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Abstract: Gas-path anomalies account for more than 90% of all civil aero-engine anomalies. It is
essential to develop accurate gas-path anomaly detection methods. Therefore, a weakly supervised
gas-path anomaly detection method for civil aero-engines based on mapping relationship mining of
gas-path parameters and improved density peak clustering is proposed. First, the encoder-decoder,
composed of an attention mechanism and a long short-term memory neural network, is used to
construct the mapping relationship mining model among gas-path parameters. The predicted
values of gas-path parameters under the restriction of mapping relationships are obtained. The
deviation degree from the original values to the predicted values is regarded as the feature. To
force the extracted features to better reflect the anomalies and make full use of weakly supervised
labels, a weakly supervised cross-entropy loss function under extreme class imbalance is deployed.
This loss function can be combined with a simple classifier to significantly improve the feature
extraction results, in which anomaly samples are more different from normal samples and do not
reduce the mining precision. Finally, an anomaly detection method is deployed based on improved
density peak clustering and a weakly supervised clustering parameter adjustment strategy. In the
improved density peak clustering method, the local density is enhanced by K-nearest neighbors,
and the clustering effect is improved by a new outlier threshold determination method and a new
outlier treatment method. Through these settings, the accuracy of dividing outliers and clustering
can be improved, and the influence of outliers on the clustering process reduced. By introducing
weakly supervised label information and automatically iterating according to clustering and anomaly
detection results to update the hyperparameter settings, a weakly supervised anomaly detection
method without complex parameter adjustment processes can be implemented. The experimental
results demonstrate the superiority of the proposed method.

Keywords: civil aero-engine; anomaly detection; weakly supervised; mapping relationship mining;
improved density peak clustering

1. Introduction

The civil aero-engine is the heart of aircraft, and it is highly reliable and has a low
anomaly rate. However, the loss caused by civil aero-engine anomalies is unacceptable.
According to incomplete statistics, more than 90% of civil aero-engine anomalies are related
to gas paths. The cost of handling these anomalies accounts for 60% of the total maintenance
cost of civil aircraft, and the cost of each repair can be as high as 2–3 million US dollars [1].
If an early intervention for gas-path anomalies can be made, passenger safety and the
economic benefit of the airline can be guaranteed to the maximum extent. Therefore, a
high-precision gas-path anomaly detection method is critical.
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“Anomaly” is a general term for all faults. “Gas-path anomaly detection” refers to the
determination of all anomalies without judging their specific types, while “fault diagnosis”
refers to the determination of all anomalies as well as their types. The former requires
fewer anomaly samples, while the latter requires more fault samples. Extensive academic
research has been carried out on civil aero-engine gas-path anomaly detection and fault
diagnosis. Generally, this research can be divided into two parts: studies based on the
physical or mathematical model and those based on the data-driven model. The fault
diagnosis method based on the physical or mathematical model is limited by the model
accuracy, component characteristics, multistate nonlinear coupling, and other factors,
which leads to deviation in the estimation of engine performance and fault diagnosis [2].

In the field of anomaly detection, there are many classical algorithms and frameworks.
Angle-based outlier detection (ABOD) [3] assumes that angles are more stable than dis-
tances in high dimensional spaces and that a sample is an outlier if most other samples
are located in similar directions. However, it is difficult to apply ABOD when anomaly
samples are distributed among normal samples. K-nearest neighbor (KNN) anomaly
detection [4] determines anomalies by calculating the distance from each sample to the
nearest K samples. KNN cannot be applied to a dataset with uneven density. Isolation
forest (I-Forest) [5] treats samples more likely to be separated as anomalies. I-Forest is
sensitive to global anomalies, and it is not good at dealing with local anomalies. The
histogram-based outlier score (HBOS) [6] evaluates anomalies through histograms of each
dimension of samples, but it ignores the relationship between the dimensions and cannot
detect relationship anomalies between the dimensions. The local outlier factor (LOF) [7] is a
density-based anomaly detection method; it is good at detecting local anomalies. Stochastic
outlier selection (SOS) [8] calculates anomalies using affinity matrixes, and anomalies have
few affinities to other samples. SOS is difficult to use when the amount of data is too large.
The locally selective combination in parallel outlier ensembles (LSCP) [9] framework aims
to improve the accuracy of anomaly detection through targeted integration and selection
models. When there is a crossover between anomaly samples and normal samples, the
effect of the LSCP will decrease. Auto-encoder (AE) [10] determines anomalies using
the reconstruction error, but sometimes the AE also reconstructs the anomalies well. The
memory-augmented deep autoencoder (MenAE) [11] augments the autoencoder with a
memory module, and the reconstruction thus tends to be close to normal samples. The
MenAE significantly improves the accuracy of anomaly detection. In the field of weakly
supervised methods, some algorithms involve a label denoising method. The graph convo-
lutional label noise cleaner (GCN) [12] has been proposed to remove the noise in labels.
Using the GCN for weakly supervised anomaly detection reduces the impact of erroneous
labels. However, the input order of the features affects the convolution operation, which is
not consistent with the characteristics of the gas path. A weakly supervised self-reasoning
framework [13] has been proposed to improve the accuracy of video anomaly detection. It
generates pseudo-labels by using binary clustering of spatiotemporal video features which
helps in mitigating the noise present in the labels of anomalous videos. However, even
if the noise in the label is removed, the neural network-based classifier cannot solve the
extreme class imbalance of gas path parameters. The clustering assisted weakly supervised
(CLAWS) method [14] uses a normalcy suppression mechanism to minimize anomaly
scores of the normal regions of a video by taking into account the overall information
available in one training batch. However, video anomaly detection only needs to consider
the temporal dimension, not the parameter dimension. The civil aero-engine gas path has
multiple parameters, and the unimportant parameters also need to be suppressed. Due
to the high dimension, noise, extreme class imbalance, and other reasons, these anomaly
detection methods have a poor performance in the field of gas-path anomaly detection.

The latest data-driven gas-path anomaly detection methods are mainly represented by
the following kinds: (1) Mining the aero-engine baseline with principal component analysis
(PCA) combined with a deep belief network (DBN) and an Elman neural network optimized
by chaos particle swarm. A particle swarm and extreme learning machine have been used
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for further follow-up anomaly detection [15–17]. (2) Mining the deviation value of gas-path
parameters by establishing a mathematical model and residual forward neural network.
Then, anomalies are detected using a support vector machine [18–20]. (3) Using the original
gas-path parameters from the QAR or the ACARS directly. Anomalies are detected by
stacking denoising auto-encoders (SDAEs), convolutional neural networks, autoencoders
combined with Gaussian models, and multisource information fusion combined with
feedforward neural networks [21–23]. However, the baseline model is hard to establish
when the data are insufficient. The mining accuracy of deviation values is still limited.
The original gas-path parameters have too much noise and too many complex correlations
to use. Regardless of what kind of data is used for anomaly detection, it is necessary to
extract features first. The quality of feature extraction is directly related to the accuracy
of anomaly detection. At the same time, the extreme class imbalance between normal
samples and anomalous samples dramatically affects the accuracy of common anomaly
detection methods.

