification language to the IMDS notation [17],
graphic editor for the specification of modules and agents in graphic form,
reachability space viewer,

simulator operating on configurations,

graphic simulator operating on graphic images of modules (does not require elabora-
tion of the reachability space),

model export subsystem to Spin, NuSMV, and Uppaal model checkers.

The figures that are the output of verification are shown in sections on verification

of an example: counterexample sequence diagram in module view and agent view, coun-
terexample simulation over reachability space or space examination, simulation over
counterexample configuration trace, simulation of counterexample over states and mes-

Sensors 2021, 21, 4541

9 of 24

sages or arbitrary simulation, and finally graphic counterexample simulation over DA3
automata or arbitrary simulation over automata.

In addition to academic examples, the Dedan environment was used to verify medium
and large systems, such as monitoring protocol in the SCADA (Supervisory Control And
Data Acquisition) system (a deadlock was detected in the protocol), three-stage production
pipeline, communication protocols in a system for plant identification and control of an
industrial facility, streaming protocol for plant monitoring using SMS (Short Message
Service) messages of the GSM (Global System for Mobile communications) network, traffic
light controller, and autonomous vehicles cooperation.

The following verification of large systems was performed:

e timed verification of the Karlsruhe Production Cell [18]; it has been shown that the
proper selection of time intervals for the operation of individual cell devices allows
for its safe operation; improper selection of intervals causes problems (e.g., failure to
collect the part from the conveyor on time causes the part to fall onto the floor);

e timed verification of the Rome metro model [19]; in a timeless model, a critical region
is necessary that limits the number of trains in a given area; in the timed model, it has
been shown that it is enough to properly select the intervals of passing sections of the
track and stopping time at stations.

Both the construction and search of the reachability space is a very time-consuming
task. Therefore, work is currently underway on the distribution of calculations with
non-exhaustive verification using the HTCondor tool and the Shapp library [20].

5. Model Checking an Example from ESA Materials—Naive Model

We used DA3 Distributed Automata notation for modeling, which is semantically
equivalent to IMDS [21]. The automata are of Mealy style, i.e., the output symbols are
generated on transitions. The rules of the automata construction are:

every node is implemented by an automaton

automaton vertices are node states

input symbol triggering the transitions are incoming messages

output symbols generated on transitions are outgoing messages

initial vertex of an automaton, pointed by dot-rooted arrow e—, is the initial state of

the node

e every automaton is equipped with a set of pending messages (shown as a penny cress
in the figures)
initially, the message set contains initial messages of all agents started in the node
messages have the form ag.nod.serv, which means that the message calls the service
serv on the node nod in the context of the agent ag. Input and output messages are
separated by a slash. Minus character means agent termination—no continuation
message is issued.

The set of figures contains the automata used in the example implementation. Our
model consists of the following modules:

e Environment, representing ground services, the SA (Starting Agent) agent is initiated
in it, which causes the entire system to run,

e MM (Mode Manager), managing the state of the satellite, where IMA (Instrument Man-
ager Agent) agent is launched—managing door closing and CR (Counter Resetter)—
resetting the alarm counter,

e C (Counter)—alarm counter module, it is implemented separately from the MM
module, because the combination of MM and C in one module would result in a
synchronous change of variables responsible for the device state and the alarm counter;
in that case, the verification would be useless,

e FDIR—control module generating alarms (at random times); the AR agent (Alarm
Reporter) is launched in it; this agent represents signals from the sensors, for example,
meteor shower sensor, overheating sensor, etc.,

Sensors 2021, 21, 4541

10 of 24

IM (Instrument Manager)—door closing module,

Observers—a module that checks if the correctness condition is met by asking MM
and C modules for their states; the MMSR agent monitoring MM and CSR agent
monitoring C are activated; since the Environment module is responsible only for
starting the system, the Environment and Observers modules have been combined
into one EO module.

The first implementation is “naive”, which is discussed below.

The MM module (Figure 3) starts idle, the agent SA message received from the EO
module takes it to the starts state, from where the agent CR puts it into the oper state after
sending the reset message to module C. After receiving the alarm signal from the sensor,
the AR agent sends a counter-increment message to module C and transfers MM to fail
state. The AR agent, after receiving confirmation of the counter-increment by the AR agent,
sends the appropriate acknowledgment to the FDIR from which the alarms came. The
next alarm from a sensor preserves the MM module fail state and causes a consecutive
counter-increment sequence. Confirmation from the counter causes the transition to the
shut state in which the door is closed by the actuator—the IMA agent sends a close signal to
the IM module and causes the MM to go to the final state finish. Another alarm does not
change anything, so the reporting agent is terminated.

MM (Mode_Manager)

MMSR .MM .rep/ MMSR MM .rep MMSR .MM .rep/
MMSR.EO.op / MMSR_.EO.nop

CR.MM . start/
CR.C.reset

MMSR MM.rep/
MMSR EQ .befop

AR.MM.c2/
AR.FDIR .ok

AR MM .alarm/
AR C.inc

IMA MM .ready
IMA IM.close

MMSR .MM .rep/

MMSR EO befop AR MM alarm/

AR C.inc

AR MM.c1/AR FDIR.ok

AR MM.alarm/-

MMSR.MM . rep/
MMSR.EO.nop

Figure 3. MM module. Agents: IMA (Instrument Manager Agent), CR (Counter Resetter), AR (Alarm Reporter)—starts in
FDIR, SA (Starting Agent) starts in EO, MMSR (MM State Reporter)—starts in EO.

In each of the states, the monitoring signal received by the MMSR agent from the
EO module causes the MM module operating phase report to be returned to the EO: befop
before the oper state, op in the oper state, and nop after the oper state.