With the rapid development of artificial intelligence and computer hardware, various
complex algorithms have been proposed. Time-series data often contain more useful
information. A recurrent neural network (RNN) and its improved algorithm are the
preferred algorithms for processing time-series data. However, RNNs have a severe
vanishing gradient and exploding gradient when facing excessively long time series [24].
A long short-term memory neural network (LSTM) alleviates the vanishing gradient and
explodes gradient problems by controlling the long-term information that needs to be
saved or forgotten through its unique gate structure [25]. In addition, a gate recurrent
unit (GRU) has a similar principle to the LSTM, with fewer gate structures and easier
convergence, but the GRU does not perform as well as the LSTM on large data sets [26].

As time series become increasingly longer, the LSTM and GRU are increasingly less
able to learn critical information. In addition, these models cannot effectively express
information in a hierarchical structure. The appearance of the attention mechanism (Attn)
significantly improves this point. The attention mechanism is a particular structure em-
bedded in machine learning models that can automatically calculate each input data’s
contribution to the model, make more efficient use of useful information, and ignore useless
information [27]. The self-attention mechanism is a variant of the attention mechanism,
which reduces the dependence on the external model. The self-attention mechanism di-
rectly captures the internal correlation of data or features. It takes the whole time series
as the observation scope to obtain the similarity of any two elements in the time series
through a one-step matrix calculation [28].

However, regardless of how the neural network is optimized, the training process will
be affected by the majority-class samples, resulting in the accuracy reduction of the minority
class, and it has no advantage when facing extreme class imbalance. Density clustering
performs well in dealing with extreme class imbalance. Density-based spatial clustering
of applications with noise (DBSCAN) can cluster dense data sets of any shape, but it is
susceptible to hyperparameters, and the tuning process of hyperparameters is relatively
complex [29]. Ordering points to identify the clustering structure (OPTICS) improves the
DBSCAN algorithm, which mainly solves sensitivity to input parameters [30]. Clustering
by fast search and find of density peaks (DPC) is an effective and quick algorithm for
quickly searching for clustering centers based on the local density and relative distance
attributes [31]. DPC uses the decision graph to find the density peak as the clustering
center and it does not need to specify the number of clusters in advance and can cluster any
data shape. However, there are defects in local density and relative distance, so the DPC
clustering results for complex data are not satisfactory. Additionally, there is no uniform
measurement for calculating local density in the DPC, and different measurement methods
are selected according to different data sets. Third, the cutoff distance only considers the
global distribution of data, ignoring the local information and impacting the clustering
results. Some scholars have proposed different improved DPC algorithms [32].
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To solve the above problems, a weakly supervised gas-path anomaly detection method
for civil aero-engines based on mapping relationship mining of gas-path parameters and
improved density peak clustering is proposed. The method works by mining the com-
plex mapping relationships of gas-path parameters using the LSTM and the attention
mechanism. It then combines a classifier with a new loss function, named weakly super-
vised cross-entropy under extreme class imbalance, to force the mapping relationship to
show the difference between normal and anomalous data. Finally, anomalies are detected
using an improved density peak clustering-based anomaly detection method. In this
method, weakly supervised clustering strategies are set for the engines that have multiple
anomalous samples, which greatly reduces the difficulty of adjusting parameters.

In Section 2 of this paper, the complete model is introduced. In Section 3, the weakly su-
pervised feature extraction algorithm based on mapping relationship mining is introduced.
In Section 4, the weakly supervised anomaly detection algorithm based on improved den-
sity peak clustering is introduced. Finally, Section 5 introduces the experimental settings
and results in detail.

2. Proposed Framework

Civil aero-engine gas-path components have multiple monitoring parameters, includ-
ing altitude (Alt), indicated fan speed (FS), core speed (CS), total air temperature (TAT),
exhaust gas temperature (EGT), fuel flow (FF), oil pressure (OP), oil temperature (OT),
and Mach (Ma). These parameters of high latitudes and high redundancy are difficult to
analyze without processing. There are complex mapping relations among these parame-
ters, which can evaluate the health status of gas-path components. Traditional physical
and mathematical models have difficulty expressing this mapping relationship accurately
and reliably. Artificial neural networks have several advantages: (1) fully approximate
arbitrary complex nonlinear relations; (2) high robustness and fault tolerance; and (3) the
capability to learn and adapt to unknown systems. Therefore, the mapping relationships
of gas-path parameters can be learned through a neural network, and anomalies can be
found according to the deviation degree between the actual data and the predicted data of
the mapping relationship.

The customer notification report (CNR) provides a few anomalous labels for the gas-
path parameters. Labeled data are all anomalous data, while unlabeled data are with high
probability normal data. It is unknown whether the unlabeled data are anomalous. These
anomaly labels can provide a guide to neural networks. Due to the extreme class imbalance
between anomalous and normal samples and the small number of anomaly labels, both
traditional supervised learning methods and unsupervised learning methods cannot make
efficient use of label information in this situation. Therefore, a weakly supervised gas-path
anomaly detection method based on mapping relationship mining of gas-path parameters
and improved density peak clustering, as shown in Figure 1, is proposed in this paper. The
weakly supervised loss function uses label information to improve the neural network’s
effect, and improved density clustering (IDPC) overcomes the impact of class imbalance.

First, the mapping relationship between the gas-path parameters is mined by com-
bining the LSTM with the attention mechanism. According to this mapping relationship,
the theoretical value or predicted value (similar to the baseline) under specific conditions
can be derived. The deviation degree between the true value and predicted value is taken
as the feature (similar to the gas path deviation value). Second, there are few anomaly
samples and fewer anomaly labels. The mapping relational mining model is forced to
distinguish anomalous samples from normal samples using a classifier and a new loss func-
tion, named weakly supervised cross-entropy under extreme class imbalance (LossWSCE).
Finally, clustering and anomaly detection can be achieved by adding three strategies to the
DPC: (1) a local density measurement criterion based on K-nearest neighbors; (2) automati-
cally grabbing the outlier threshold and canceling outliers’ participation in clustering; and
(3) determining the K-nearest neighbor number through a weakly supervised clustering
parameter adjustment strategy.
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In Sections 3 and 4, the model details are introduced. In Section 5, comparative
experiments are described to demonstrate that each part of the proposed framework is
reasonable. Several classical feature-extraction methods and clustering methods were used
as comparative experiments to prove the superiority of the proposed framework.

Figure 1. Proposed framework.

3. Mapping Relationship Mining-Based Weakly Supervised Gas-Path Feature
Extraction Method
3.1. Complete Feature Extraction Model

A weakly supervised feature extraction (WSFE) algorithm based on mapping relation-
ship mining is proposed to extract features, as shown in Figure 2.

Figure 2. Mapping relation mining-based weakly supervised gas-path feature extraction (WSFE) method.
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Exhaust gas temperature (EGT), core speed (CS), and fuel flow (FF) are three essential
parameters, and many anomalies are directly reflected in them. The gas path deviation
value is also based on them. Therefore, they are used as observation parameters for WSFE.

First, the original gas path parameters are divided into time series of length T by
sliding windows. The attention mechanism is combined with the LSTM to construct
encoders and decoders for mining mapping relationships. The mapping relationship from
EGT, CS, and FF to others is mined. The mining model for a mapping relationship from a
single parameter to other parameters is established three times to input more information
and prevent the mapping relation mining accuracy from being insufficient.

To save space, the first encoder and decoder are used as examples to introduce the
details of the mapping relationship mining model. To mine the mapping relationship from
EGT(T) (EGT at time T) to the other parameters, the model is set as follows:

(1) The encoder is composed of an LSTM and an attention mechanism named input
attention (I-Attn). It inputs a time series with length T for other parameters except
for EGT. The most relevant input parameters are selected and weighted by the I-Attn
and the previous encoder LSTM hidden state. This weight is conducive to the LSTM
learning the deep information between parameters. The encoder outputs something
learned (also called encoding).

(2) The decoder is composed of an LSTM and an attention mechanism named temporal
attention (T-Attn). It inputs the encoding and the time 1 to time T-1 of EGT (also
called EGT(1~T-1)). The T-Attn is used to weight different time steps of encoding,
which helps the decoder LSTM to capture the long-term temporal dependencies.
The decoder outputs the learned theoretical value (predicted value) of EGT at time
T (EGT(T)). In this part, the mean square error loss function (LossMSE) is used to
calculate the loss from the predicted value to the true value.

(3) The deviation degree between the true and predicted value is the extracted feature,
which indicates how much the actual operation state deviates from the ideal opera-
tion state.

An over-complex classifier makes the complete model difficult to train, the class
imbalance data make it difficult to classify the features, and the output (predicted labels)
of any classifier can hardly be used for anomaly detection. However, by combining a
simple classifier with a new loss function, named weakly supervised cross-entropy under
class imbalance (LossWSCE), and calculating the loss of true labels and predicted labels, the
mapping relationship mining model can be forced to better reflect the difference between
most of the normal samples and the known anomalies, and a better feature extraction effect
can be achieved.

To force the mined mapping relationship to better distinguish the anomalies, a clas-
sifier combined with LossWSCE is set for feature classification. This classifier inputs the
extracted features and outputs the predicted labels. The predicted labels are used only to
calculate the LossWSCE.

The mapping relationship mining model and classifier are trained simultaneously.
The outputs of the WSFE model are the extracted features. The complete loss function of
it is:

Loss = LossMSE + βLossWSCE, (1)

LossMSE =
1
n

n

∑
i=1

(ŷi − yi)
2, (2)

where β is used to adjust the magnitude of the different loss functions to facilitate model
training, LossMSE is the MSE loss function, yi is the true value, ŷi is the predicted value,
and LossWSCE is the weakly supervised cross-entropy loss function under extreme class
imbalance, which is described in detail in Section 3.3.

The complete model training mechanism is described below:

(1) The mapping relationship mining model inputs the true values and true labels of
gas-path parameters and outputs the predicted values.
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(2) The deviation degree between the true and predicted values is calculated as the
extracted features.

(3) The classifier inputs the extracted features and outputs the predicted labels.
(4) The LossMSE is calculated by the predicted values and true values, and the LossWSCE

is calculated by the predicted labels and true labels. The Loss of the WSFE is calculated
by the LossMSE and LossWSCE.

(5) The complete WSFE model is trained by the Loss. At the beginning of training, the
mapping relation mining precision increases rapidly, the LossMSE descends rapidly,
the extracted features are not accurate enough, the LossWSCE fluctuates a lot, and the
complete Loss descends rapidly. As the accuracy of the mapping relationship mining
ascends to a certain degree, the descending speed of Loss and LossMSE becomes slow,
the LossWSCE starts to descend significantly, and the extracted features begin to show
significant differences between anomaly samples and normal samples. The training
procedure is stopped until the Loss barely changes.

The following sections introduce the mapping relationship mining algorithm, the
weakly supervised cross-entropy loss function under extreme class imbalance, and the
classifier used to enhance the feature extraction effect.

3.2. Mapping Relationship Mining Algorithm

The mapping relation mining algorithm adopts the seq2seq (encoder-decoder) struc-
ture, which is commonly used in machine translation [33,34], as shown in Figure 3. X = (x1,
x2, . . . , xn)T = (x1, x2, . . . , xT) represents a time series of the input data, the length of the
time series is T, and the dimension is n. In the symbol of type xi

t, the superscript represents
the ith feature, and the subscript represents the data at time t. Words in bold italics denote
matrices or vectors, and xT denotes the transpose of vectors or matrices x.

Figure 3. Mapping relationship mining algorithm.

(1) Encoder

The input data are composed of multiple time series (matrix) with dimensions n and
length T. In Figure 3, a time series X is taken as an example to demonstrate the mapping
relationship mining process. Since the calculation of attention depends on the last moment
hidden state of the LSTM, the LSTM is introduced first. For the time series X = (x1, x2, . . . ,
xn)T = (x1, x2, . . . , xT), if no attention mechanism is added, then the encoder is an ordinary
LSTM neural network, whose purpose is to learn a linear mapping from xt to ht:

h = (h1, h2, . . . , hn)T = (h1, h2, . . . , hT)
= ( f1(h0, x1), f1(h1, x2), . . . , f1(hT−1, xT)),

(3)

where ht represents the hidden state of LSTM at time t, and m represents the size of the
hidden state. f 1 represents the nonlinear activation function of the LSTM.
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Each LSTM unit includes the forget gate, input gate, and output gate. f t, it, and ot
represent the expression of these three gates at time t, and st represents the state of the
memory cell at time t:

ft = σ
(

W f [ht−1; xt] + b f

)
, (4)

it = σ(Wi[ht−1; xt] + bi), (5)

ot = σ(Wo[ht−1; xt] + bo), (6)

st = ft · st−1 + it · tanh(Ws[ht−1; xt] + bs), (7)

ht = ot · tanh(st), (8)

where [ht−1; xt] represents a concatenation of previously hidden state ht−1 and current input
xt, [ht−1; xt] ∈ Rm+n, σ is the sigmoid activation function, W f , Wi, Wo, Ws∈ Rm×(m+n), and
b f , bi, bo, bs ∈ Rm are parameters to learn.