Sensors 2021, 21, 4541 11 of 24

Module C (Figure 4) is initialized to undef, after which the agent CR reset signal takes
it to state er0 (no errors). Each inc signal of the AR agent increases the error counter by 1 (to
er] or er2), and the next alarm from the sensor (the third one) leaves the module in the state
er2 and terminates the AR agent.

CSR.C.rep/ C (Counter)
CSR.EO.ne2 AR.C.inc/-

AR.C.inc/AR.MM.el AR.C.inc/AR.MM.e2

CSR.C.rep/CSR.EO.ne2 CSR.C.rep/CSR.EO.¢2

CR.C.reset/-

Figure 4. Module C: agent AR (Alarm Reporter) starts in FDIR, comes through MM. Agent CR (Counter Resetter) starts in
MM. Agent CSR (Counter State Reporter) starts in MM. Initially the message set is empty.

In each of the states, the monitoring signal received by the CSR agent from the EO
module causes the C module operating phase report to be sent to EO: nel in state er0, el in
states erl, er2.

The FDIR module (Figure 5) reports the alarm signals from sensors. The module is
initially in a state na for an indefinite amount of time (self-transition), after which it notes
an alarm at a random moment by sending an AR agent message to the MM module which
goes to state a. After receiving an acknowledgment, the module returns to the state na.

FDIR (reports errors asynchronously)
AR .FDIR run/

AR FDIR.run AR FDIR run/
AR MM .alarm

AR FDIR.ok/AR FDIR.run

Figure 5. FDIR module: AR agent (Alarm Reporter).

The module IM (Figure 6) receives the close signal from the MM module and terminates
the IMA agent. In fact, this module starts closing the door by issuing a signal to the actuator.

Sensors 2021, 21, 4541 12 of 24

IM (Instrument Manager)

IMA .IM _close/-

Figure 6. IM module (Instrument Manager), IMA (Instrument Manager Agent) starts in MM.

The EO module (Figure 7) is initialized in the ini state and the SA agent start signal
starts the MM module operation and causes the transition to the wait state. The module
enters the ent_oper state upon receipt of the op signal sent by the MMSR observer. Each
subsequent op signal causes it to stay in this state as well as signal nel from the counter
monitor. Signal nop means correct MM exit from oper state, and further events do not matter
as the module reaches left_oper state. The signal el means that the counter C goes to the
state er] (one alarm), which means failure to meet the condition: there are two alarms, and
the MM module did not exit the oper state. The EO module goes to the fatal state, and the
CSR agent sends an error signal to the same module. Since the error signal does not cause
any action, this is an “artificial” EO module deadlock signaling an error.

EO (Environment/Observers)

SA.EO.start/SA.MM.go

MMSR.EO.op/MMSR.MM.rep

CSR.EO.el/
CSR.EO.error

CSR.EO.el/ SA.EO.ok/-
CSR.EO.error MMSR.EO.op/

ini wait

SA.EO.ok/- h

MMSR.EO.befop/MMSR.MM.rep

CSR.EO.ne2/CSR.C.rep MMSR.MM.rep
MMSR.EO.befop/
MMSR.MM.rep
CSR.EO.nel/
MMSR.EO.nop/ CoR.Cacn
MMSR.MM.rep

left oper

=

SA.EO.ok/- SA.EO.ok/-
O.befop, MMSR.EO.nop/- MMSR.EO.nop/MMSR.EO.error
MMSR.EO.op/- MMSR.EO.op/MMSR.EO.error
CSR.EO.nel/- CSR.EO.nel/CSR.EO.error
CSR.EQ.el/- CSR.EO.e1/CSR.EO.error

Figure 7. EO (Environment/Observers) module: agents SA (Staring Agent), MMSR (MM State Reporter), CSR (Counter
State Reporter).

There is an inconsistency in the ESA materials regarding the number of alarms: in the
informal description, the door is closed after >2 alarms (i.e., after 3), and in the message

Sensors 2021, 21, 4541

13 of 24

sequence chart after 2. However, this does not affect the verification because we are dealing
with the first alarm (stop condition for alarm counter >0).

Some additional actions in the module not shown in the sequence diagram handle
some invalid sequences, for example, receiving the befop after the op signal. They all lead to
a fatal state. They are useless in the verification of proposed requirement but can be useful
in on-line testing of the equipment.

6. The Verification

This model appears to be correct. However, the verification shows the possibility of an
error. Figure 8 is a message sequence diagram of the counterexample. In this view, every
node has a timeline beginning with its initial state, and below the starting messages of all
agents in a given node are shown on a yellow background. Then, every action is presented
as the new state of the node in blue, the agent executing the action on light blue, and the
message by which the agent continues its run using an arrow and the message target on
message destination node on yellow. Thus, the migration of the agents back and forth
between the nodes is highlighted. At the bottom, states of all nodes and final messages of all
unterminated agents are presented. The deadlock denotes that there are messages pending
on the EO node which will never be served. It is an “artificial” deadlock, introduced to
distinguish the erroneous situation from the correct one, in which the observers simply
terminate.

EO MM c FDIR ™
ini idle undef na i
CSR-> ne2 CR-> start AR-> run
watt
sa — %
wat
SR SN rep
starts
ok — sA
watt
sar T D
. oper
cR — reset
er0
CR™? ?

a
dam —— AR
oper

AR —_— inc
erl
et — AR
oper
AR _— ok
na
AR run j

a
alarm —_— AR
oper

AR —_— inc
er2
e2 +—— AR
er2
) —— csR
fatal
CsRremor D
fatal
MMSR 17 j
current states and pending messages
fatal oper e2 a i
IMA! ready
AR!e2
CSR! error
[oeapLockt |

Figure 8. Counterexample of basic model verification in the module view.