For the time series X = (x1, x2, . . . , xT) = (x1, x2, . . . , xn)T (X ∈ Rn×T), after adding
input attention (I-Attn), the element ek

t in the input attention output ek becomes:

ek
t = vT

e tanh(We[ht−1; st−1] + Uexk), (9)

where ht−1 and st−1 represent the hidden state and the memory cell of the LSTM at time
t−1. ve ∈ RT , We ∈ RT×2m, and Ue ∈ RT×T are parameters to learn.

Through the SoftMax layer, the element αk
t of output αk becomes:

αk
t =

exp(ek
t )

n
∑

i=1
exp(ei

t)
, (10)

where αk
t is the input-attention weight of the k-th feature at time t, and the weighted sum

of all inputs is guaranteed to be 1 through the SoftMax layer.
Then, by adding input attention, the input becomes:

∼
X = (α1x1, α2x2, . . . , αnxn)

T
, (11)

Input
∼
X into the LSTM to update the encoder’s learning result:

h = (h1, h2, . . . , hn)T = (h1, h2, . . . , hT)

= ( f1

(
h0,
∼
x1

)
, f1

(
h1,
∼
x2

)
, . . . , f1

(
hT−1,

∼
xT

)
)

(12)

where f 1 represents the nonlinear activation function of the LSTM unit, which can be
obtained from Equations (4)–(8). The above settings add weights to the input data instead
of equally treating all the inputs, improving the model effect and convergence speed.

(2) Decoder

Similarly, the weight lt of temporal attention (T-Attn) at time t depends on the hidden
state dt−1 and memory cell state s

′
t−1 of the LSTM at time t−1, and the elements li

t of
temporal attention weight lt at time t are:

li
t = vT

d tanh(Wd[dt−1; s
′
t−1] + Udhi), 1 ≤ i ≤ T, (13)

where dt−1 ∈ Rp and s
′
t−1 ∈ Rp represent the hidden state and memory cell of LSTM

at time t-1, respectively, and [dt−1; s
′
t−1] ∈ R2p represents a concatenation of dt−1 and

s
′
t−1. p represents the size of the hidden state. vd ∈ Rm, Wd ∈ Rm×2p, and Ud ∈ Rm×m are

parameters to learn.
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Through the SoftMax layer, the elements βi
t in βt become:

βi
t =

exp(li
t)

n
∑

j=1
exp(l j

t)
, (14)

where the attention weight βi
t represents the importance of the ith encoder hidden state at

time t.
The weighted sum of all the encoder hidden states (h1, h2, . . . , hT) is the context vector

c, and the element in c is:

ct =
T

∑
i=1

βi
thi, (15)

Combine ct with the decoder input y = (y1, y2, . . . , yT−1)
T ∈ R(T−1) to obtain

∼
y =

(
∼
y1,
∼
y2, . . . ,

∼
yT−1)

T
∈ R(T−1), and the elements

∼
y t−1 in

~
y are:

∼
y t−1 =

∼
w

T
[yt−1, ct−1] +

∼
b , (16)

∼
w ∈ Rm+1 and

∼
b ∈ R map the concatenation matrix [yt−1, ct−1]∈ Rm+1 to the size of

the decoder input. Use
∼
y = (

∼
y1,
∼
y2, . . . ,

∼
yT−1)

T
to update the hidden state of the LSTM:

d = (d1, d2, . . . , dT)

=
(

f2

(
d0,
∼
y0

)
, f2

(
d1,
∼
y1

)
, . . . , f2

(
dT−1,

∼
yT−1

)) (17)

Similarly, the nonlinear function f 2 can be calculated from Equations (4)–(8):

f′t = σ
(

W′f
[
dt−1;

∼
y t−1

]
+ b′f

)
, (18)

i′t = σ
(

W′i
[
dt−1;

∼
y t−1

]
+ b′i

)
, (19)

o′t = σ
(

W′o
[
dt−1;

∼
yt−1

]
+ b′o

)
, (20)

s′t = f′t · s′t−1 + i′t · tanh(W′s[dt−1;
∼
y t−1] + b′s), (21)

dt = o′t · tanh(s′t), (22)

where [dt−1;
∼
y t−1] ∈ Rp+1 is a concatenation matrix of previous hidden state dt−1 and the

decoder input
∼
y t−1. W′f , W′i, W′o, W′s ∈ Rp×(p+1) and b′f , b′i, b′o, b′s ∈ Rp are the parameters

to learn. σ is the sigmoid activation function.
Therefore, the predicted value ŷT at time T can be expressed by:

ŷT = F(y1, y2, . . . , yT−1,x1,x2, . . . ,xT)
= vT

y
(
Wy[dT , cT ] + bw

)
+ bv

(23)

where [dT ; cT ] ∈ Rp+m is a concatenation matrix of the decoder hidden state dT and the
context vector cT . Wy ∈ Rp×(p+m) and bw ∈ Rp map [dT ; cT ] to the size of dT . vy ∈ Rp and
bv ∈ R are parameters to learn, which produces the result.

3.3. Weakly Supervised Cross-Entropy Loss Function under Extreme Class Imbalance

The cross-entropy loss function (CE) [35] can be used for the classification task, but
CE does not perform well in the class imbalance dataset. Focal loss (FL) [36] can force the
model to focus on minority classes in the class-imbalanced dataset. However, these two
loss functions only apply to supervised learning and cannot be used when there are not
enough labels. To extract features under extreme class imbalance and take advantage of
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weakly supervised labels, new loss functions based on CE and FL that can use weakly
supervised labels must be investigated.

Therefore, a weakly supervised cross-entropy loss function (LossWSCE) under extreme
class imbalance is proposed:

LossWSCE = −y log(P)− α(1− y)Pγ log(1− P), (24)

where y represents the label, with y = 0 when the sample is anomalous and y = 1 when
the sample is not a known anomaly. P represents the classifier’s output which is also the
probability that the sample is normal. α represents an imbalanced coefficient equal to the
ratio of known anomalies to total samples. γ represents a focusing coefficient which is
used to adjust the loss descent speed, γ ≥ 0.