Sensors 2021, 21, 4541

14 of 24

The same error in the agent view is seen in Figure 9. In this view, the node timelines
are shown on the left with ping headings and the agent timelines with green headings on
the right. Below, initial states on the nodes and initial messages of the agents are included.
Then every action has a form of specification of the current node of the agent in blue on its
timeline, and the new state of the node on the same level in light blue (with the name of the
agent causing this new value of the state), and the arrow of the message itself with target
node in light yellow and the message name in yellow. Like in the node view, the current
states of all nodes and final messages of all unterminated agents are given at the bottom.

EO MM FDIR M SA IMA crR AR MMSR CSR
ini idle undef na i
start EO
ready MM
start MM
run « FOR
op EO
net « €0
?SA=> watt I
g - M
2CSR=> wait . e
rep c
?SA=> starts o
ok EO
2 CR=> oper Cm
reset c
7CR=>erd (|
CR-> STOP c
*acrs .
alarm MM
240> o
inc c
248 et e
el MM
7CSR=>ert I
et €0
7 CSR => fatal 0
error EO
2 MMSR => fatal [e |
error €0
current states and pending messages
fatal fail erl a i

SA-> ok
IMA-> ready
AR -> el
MMSR -> error

CSR -> error

EO
MM

MM

EO

Figure 9. Counterexample of verification of the base model in the agent view.

Several forms of the reachability space viewing and simulation are elaborated: Figure 10
shows the entire reachability graph. Watching this graph is reasonable for small graphs
only. On the right, it shows all configurations and actions as transitions between them.
A configuration consists of states of all nodes and messages of all agents. To distinguish
them, they are arbitrarily numbered. During the simulation over the reachability space, the
“current” configuration becomes green and the outgoing transitions are red. This “current”
configuration is also shown on the right, and below are transitions numbered arbitrarily.
Every transition (in pink) shows a state and a message that triggers the action. In light
blue, the changes in configuration are shown: a new state of the node and a new message
of the agent. Clicking a transition causes this target configuration to become “current.”
The simulation can follow a counterexample presented in Figures 8 and 9, or the user can
diverge from the counterexample in an arbitrary moment.

Sensors 2021, 21, 4541

15 of 24

SA: go->MM

FDIR: na
AR:un

1.FDIR:na
AR:run->FDIR

FDIR: na
AR:mun

3. FDIR:a
AR: alam-=MM

| AR:un
MEssayss. Lo mmasauy mil.start
FDIR.run EQ.op EQ.ne2

—

1. EO:ini
SA: start
2. states: wait idle undefna i
messages: MM.go MM.ready MM.start
FDIR.run EQ.op EQ.ne2

4. states: ent_oper idle undefna i
meszages: MM.go MM.ready MM.start
FDIR.run MM.rep EQ.ne2

8. states: ent_oper idle undefna i
messages: MM.go MM.ready MM.start
FDIR.run MM.rep C.rep

———

3.FDIR: na
AR: un
3. states: iniidle undefa i
messages: EQ.start MM.ready MM.start
MM.alarm EQ.op EQ.ne2

5. states: wait idle undefnai
meszages: MM.go MK.ready MM.start
FDIR.run EQ.op C.rep

9. states: ent_oper starts undefna i
messages: ED.ok MM.ready MM.start
FDIR.run MM.rep EQ.ne2

17. states: ent_oper starts undefnai
messages: ED.ok MM.ready MM.start
FDIR.run MK.rep C.rep

32. states: ent_oper oper undefna i
messages: EO.ok MM.ready C.reset

> <|lm

18. states: ent_oper idle undefnai
meszages: MM.go MK.ready MM.start
FDIR.run EO.befop C.rep

6. states: wait starts undefnai
meszages: EO.ok MM.ready MM.start
FDIR.run EQ.op EC.ne2

10. states: ent_oper idle undefnai
messages: MM.go MM.ready MM start
FDIR.run EQ.befop EQ.ne2

19. states: ent_oper idle undefa i
messages: MM.go MM.ready MM.start
MM.alarm MM.rep C.rep

33. states: ent_oper starts undefna i
messages: ED.ok MM.ready MM.start

34. states: ent_oper starts undefai

Figure 10. Reachability space viewer, which allows for simulation over this space.

Figure 11 presents the simulation over configurations of the system, which is more
frequently used because it does not require generating the entire reachability space in the
graphic window. In fact, it does not require calculating this space at all. Thus, this mode
of simulation can be used even if a non-exhaustive verification method is applied. In the
window, the states of all nodes in the current configuration are shown on the top and agent
messages below them in pink. The pairs of (message, state) triggering the actions are shown
as pairs of arrows ending in the target configurations in light yellow, where a new state
and a new message are included. This mode of simulation can follow a counterexample
or diverge from it, and backtracking is also possible. Figure 12 shows an intermediate
simulation mode which has some features of both modes presented in Figures 10 and 11.

EO
ini

2. wait
go->MM

Configuration 1:

double ciick on action (ellow) - execute the action

MM C FDIR 1M
idie undef na i

1. na 3.a
run->FDIR

alarm-=MM

Figure 11. Counterexample simulation over configurations of the counterexample, or arbitrary simulation.

Sensors 2021, 21, 4541 16 of 24

Counterex_Witness

EO MM C FDIR M
ini idle undef na i

SA: start IMA: ready AR un

MMSR: op CR: start

C5R:ne2

L L E IR wait idle undef na i

5'C_0NFIGU wrzd wait idle undef na i
EOD: wait
MM: idle
C: undef
FDIR: na

M: i IMA: ready

MMSR: op SA go C5R:rep AR un

Figure 12. Counterexample simulator over the reachability space.