When the sample is a known anomaly (y = 0), the closer the output P is to 0, the
smaller the LossWSCE will be. When the sample is not a known anomaly (y = 1), the closer
the output P is to 1, the smaller the LossWSCE will be. The imbalanced coefficient α is used
to adjust the weight of −y log(P) and (1− y)Pγ log(1− P). It can force the model to pay
more attention to the known anomaly samples, and prevent the model training procedure
from being dominated by a large number of normal samples. The focusing coefficient γ
is used to adjust the descent speed of LossWSCE. When the descent speed of LossWSCE is
similar to that of LossMSE, the difficulty of the model training will be reduced.

3.4. Classifier for Enhancing Feature Extraction Effect

Due to the inseparability of extracted features and extreme class imbalance, a simple
classifier’s ability to identify anomalies is minimal. Classifiers with complex structures are
difficult to train, and they show little improvement in classification. The simple classifier
combined with the LossWSCE can effectively improve the feature extraction effect, and there
are apparent differences between normal and anomalous samples in the extracted features.

The classifier structure is shown in Figure 4. It adopts the same structure as the
encoder model and is followed by two additional LSTM layers and a fully connected
layer. To save space, the formula derivation of the classifier is not introduced. The number
of fully connected (FC) layer units is 1, the activation function is sigmoid, and the loss
function is LossWSCE, which calculates the loss of the predicted label and the true weakly
supervised label.

Figure 4. Classifier.

4. Improved Density Peak Clustering-Based Anomaly Detection Method

Clustering using the fast search and find of density peaks (DPC) algorithm assumes
that cluster centers are characterized by a higher density than their neighbors and by a
relatively large distance from points with higher densities. The DPC algorithm proposes
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three concepts: for each sample i, the local density ρi of it, the cutoff distance dc, and the
distance δj from points of higher density to sample i:

ρi = ∑
j

χ(dij − dc), (25)

χ(dij − dc) =

{
1, x < 0
0, x ≥ 0

, (26)

δj = minj:ρj>ρi (dij), (27)

where dij is the Euclidean distance of sample i and sample j. The cutoff distance dc is a
hyperparameter, which can be adjusted according to the clustering effect.

For the anomaly detection task in this study, different engines were considered have
different health states, so the extracted features inevitably reduce the accuracy when they
participate in density clustering together. However, a single engine dataset is small, and
the local density is greatly affected by the cutoff distance. The DPC divides the clustering
center using a decision graph and classifies sample j (which is not the clustering center) to
the closest center with a larger density than sample j. Once a clustering division error is
made, it easily leads to the remaining points’ linkage error. For this reason, many scholars
have proposed local density definition methods using the K-nearest neighbors and new
sample distribution strategies.

The purpose of the existing improved DPC algorithm is clustering rather than anomaly
detection. Outliers may be divided into clustering centers or assigned to the nearest
class. The outliers described in this paper are usually independent of all classes, and
the correlation between outliers is tiny. Rudely treating them as clustering centers or
assigning them to other classes would bring significant errors to the anomaly detection task.
The number of K-nearest neighbors needs to be adjusted several times, which is highly
subjective. Therefore, an anomaly detection method based on improved density peak
clustering (IDPC) and a weakly supervised clustering adjustment strategy is proposed. It
can improve the anomaly detection accuracy without being affected by class imbalance.

4.1. Anomaly Detection Method Base on Improved DPC

The authors of a previous study [32] proposed new definitions of local density and
outliers. The exponential kernel with width δ = 1 defines the local density:

ρi = ∑
j∈KNN(i)

exp(−dij), (28)

where dij is the Euclidean distance of sample i and sample j, and KNN(i) is the set of
K-nearest neighbors of sample i. The outlier threshold is defined by:

kdist(i) = maxj∈KNN(i)
{

dij
}

, (29)

threshold =
1
N

N

∑
i=1

kdist(i), (30)

Outlier = {o|kdist(o) > threshold}, (31)

where kdist(i) is the furthest K-nearest neighbor of sample i.
This method finally assigns outliers to the nearest cluster after the clustering of other

points is completed. Outlier thresholds are determined by averaging, resulting in a vast
number of outliers selected, and the outliers may not be judged as anomalies.

As shown in Figure 5, the green line is the old outlier threshold, and Kdist is the
curve composed of all kdist(i) ordered by magnitude. This old outlier threshold definition
cannot accurately find the inflection point of Kdist, so a new outlier threshold definition is
proposed, as shown by the red line in Figure 5.
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Figure 5. Outlier threshold.

Figure 6 shows the calculation method of the new outlier threshold. The minimum
value of curve Kdist is taken as the origin, and the curve Kdist is rotated to the angle
shown in the figure to obtain a new coordinate axis and a new curve Kdist′. The minimum
of the new curve on the new coordinate axis is the new outlier threshold, and then the
corresponding position on the original coordinate axis can be determined. The coordinate
transformation process is shown in Equations (32)–(34).

θ = arctan
(

max(xKdist)−min(xKdist)

max(yKdist)−min(yKdist)

)
, (32)

Mtrans =

[
cos θ − sin θ
sin θ cos θ

]
, (33)

(xKdist
′,yKdist

′) = (xKdist −min(xKdist),yKdist −min(yKdist)) ·Mtrans, (34)

where xKdist and yKdist are vectors of all the values of Kdist along the x-axis and y-axis,
Mtrans is a transformation matrix used to rotate the coordinate axes, and xKdist

′ and yKdist
′

are vectors of all the values of Kdist′ along the x′-axis and y′-axis.

Figure 6. New definition of outlier threshold.
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After the coordinate transformation, the new threshold Threshold′(xKdist
′(i),min(yKdist

′))
can be found. The i of xKdist

′(i) is the index of the ith value in order, and then xKdist(i) and its
corresponding outlier threshold can be determined according to the index i. Outliers are directly
divided into anomaly classes and do not participate in the subsequent clustering process.

The complete clustering process is as follows:

(1) Calculate the local density and determine the density peak, Kdist, and outliers. Delete
outliers from the clustering process. Taking ρ as the x-axis and δ as the y-axis, draw
the decision graph. Determine the clustering center through the decision graph; ρ
and δ of the cluster center are relatively large. Add the class label m (m = 0, 1, 2, 3,
. . . , M) to the cluster center in order.

(2) Constantly search for the unclustered points in the K-nearest neighbors of clustering
centers and divide them into the cluster of clustering centers.

(3) Calculate the probability that the remaining points belong to each class and assign
them to the classes with the highest probability.

The similarity of sample i and each class is calculated, as shown in Equations (35) and
(36), and then sample i is assigned to the class with the highest probability.

sij =

{
1

dij
, dij 6= 0

1, dij = 0
, (35)

Pm
i =

j∈KNN(i)

∑
yj=m

wij × sij, (36)

where dij is the Euclidean distance of sample i and sample j; KNN(i) is the set of K-nearest
neighbors of sample I; sij is the similarity of samples i and j; Pm

i is the probability that
sample i belongs to class m; wij is a similar weight of samples i and j, which is related
to the distribution of sample j and the distribution of K-nearest neighbors of sample i,
wij = sij/( ∑

l∈KNN(i)
sij); and yj = m (m = 1, 2, 3, . . . , M) is the class label.

After clustering, outliers and minority classes are regarded as anomalies.

4.2. Weakly Supervised Clustering Parameter Adjustment Strategy

The Calinski–Harabasz (CH) index, the silhouette coefficient (SC), the Davies–Bouldin
index (DBI), and the Dunn Validity index (DVI) [37–40] are unsupervised indicators for
evaluating clustering. In general, the best clustering result is obtained when it has small
compactness within any class and a large separation between classes. The CH index
calculates the compactness and separation using the sum of squares of the sample distances.
The SC evaluates compactness and separation using the obvious degree of class silhouettes.
The DBI calculates the maximum ratio between the mean of the sample distance within a
class and the distance from the cluster center. The DVI calculates the ratio of the shortest
distance between samples of different classes to the maximum sample distance in a class.

Figure 7 shows four index scores when the number of K-nearest neighbors increases
from 1 to 1602 (0.9 times the total number of samples). When the number of K-nearest
neighbors is large, there are few classes in the clustering results, and when the number of
K-nearest neighbors is small, there are a great many classes in the clustering results. The
larger the number of K-nearest neighbors, the larger the number of samples in a majority
class and the fewer the classes in the clustering results, leading to the increase of the
compactness and the decrease of the separation calculated by the sum of squares of the
sample distances. Therefore, the CH index becomes worse when the number of K-nearest
neighbors is larger. The other indicators use the mean or maximum value rather than the
sum of squares to calculate the compactness and separation, avoiding the influence caused
by too many samples in a majority class, so they get similar score trends.

From the perspective of unsupervised learning, for the anomaly detection task in this
paper, the clustering effect is the best when the K-nearest neighbor number is large, and
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the clustering effect is better when the K-nearest neighbor number is small. Therefore, the
K-nearest neighbor number should be large or small.

Figure 7. The influence of the K-nearest neighbor number on clustering. (a) CH index score; (b) SC score; (c) DBI score; (d)
DVI score.

In this paper, most of the data are normal samples with a concentrated distribution.
The optimal clustering result is to cluster the data into two classes: normal and anomaly.
When the K-nearest neighbor number is relatively large, the clustering result is affected by
the whole dataset and is closer to the ideal condition, with fewer outliers and fewer samples
within minority classes. When the K-nearest neighbor number is small, the local density
can better reflect the samples’ local conditions and cluster more classes, more outliers, and
more samples within majority classes. Therefore, the K-nearest neighbor number should
be large or small.

To use the key information contained in the labels and reduce the parameter ad-
justment difficulty, Alrgoithm 1 shows the pseudocode of weakly supervised clustering
adjustment strategy, where n is the number of total samples and int(n) is the integer of n.

Algorithm 1. Weakly supervised clustering adjustment strategy

Input: Features
Output: Anomalies
1 Randomly delete some anomaly labels
2 Iteration range r = array [int (0.9 n), int (0.8n), int (0.7n), . . . , int (0.1n), int (0.05n), int(0.025n),
. . . , 1]
3 Sample number of minority class nmc = int (0.01n)
4 while no known anomalies detected do
5 for i in range(r) do
6 k = r[i]
7 Run improved DPC to cluster and find outliers
8 Find minority classes
9 if known anomalies in minority classes or outliers then
10 end while
11 if nmc ≤ int (0.1n):
12 nmc = nmc + int (0.01n)
13 else anomaly detection failed
14 end while
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(1) Randomly delete some anomaly labels.
(2) The K-nearest neighbor number starts from int (0.9n) and decreases with int (0.1n).

When the K-nearest neighbor number is less than int (0.1n), it is continuously halved
and rounded until the K-nearest neighbor number is 1.

(3) Iterate continuously to divide outliers and minority classes. The minority classes are
judged according to whether the sample number in this class is less than int (0.01n).

(4) Determine whether known anomalies are found in outliers or minority classes. If
anomalies can be detected, stop the iteration.

(5) If the K-nearest neighbor number decreases to 1 and no anomaly can still be detected,
nmc increases by 0.01n;

(6) If nmc is increased to 0.1n and unable to find anomalies, the anomaly detection
algorithm will be considered invalid.

(7) After anomaly detection, save weakly supervised clustering parameters. Determine
whether the known anomalies without labels can be detected by the algorithm. If
all of them can be detected, the algorithm has the best effect; if some of them can be
detected, the algorithm has a good effect; if not, the algorithm is invalid.

For engines with only one anomaly or no anomalies, the weakly supervised clustering
adjustment strategy is not applicable. The K-nearest neighbor number of IDPC is constantly
adjusted according to the four evaluation indexes mentioned above, and the clustering
with the highest score is used for anomaly detection. However, due to the inconsistent
evaluation criteria of the four indicators, the K-nearest neighbor is not easy to adjust,
and due to the lack of label information, it is difficult to control the false alarm and false
negatives in anomaly detection.

4.3. Anomaly Detection Evaluation Index

The false alarm rate and receiver operating characteristic curve (ROC) are usually
used to evaluate the effect of an anomaly detection algorithm. The former is the ratio
of the number of false alarms to the number of detected anomalies, while the latter is
calculated based on false alarms and false negatives. The false alarm rate needs to have a
sufficient number of anomalous samples, and the ROC needs to have a sufficient number
of anomalous samples and fully supervised labels.

For the data used in this study, there were more than 31,000 samples in total and only
17 anomaly samples with anomaly labels. Neither the false alarm rate nor the ROC could
be used to evaluate the quality of the method in this study. Considering that engines with
different data sizes have different tolerances to false alarms, the effect of anomaly detection
is evaluated in the following ways.

If the known anomalies can be detected by a certain method, this method is valid. The
anomaly detection evaluation index is the ratio of the total number of false alarms to the
total size of the dataset. The smaller this ratio is, the more accurate the anomaly detection
is, and the fewer false alarms there will be.

If the known anomalies cannot be detected by a certain method, this method is invalid.

5. Experiments

This section describes the use of a private dataset provided by airlines for experi-
ments. In this dataset, 31,190 pieces of data from 12 CFM56-5B2/3 engines were used for
application verification. There were 17 known anomaly labels in this dataset, including
13 anomaly labels provided by the CNR and 4 anomaly labels provided by the maintenance
record; the states of the other data were unknown, but they had a high probability of being
normal; different engines had different health statuses and parameter fluctuation ranges.
The total numbers of anomalies for each engine are shown in Table 1.