Finally, Figure 13 shows the simulation over Distributed Automata that are formally
equivalent to IMDS [14]. The actions change the current state of an automaton and switches
the focus to the automaton being the target of the message generated in the action. The user
can then follow the agent of switch until another, arbitrarily chosen action is selected for
automaton. This mode of simulation is most often used and it does not require calculating
the system reachability space. Just as previous simulation modes, this mode can follow the
counterexample achieved from the verification.

Simulation en individual server automata

EO MM Cc
SA.start IMA ready
2 E0 MMSR.op CR start
2 State:ini CSR.ne2
a ini wait left_oper idle starts undef er
[z
g
=
= fatal ent_oper oper erl
[a2 [] []
FDIR M
shut er2
ARrun
[] []
na a i
[} L] []
finish
[]
—— —

Figure 13. Graphic simulator over DA3.

All the presented screenshots concern the example system presented in Figures 3-7.
Coming back to this system, the error results from the fact that the EO module has not yet
managed to ask the MM module for its state, while the information about two alarms has
come from the sensors. This is due to the asynchronous mode of operation of the system.

Sensors 2021, 21, 4541

17 of 24

TempoRG Verification

An assertion could check the correctness condition, but the Dedan environment does not
provide such a possibility. On the other hand, assertions can only be used for validation
in a laboratory environment where the internal states of all modules are accessible. If the
Observers were to be an actual set of processes working in the system and detecting errors,
they must act precisely by querying modules for their states. Therefore, we modified
the basic model which allows the system to be examined by an observer operating in it,
equivalent to test generation.

The Dedan program and some basic examples of IMDS specification can be found at
the URLs provided below the article.

7. Verification of the Corrected Model

In the corrected model, it should be ensured that the information about the leaving
of the oper state by the MM module reaches the Observers before the MM module sends
a signal incrementing the counter. It is necessary to enter the intermediate states and a
continuation signal cont in the MM module. This is shown as actions in the IMDS source
notation. This code contains a record of actions grouped in individual modules, plus
the necessary syntactic glue (module types, module, and agent variables, binding formal
module parameters to actual ones, initializing modules and agents, etc.). Figure 14 contains
the transcription of the DA3 transition to the action.

AR FDIR.run/AR.MM . alarm

{AR.FDIR.run, AR.na -> AR.MM.alarm, AR.a}

Figure 14. The transition in DA% automaton and its textual IMDS form.

These new, intermediate states are used in the following actions:

MM:

{AR.MM.alarm, MM.oper} -> {AR.MM.cont, MM.fail_inf1},
{AR.MM.cont, MM.fail_inf2} -> {AR.MM.cont, MM.fail_inf2},
{AR.MM.cont, MM.fail_inf3} -> {AR.MM.cont, MM.fail_inf3},
{MMSR.MM.rep, MM.fail_inf1} -> {MMSR.EO.op, MM.fail_inf2},
{MMSR.MM.rep, MM.fail_inf2} -> {MMSR.EQ.nop, MM.fail_inf3},
{MMSR.MM.rep, MM.fail_inf3} -> {MMSR.EO.nop, MM.faill},

The new model does not show deadlocks, which is presented in Figure 15A.

5. TempoRG Verification

ALL [together [| [nome | Temination v [RUN_| [together
__S- ERVER VAR TYPE RESULT AGENT VAR TYPE RESULT
[w] EO EO Ok COsa SA
[w] MM MM Ok [IMA IMA Yes
wic c Ok Clcr CR
[v] FDIR FDIR Ok AR AR
] M Ok [MMSR MMSR

[Jcsr CSR
[sTats | [> | [mESsaGE TRAIL | [CONFIGURATION TRAIL | [SIMULATE | [FsM | [sTATS | [messace TRAIL | [conFIGURATION TRAIL | [SIMULATE | [FsM |
Model: corfigurations 470. levels 30 [SWITCH TO AGENT VERIFICATION | Model: corh | ~opposedview | | SWITCH TO SERVER VERIFICATION |
A B

Figure 15. Verification of corrected version: deadlock freeness (A) and inevitable termination of IMA agent (B).

Sensors 2021, 21, 4541

18 of 24

In the corrected model, in which no deadlock happens, it can be checked whether
the second requirement holds, i.e., the door should be closed if sensors report two alarms.
We assume the fairness of the model, which means that if two alarms can happen, they
must happen (preceded possibly by many situations in which they do not happen). We
check this property by simple verification for termination of IMA agent, which is expected
after two alarms. This agent terminates after closing the door, which is specified as the
desired result in the original ESA materials. The result of the verification is presented
in Figure 15B, and the witness sequence diagram is shown in Figure 16 (node view) and
Figure 17 (agent view). These graphs show that, according to the ESA tender requirement,
the IMA agent successfully terminates after closing the instrument door (in green ovals) in
response to two alarm signals from the sensors (in red ovals). In our opinion, an additional
observer can be added to the system which successfully terminates in the EO module after
interrogating IM for the successfully closed door.