The experimental data included altitude (Alt), indicated fan speed (FS), core speed
(CS), total air temperature (TAT), exhaust gas temperature (EGT), fuel flow (FF), oil pressure
(OP), oil temperature (OT), and Mach (Ma). Some of the data are shown in Table 2. To
prevent dimensionality from affecting model training, the Z-score standardization method
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was used to convert the original data into standardized data with a mean of 0 and a
variance of 1, as shown in Equation (37).

yi =
xi − x

s
, (37)

where yi is the standardized data, xi is the original data, x is the mean of xi, and s is the
standard deviation of xi.

Table 1. Anomaly numbers for each engine.

Engine
number 643787 699184 699833 569172 569469 645580 645764 697511 699244 699501 699796 699896

Known
anomalies 2 4 2 1 1 1 1 1 1 1 1 1

Table 2. Original gas-path parameters of civil aero-engines.

Sample x1 x2 · · · x1329 · · · x31190

Anomaly? No No · · · Yes · · · No
Alt (Ft) 26,603 32,101 · · · 33,104 · · · 33,104
FS (%) 83.1 87.9 · · · 88.7 · · · 88
CS (%) 93.1 96.2 · · · 96.6 · · · 95.9

TAT (◦C) −13.8 −8.3 · · · −8 · · · −10.5
EGT (◦C) 609.5 680.1 · · · 686.1 · · · 676
OT (◦C) 81 78 · · · 89 · · · 89

OP (MPa) 50 52 · · · 49 · · · 48
Ma (Ma) 0.739 0.769 · · · 0.777 · · · 0.765
FF (P/h) 3441.416 3366.459 · · · 3368.663 · · · 3260.637

To provide as much detail as possible on the model in this study, Section 5.1 explains
the sample training strategy and hyperparameter setting. Sections 5.2 and 5.4 show the
feature extraction and anomaly detection results, respectively. Several comparative experi-
ments are described in Sections 5.3 and 5.5 to prove the superiority of the method proposed
in this paper. To save space, the results of some inferior comparative experiments are not
presented in detail.

5.1. Training Strategy and Setting of Hyperparameters

The health conditions of the engines used in the experiments were different. Some
engines were new, and some engines were old engines that had been running for more than
ten years. The experimental results show that the feature extraction model trained with
new engines was more sensitive to anomalies, but the generalization ability for old engines
was weak. When using the old engines to train the model, the generalization ability was
strong, but it was not sensitive to the anomaly. Therefore, three model training strategies
were proposed: (1) training the model with new engine data; (2) training the model with
old engine data; (3) training the model with mixed engine data. The old engines used the
WSFE model trained with new engine data to make the anomalies more apparent, while
the other engines used the WSFE model trained with mixed engine data, which led to
better anomaly detection results.

The above training strategy had to be done because of the limited data in this study.
In theory, there is no need to use this strategy when there is sufficient data.

The hyperparameters are shown in Table 3.
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Table 3. Hyperparameters.

Model Parameters Setting

WSFE

Length of time-series 10
Encoder LSTM unit number 50
Decoder LSTM unit number 40
Classifier LSTM unit number 100, 100, 100

Imbalanced coefficient α 3000
Focusing coefficient γ 5

Adjustment coefficient β 1.5
FC layer unit quantity

FC layer activation function
1

sigmoid
Learning rate 0.001

Batch size 1024
Epochs 1000

Iteration stop condition The loss change rate of the test set is less than 0.01%

IDPC

Initial K-nearest neighbor number 0.9 * total sample numbers
K-nearest neighbor number of iteration stop 1

Initial minority class sample number 0.01 * total sample numbers
Minority class sample increasing number per iteration 0.01 * total sample numbers

Minority class sample number when iteration stops 0.1 * total sample numbers

*: Multiplication.

5.2. Feature Extraction Results

To demonstrate the mapping relationship mining results, we arranged all engine data
in engine number order. The first 70% of this dataset was used as the training set to train the
model, and the last 30% of this dataset was used as the verification set to avoid overfitting.
In particular, there were too few anomaly samples in the dataset, and the purpose of this
study was to extract the features of the whole dataset; therefore, only the validation set was
used to avoid overfitting, and the test set was not divided. Figure 8 shows a comparison
between some of the validation set original values and the validation set predicted values
obtained by the WSFE. The blue line is the predicted value, and the yellow line is the
original value. The method proposed in this paper could effectively mine the mapping
relationship between the gas-path parameters, and the predicted value of the model could
accurately grasp the characteristics of the original value.

Figure 8. Result of mapping relation mining trained with mixed data. (a) Predicted and original values of exhaust gas
temperature; (b) predicted and original values of core speed; (c) predicted and original values of fuel flow.

As shown in Figures 9–11, the feature extraction results of different model training
strategies using mixed engine data, new engine data, and old engine data are presented. In
these figures, the x-axis represents the data number. The y-axis represents ∆EGT, ∆CS, and
∆FF, which are the deviation degrees between the original values and the predicted values
of EGT, CS, and FF. The points marked as “×” are the known outliers given by CNR. The
pink line is the old engine, and the gray line is the new engine. The first 70% of Figure 9
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is the training set, while the last 30% is the verification set. The gray line of Figure 10 is
the training set, while the pink line is the verification set. The pink line of Figure 11 is the
training set, while the gray line is the verification set.

Figure 9. Extracted features trained with mixed engine data.

Figure 10. Extracted features trained with new engine data.
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Figure 11. Extracted features trained with old engine data.

The feature extraction result using mixed data could clearly show most of the anoma-
lies. The extracted features could obviously reflect the different health conditions of the
new and old engines and the variation trend in engine performance. The new engine
extraction results fluctuated less, while the old engine extraction results fluctuated more.
The model trained with new engines was more sensitive to anomalies but had a poor
generalization ability. The model trained with old engines had lower accuracy of mining
mapping relationships but had a strong generalization ability. This made the anomalies
more apparent than in the old engines that used the WSFE model trained with new engine
data, and it led to better anomaly detection results.

The root mean square error (RMSE), mean absolute error (MAE), mean absolute
percentage error (MAPE), and R2 score (R2) were used to evaluate the mining mapping
relationship effect:

RMSE =

√
1
n

n

∑
i=1

(ŷi − yi)
2, (38)

MAE =
1
n

n

∑
i=1
|ŷi − yi|, (39)

MAPE =
100%

n

n

∑
i=1

∣∣∣∣ ŷi − yi
yi

∣∣∣∣, (40)

R2 = 1− RMSE
Var

, (41)

where Var is the variance of y. The smaller the RMSE, MAE, and MAPE are, the better the
mapping relationship mining is. The closer R2 is to 1, the better the mapping relationship
mining is.