The source codes of the observers are simply the tests for the system operation. On
the example of CSR, which code extracted from the agent view is determined as follows:

agent: CSR (servers EO0:E0,C:C),

actions {
{CSR.EO0.nel, E0.wait} -> {CSR.C.rep, EO0.wait},
{CSR.EQ.el1, E0.wait} -> {CSR.EO0.error, EO.fatall},
{CSR.EO.nel, EO.ent_oper} -> {CSR.C.rep, EO.ent_oper},

{CSR.EQ.el, EO0.ent_oper} -> {CSR.EO.error, EO.fatal},
{CSR.EO.el, EO0.left_oper} -> {EO.left_oper},

{CSR.EQ.nel, EO.left_oper} -> {EQ0.left_oper},
{CSR.EO0.el, EO.fatal} -> {CSR.EQ0.error, EO0.fatall},
{CSR.EO0.nel, EO.fatal} -> {CSR.EO0.error, EO.fatall,
{CSR.C.rep, C.er0} -> {CSR.EO0.nel, C.er0},
{CSR.C.rep, C.erl} -> {CSR.EO0.el, C.eri},
{CSR.C.rep, C.er2} -> {CSR.E0.el, C.er2},

};

The agent automaton of CSR is presented in Figure 18. The vertices of the automaton
are messages (sent from EO on the left and from C on the right), while the labels on
transitions are the context in which the messages are sent (if the state does not change, for
example, EO.wait) or state changes of the modules if it happens in the action (for example
EO.wait->check). Additional dashed vertices in the bottom represent the termination of the
agent (no message is issued) and its “artificial deadlock.” The automaton of the CSR or
MMSR agent can be programmed in a language used to implement the system. In order
to conform to the formal model, the transmitted messages must be provided with the
identifier of the agent in the context in which they are sent. For example, see messages in
the above CSR agent process which have this identifier as the first item.

Such a construction of the automaton may seem strange for people familiar with au-
tomata in which the vertices represent states and the transitions are events (like messages).
However, this is simply a dual view of the system: in the node view, the vertices are states
and the transitions are messages, while in the agent view, the vertices are messages and the
transitions move agents from a module to another one, with a possible change of module
state. For details, the reader can refer to [8].

Sensors 2021, 21, 4541

19 of 24

EO MM (& FDIR IM
n | | | | | |
ini idle undef na i
CSR -> ne2 CR -> start AR -> run
n
wait I
o
SA e go
n
I st
o
ok +—— SA
n
oper
o
CR reset
n
er0
u
CR"? ' >
a
|
o 3 &
f“ I
i}
AR inc
n
| ert
|
el AR
n
oper
i}
AR > ok
n
na
3]
AR'? run ' >
n
a
il
fail
o
AR inc
n
| .2
u
e2 AR
o
shut
i}
AR ok
n
finish
o
i
il
IMA? ' >
current states and pending messages)
| | | | | | | | |
wait finish er2 a i
o
SA!ok I
I AR !0k
MMSR!op
n
CSR!ne2

Figure 16. The witness of inevitable termination of IMA agent (node view).

Sensors 2021, 21, 4541 20 of 24

EO MM (o3 FDIR M
| | | | | | | | |
ini idle undef na i
start I EO
|
ready MM
"
start MM
run FDR
op EO
n
ne2 EO
|
75am vt e
go MM
|
= o
ok I EO
200 cer o
reset [
|}
L —
|
CR-» STOP c
T e
alarm MM
T Cow
inc (5
;
2400w ——
el MM
| |
P Cow
ok FDR
|
248210 ComR
|
run + FDR
=
2aera e
alarm 3 MM
A Cow
inc c
| |
ro ——
€2 MM
| |
2482 sht Cow
ok FDR
2hiA i Cow
close . L}
AT Cow
3
IMA -> STOP ™M
current states and pending
| | | N |
wait finish er2 a i
| |
SA-> ok I EO
AR -> ok FDR
MMSR -> op EO
:
CSR -» ne2

Figure 17. The witness of inevitable termination of IMA agent (agent view).

The CSR agent migrates from EO to C and back. It interrogates the C node for the
number of alarms reported by sensors. After receiving the report on two alarms, it checks
the current state of EO. The state left_oper denotes a proper sequence, thus the agent simply
terminates. If the state is fatal, an “artificial” deadlock is introduced: the agent sends the
message error which is never served. This automaton can be translated to a program in
the pseudocode below. Note that the state of EO is modified by this agent (state=fatal) and
by other agents, for example MMSR sets left_oper. Successful termination is translated to
terminate(0), while the artificial deadlock to terminate(-1).

In EO:

reply=nel;
while (state in {wait,ent_oper} && (reply==nel))
{
send(CSR,C,rep) ;
receive(CSR,C,reply) ;
}
if (reply==nel)

Sensors 2021, 21, 4541 21 of 24

if (state=left_oper) terinate(0);
else terminate(-1);
else terminate(-1);

InC:

state=er0;

while (1)

{
receive (CSR,EOQ,reply) ;
switch (state)
{
case er0: send(CSR,EO,nel);
case erl: send(CSR,EOD,el);
case er0O: send(CSR,E0,el);
}

}

The code of the agent can be stuffed with assertions that control correct succession of
states of a node for MM (reported by MMSR): idle -> starts -> oper -> fail -> shut -> finish,
messages of the agent, for CSR: nel -> el -> term. Some states/messages can be skipped, but
there is no way back in these sequences. Any deviation from these rules denotes an error.

EO C

EO.wait

EO.ent_oper

C.erl
C.er2

EO.fatal
EO.ent_oper->fatal
EO.wait->fatal

EO.left_oper

7 EO.fatal
o

Figure 18. The automaton of the CSR observer being the base for the on-line test. In the vertices, agent name is suppressed
because it is the same for all messages (CSR).

Sensors 2021, 21, 4541

22 of 24

8. Related Work

There are asynchronous formalisms, but usually the asynchrony is understood in
the wrong way. Authors call the communication asynchronous if it is non-blocking, and
this definition is close to ours. It is often assumed that the state of the mating node must
be known for communication to occur, regardless of whether it is blocking. In a really
distributed system, such an assumption is unrealistic: how can we check the state of a
remote note using another form of communication? The third notion of asynchrony relates
to the actions executed in distributed nodes. Models like Biichi automata and Alur’s
Timed Automata [22] execute common transitions synchronously, as common symbols
trigger them. Those automata are called asynchronous because the other, unrelated actions
executed locally do not interfere. However, in our opinion, such systems should be called
synchronous. Even if any one of the nodes can wait for the other one to enter a proper
state, how can we check it? Finally, a synchronous system can be defined as one in which
all distributed components execute in lockstep using the same central clock. Therefore, an
asynchronous system is one in which all distributed components execute out of lockstep
following their own local clocks. In our approach, we do not introduce any notion of clocks,
neither central nor local.

There are several formalisms for modeling distributed systems. Most of them have
their roots in the specification of centralized systems, then are extended to cover distributed
environments. Therefore, most of them are synchronous, or the synchrony is loosened
using a kind of inter-process buffer [23]. A good example is the verification of Avionic
systems in Spin [24]. For communication, Promela channels are used. This is not a
problem when a single process uses a channel. However, if multiple processes communicate
using the same channel, this approach artificially schedules messages, which may itself
cause errors. To our best knowledge, our formalism applies asynchrony in the most
consequent way. An example of a quasi-asynchronous model is the classical paper of
Havelund et al. [25]: the authors use Promela, in which the messages are buffered in
bounded FIFO channels. This paper is similar in using a remote agent that can be compared
to our observer. The disadvantage of that paper is using Spin [26], in which only total
deadlocks are automatically searched and strong fairness is not supported, sometimes
leading to false deadlocks [5]. Strong fairness should be supported in model checking
of distributed systems, because assuming some influence of a module on the process
scheduling in other modules is unrealistic. We have not found any verification environment
based on full asynchrony and strong fairness which is natural to distributed systems.

Automated test generation based on verification is presented in symbolic execution
methods [27,28]. Tests generated from various abstract models are described in [29-33].
Tests generated from timed automata specification (which are synchronous specifications
from our point of view, since they are based on executing common actions in parallel
components) are covered in [34]. Tests generated from ontology specifications are presented
in [35]. Automated test generation from layered models is described in [36]. However,
none of the approaches use the same processes addressed for static specification without
global knowledge of the distributed system state and the same processes acting as agents
in the run of the actual system.

Please note the different purpose of our observers compared to “traditional” tests. Usu-
ally, the tests check if the system or its components reach desired results. In our approach,
the system is proven statically correct if the event succession follows the specification and
the tests check if there is no divergence from the assumed succession of events.

9. Conclusions and Further Work

We showed a verification of a space system in which signals from sensors initiate
appropriate reactions. The model highlights the actual features of communication with
satellites and between satellite modules.

The novelty of our approach lies in the connection of several techniques which reflect
the actual properties of this structure and operation of highly distributed space systems:

Sensors 2021, 21, 4541 23 of 24

1. true asynchronous formalism, which highlights issuing messages without any knowl-
edge of the state and operation of the target node;

2. expressing locality of decisions and autonomy of actions in distributed components;

3. automated verification which supports checking the correctness of many versions of
the system, without any knowledge on temporal logics;

4. strong fairness of the evaluation algorithm, protecting against false deadlock resulting
from assumed scheduling of processes;

5. checking partial features—deadlock and termination—in which a subset of system
processes participate;

6. original concept of observer agents which can verify the correctness of the system
statically and dynamically in run-time.

We showed how the example system published by ESA can be verified. However, this
verification is timeless, and the next step in our research is real-time-based verification,
considering possible boundaries of message delivery and action duration. Such a real-time
related verification in other models is presented in [31,34].

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/521134541/s1. The Dedan program is available online at http://staff.ii.pw.edu.pl/dedan/
files/DedAn.zip (accessed on 30 June 2021). Examples of the IMDS systems in the source code are
available at http://staff.ii.pw.edu.pl/dedan/files /examples.zip (accessed on 30 June 2021).

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: The IMDS source code of the “naive” version, and the final version
both in the node view and the agent view is supplied as supplementary files.

Conflicts of Interest: The author declares no conflict of interest.

References

1. Jones, M. What Really Heppened on Mars Rover Pathfinder. Risk Dig. 1997, 19, 1-2. Available online: https://catless.ncl.ac.uk/
Risks/19.49.html (accessed on 29 June 2021).

2. Dijkstra, E.W. The Structure of the “the”-Multiprogramming System. In Proceedings of the ACM Symposium on Operating
System Principles-SOSP 67, Koblenz, Germany, 1 January 1967; ACM Press: New York, NY, USA, 1967; pp. 10.1-10.6. [CrossRef]

3. Clarke, EM.; Grumberg, O.; Peled, D.A. Model Checking; MIT Press: Cambridge, MA, USA, 1999; ISBN 0-262-03270-8.

4. Baier, C.; Katoen, J.-P. Principles of Model Checking; MIT Press: Cambridge, MA, USA, 2008; ISBN 9780262026499.

5. Daszczuk, W.B. Fairness in Temporal Verification of Distributed Systems. In Proceedings of the 13th International Conference on
Dependability and Complex Systems DepCoS-RELCOMEX, Brundw, Poland, 2—6 July 2018; AISC Volume 761; AISC Zamojski, W.,
Mazurkiewicz, J., Sugier,]., Walkowiak, T., Kacprzyk, J., Eds.; Springer: Cham, Switzerland, 2019; pp. 135-150. [CrossRef]

6. Holzmann, G.J. The Model Checker SPIN. IEEE Trans. Softw. Eng. 1997, 23, 279-295. [CrossRef]

7. Behrmann, G.; David, A.; Larsen, K.G.; Pettersson, P.; Yi, W. Developing UPPAAL over 15 Years. Softw. Pract. Exp. 2011, 41,
133-142. [CrossRef]

8. Daszczuk, W.B. Integrated Model of Distributed Systems; Kacprzyk, J., Ed.; Springer: Cham, Switzerland, 2020; pp. 31-48. [CrossRef]

9. Lauer, H.C.; Needham, R.M. On the Duality of Operating System Structures. ACM SIGOPS Oper. Syst. Rev. 1979, 13, 3-19.
[CrossRef]

10. Manna, Z.; Pnueli, A. The Temporal Logic of Reactive and Concurrent Systems; Springer: New York, NY, USA, 1992; ISBN 978-1-4612-
6950-2.

11. Alur, R; Dill, D.L. A Theory of Timed Automata. Theor. Comput. Sci. 1994, 126, 183-235. [CrossRef]

12. Daszczuk, W.B. Model Checking of IMDS Specifications in the Dedan Environment. In Integrated Model of Distributed Systems;
Kacprzyk, J., Ed.; Springer: Cham, Switzerland, 2020; pp. 49-51. [CrossRef]

13. Daszczuk, W.B. Specification and Verification in Integrated Model of Distributed Systems (IMDS). MDPI Comput. 2018, 7, 1-26.
[CrossRef]

14. Daszczuk, W.B. Timed IMDS. In Integrated Model of Distributed Systems; Springer: Cham, Switzerland, 2020; pp. 161-192.
[CrossRef]

15. Daszczuk, W.B. Using the Dedan Program. In Integrated Model of Distributed Systems; Springer: Cham, Switzerland, 2020; pp.

87-97. [CrossRef]

https://www.mdpi.com/article/10.3390/s21134541/s1
https://www.mdpi.com/article/10.3390/s21134541/s1
http://staff.ii.pw.edu.pl/dedan/files/DedAn.zip
http://staff.ii.pw.edu.pl/dedan/files/DedAn.zip
http://staff.ii.pw.edu.pl/dedan/files/examples.zip
https://catless.ncl.ac.uk/Risks/19.49.html
https://catless.ncl.ac.uk/Risks/19.49.html
http://doi.org/10.1145/800001.811672
http://doi.org/10.1007/978-3-319-91446-6_14
http://doi.org/10.1109/32.588521
http://doi.org/10.1002/spe.1006
http://doi.org/10.1007/978-3-030-12835-7_3
http://doi.org/10.1145/850657.850658
http://doi.org/10.1016/0304-3975(94)90010-8
http://doi.org/10.1007/978-3-030-12835-7_4
http://doi.org/10.3390/computers7040065
http://doi.org/10.1007/978-3-030-12835-7_10
http://doi.org/10.1007/978-3-030-12835-7_6

Sensors 2021, 21, 4541 24 of 24

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.
31.

32.

33.

34.

35.

36.

Daszczuk, W.B.; Bielecki, M.; Michalski, J. Rybu: Imperative-Style Preprocessor for Verification of Distributed Systems in the
Dedan Environment. In Proceedings of the KKIO’17-Software Engineering Conference, Rzeszow, Poland, 14-16 September 2017;
Polish Information Processing Society: Warsaw, Polnd, 2017; pp. 135-150. Available online: https://arxiv.org/ftp/arxiv/papers/
1710/1710.02722.pdf (accessed on 29 June 2021).

Jalowiec, J. Translation of Business Process Model and Notation into Integrated Model of Distributed Systems, Warsaw University
of Technology. Master’s Thesis, Institute of Computer Science, Warsaw University of Technology, Warsaw, Poland, 2019. Available
online: https:/ /repo.pw.edu.pl/info/bachelor/WUT31de757656da422c87be61e7ede00630/ ?r=diplomaétab=&lang=pl (accessed
on 29 June 2021).

Daszczuk, W.B. Asynchronous Specification of Production Cell Benchmark in Integrated Model of Distributed Systems. In
Proceedings of the 23rd International Symposium on Methodologies for Intelligent Systems, ISMIS 2017, Warsaw, Poland, 26-29 June
2017; Studies in Big Data, Volume 40; Bembenik, R., Skonieczny, L., Protaziuk, G., Kryszkiewicz, M., Rybinski, H., Eds.; Springer:
Cham, Switzerland, 2019; pp. 115-129.

Mazzanti, E; Ferrari, A.; Spagnolo, G.O. Towards Formal Methods Diversity in Railways: An Experience Report with Seven
Frameworks. Int.]. Softw. Tools Technol. Transf. 2018, 20, 263-288. [CrossRef]

Gatecki, T.; Daszczuk, W.B. Tree-Like Distributed Computation Environment with Shapp Library. MDPI Inf. 2020, 11, 143.
[CrossRef]

Daszczuk, W.B. Distributed Autonomous and Asynchronous Automata (DA"3). In Integrated Model of Distributed Systems;
Kacprzyk, J., Ed.; Springer: Cham, Switzerland, 2020; Volume 817, pp. 125-137. [CrossRef]

Alur, R; Dill, D. Automata for modeling real-time systems. In Automata, Languages and Programming; Springer: Berlin/Heidelberg,
Germany, 1990; pp. 322-335. [CrossRef]

Formal Development of Reactive Systems, LNCS 891; Lewerentz, C.; Lindner, T. (Eds.) Springer: Berlin/Heidelberg, Germany, 1995;
Lecture Notes in Computer Science vol. 891; ISBN 978-3-540-58867-2.

De la Camara, P,; Castro, J.R.; Gallardo, M.d.M.; Merino, P. Verification Support for ARINC-653-Based Avionics Software. Softw.
Testing, Verif. Reliab. 2011, 21, 267-298. [CrossRef]

Havelund, K.; Lowry, M.; Park, S.; Pecheur, C.; Penix, J.; Visser, W.; White,].L. Formal Analysis of the Remote Agent before and
after Flight. In Proceedings of the 5th NASA Langley Formal Methods Workshop, Williamsburg, Virginia, 13-15 June 2000; p. 12.
Available online: https://ti.arc.nasa.gov/m/pub-archive/176h/0176%20(Havelund).pdf (accessed on 29 June 2021).

Ben-Ari, M. Principles of the Spin Model Checker; Springer: London, UK, 2008; ISBN 978-1-84628-770-1.

Gomez-Zamalloa, M.; Isabel, M. Deadlock-Guided Testing. IEEE Access 2021, 9, 46033-46048. [CrossRef]

Chen, T,; Zhang, X.; Guo, S.; Li, H.; Wu, Y. State of the Art: Dynamic Symbolic Execution for Automated Test Generation. Futur.
Gener. Comput. Syst. 2013, 29, 1758-1773. [CrossRef]

Csuvarszki, J.C.; Graics, B.; Voros, A. No TitleModel-Driven Development of Heterogeneous Cyber-Physical Systems. In
Proceedings of the 28th PhD Mini-Symposium, Budapest, Hungary, 1-2 February 2021; Renczes, B., Ed.; Budapest University of
Technology and Economics, Department of Measurement and Information Systems: Budapest, Hungary, 2021; pp. 1-4. Available
online: https://inf.mit.bme.hu/sites/default/files/publications/minisymp21_csuvarszki.pdf (accessed on 29 June 2021).
Koné, O.; Castanet, R. Test Generation for Interworking Systems. Comput. Commun. 2000, 23, 642—-652. [CrossRef]

Cavalli, A.R.; De Oca, EM.; Mallouli, W.; Lallali, M. Two Complementary Tools for the Formal Testing of Distributed Systems
with Time Constraints. In Proceedings of the 12th IEEE/ ACM International Symposium on Distributed Simulation and Real-Time
Applications, Vancouver, BC, Canada, 27-29 October 2008; IEEE: New York, NY, USA, 2008; pp. 315-318. [CrossRef]

Rushby, J. Automated Test Generation and Verified Software. In Proceedings of the VSTTE 2005: Verified Software: Theories,
Tools, Experiments, Zurich, Switzerland, 10-13 October 2005; Meyer, B., Woodcock, J., Eds.; Springer: Berlin/Heidelberg,
Germany, 2008; pp. 161-172. [CrossRef]

Henniger, O.; Lu, M,; Ural, H. Automatic Generation of Test Purposes for Testing Distributed Systems. In Proceedings of the
FATES 2003: Formal Approaches to Software Testing, Montreal, QC, Canada, 6 October 2003; Petrenko, A., Ulrich, A., Eds.;
Springer: Berlin/Heidelberg, Germany, 2004; pp. 178-191. [CrossRef]

Nielsen, B.; Skou, A. Automated Test Generation from Timed Automata. Int. J. Softw. Tools Technol. Transf. 2003, 5, 59-77.
[CrossRef]

Nguyen, C.D.; Perini, A.; Tonella, P. Experimental Evaluation of Ontology-Based Test Generation for Multi-Agent Systems.
In Proceedings of the AOSE 2008: Agent-Oriented Software Engineering IX, Estoril, Portugal, 12-13 May 2008; Luck, M.,
Gomez-Sanz,].J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 187-198. [CrossRef]

Shchurov, A.A. A Formal Model of Distributed Systems for Test Generation Missions. Int. |. Comput. Trends Technol. 2014, 15,
128-133. [CrossRef]

https://arxiv.org/ftp/arxiv/papers/1710/1710.02722.pdf
https://arxiv.org/ftp/arxiv/papers/1710/1710.02722.pdf
https://repo.pw.edu.pl/info/bachelor/WUT31de757656da422c87be61e7ede00630/?r=diploma&tab=&lang=pl
http://doi.org/10.1007/s10009-018-0488-3
http://doi.org/10.3390/info11030143
http://doi.org/10.1007/978-3-030-12835-7_8
http://doi.org/10.1007/BFb0032042
http://doi.org/10.1002/stvr.422
https://ti.arc.nasa.gov/m/pub-archive/176h/0176%20(Havelund).pdf
http://doi.org/10.1109/ACCESS.2021.3065421
http://doi.org/10.1016/j.future.2012.02.006
https://inf.mit.bme.hu/sites/default/files/publications/minisymp21_csuvarszki.pdf
http://doi.org/10.1016/S0140-3664(99)00223-6
http://doi.org/10.1109/DS-RT.2008.43
http://doi.org/10.1007/978-3-540-69149-5_18
http://doi.org/10.1007/978-3-540-24617-6_13
http://doi.org/10.1007/s10009-002-0094-1
http://doi.org/10.1007/978-3-642-01338-6_14
http://doi.org/10.14445/22312803/IJCTT-V15P128

	Introduction: Model Checking of Space Systems
	Informal View on Integrated Model of Distributed Systems
	Monitoring Agents: Observers
	The Model Checking Environment
	Model Checking an Example from ESA Materials—Naive Model
	The Verification
	Verification of the Corrected Model
	Related Work
	Conclusions and Further Work
	References