Table 4 shows the scores under different training methods. The mapping relationship
mining model trained with the mixed engine data was the best, but whether it was the best
for anomaly detection needs to be determined through the experiment in Section 5.4.
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Table 4. Scores for mining mapping relationships under different training methods.

Evaluation Indicator Mixed Engine Data New Engine Data Old Engine Data

RMSE 0.099 0.133 0.142
MAE 0.076 0.100 0.113

MAPE 38.096 47.139 58.993
R2 0.990 0.982 0.979

5.3. Comparative Experiments of Feature Extraction

This section describes the use of some different methods for comparative experiments.
To save space, the results of different training methods are not presented in detail.

Figure 12 shows the feature extraction results without LossWSCE and the classifier,
trained with mixed engine data. The x-axis is the data number, and the y-axis is the
deviation degree between the original values and the predicted values. Points labeled “×”
are known to be anomalous. The pink line is the old engine, and the gray line is the new
engine. The first 70% of Figure 12 is the training set, while the last 30% is the verification
set. The feature extraction effect is slightly worse than the method proposed in this paper,
and some anomalies are not apparent, which proves the superiority of the loss function
proposed in this paper.

Figure 12. Feature extraction result without LossWSCE and classifier.

Table 5 shows the scores of the feature extraction model without LossWSCE and the
classifier. LossWSCE and the classifier hardly affect mapping relationship mining. However,
LossWSCE and the classifier can effectively improve the resolution of the ability to know
anomalies. Comparisons of anomaly detection results are given in Section 5.5.

Table 5. Scores of the feature extraction model without LossWSCE and classifier.

Evaluation Indicator Mixed Engine Data New Engine Data Old Engine Data The Method Proposed
in this Paper

RMSE 0.099 0.135 0.138 0.099
MAE 0.078 0.101 0.129 0.076

MAPE 37. 960 49.001 57.996 38.096
R2 0.993 0.980 0.979 0.990
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Figure 13 shows the mining results of the mapping relationship mining model with
only the encoder-decoder and the LSTM, which is seriously overfitted and can hardly learn
the correct mapping relationship of gas-path parameters. This model cannot mine the deep
features of gas-path parameters, and it is an invalid model, which proves the superiority of
the model structure proposed in this paper.

Figure 13. Mining results of the mapping relationship mining model with only the encoder-decoder and LSTM. (a) The
predicted and original values of exhaust gas temperature; (b) the predicted and original values of core speed; (c) the
predicted and original values of fuel flow.

Figure 14 shows the mining results of the mapping relationship mining model with
only a single encoder-decoder. The time series of parameters except for EGT, FF, and CS
is input to the encoder. The decoder inputs the encoding and the time series at time 1 to
time T-1 of EGT, FF, and CS. The decoder outputs the time series at time T of EGT, FF,
and CS. Although this model can also reflect the trend of gas-path changes, the mapping
relationship is not sufficiently accurate and has a large error, which proves the superiority
of the model structure proposed in this paper.

Figure 14. Mining results of the mapping relationship mining model with only a single encoder-decoder. (a) The predicted
and original values of exhaust gas temperature; (b) the predicted and original values of core speed; (c) the predicted and
original values of fuel flow.

Table 6 shows the scores of these two models. Their mapping relationship mining
errors are too large, the mined mapping relationships are of low quality, and the extracted
features cannot be used for anomaly detection. To save space, the feature extraction results
of these two models are not presented.

Table 6. Scores of the two models.

Evaluation Indicator Only Encoder-Decoder
and LSTM

Only One
Encoder-Decoder

The Method Proposed
in This Paper

RMSE 0.422 0.496 0.099
MAE 0.321 0.333 0.076

MAPE 173.931 93.004 38.096
R2 0.821 0.753 0.990
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Figure 15 shows the feature extraction results of four classical methods. The x-axis
represents the data number, the y-axis represents the extracted features (without clear
physical meaning and dimensionality), and the points marked as “×” represent known
anomalies. The feature extraction results of these four methods can hardly show apparent
anomalies, which proves the superiority of the model in this paper. Anomaly detection
results of these methods are given in Section 5.5.

Figure 15. Results of other feature extraction methods. (a) Feature extraction results of PCA; (b) feature extraction results of
AE; (c) feature extraction result of ICA; (d) feature extraction results of LLE.

5.4. Result of Anomaly Detection

The extracted features of different engines vary greatly, Separate anomaly detection
for each engine can effectively improve the accuracy. Table 7 shows the anomaly detection
results of the method proposed in this paper (WSFE + IDPC). Weakly supervised anomaly
detection (weakly supervised IDPC) was used for some engines with more than one
anomaly sample and unsupervised anomaly detection (unsupervised IDPC) was used
for some engines with only one anomaly sample. The old engines used the WSFE model
trained with new engine data to make the anomalies more apparent. The other engines
used the WSFE model trained with mixed engine data. In the weakly supervised IDPC, it
is necessary to randomly delete some anomaly labels, use the remaining label for weakly
supervised IDPC, and use the deleted labels for verifying the accuracy of anomaly detection.
In the unsupervised IDPC, it is necessary to adjust the clustering parameters according to
the four evaluation indexes mentioned above, use the clustering with the highest score for
anomaly detection, and use the labels to verifying the accuracy. The method proposed in



Sensors 2021, 21, 4526 23 of 27

this paper can find most of the anomalies with few false alarms, which meets the practical
application requirements.

Table 7. Anomaly detection result for the WSFE + IDPC.

Engine
Number

Known
Anomalies

False
Negatives

Total Number of False Alarms
/Total Number of Samples

Weakly supervised
643787 2 0 2.404%
699184 4 1 1.199%
699833 2 0 0.776%

Unsupervised

569172 1 1 -
569469 1 0 0.810%
645580 1 0 9.295%
645764 1 0 1.350%
697511 1 0 0.597%
699244 1 0 1.742%
699501 1 0 0.611%
699796 1 1 -
699896 1 1 -

5.5. Comparative Experiments for Anomaly Detection

To verify the superiority of the proposed method, anomaly detection results of multiple
models and the state-of-the-art methods were used as comparative tests. Table 8 shows
the anomaly detection results of different models, the underlined values indicate that
the anomaly detection method was weakly supervised. The model training method and
accuracy verification method are the same as those in Section 5.4. To save space, some
results of ineffective models are not shown in detail. Table 9 shows the anomaly detection
results of the state-of-the-art algorithms; their source code was obtained from Pyod [41].

In model 1, the feature extraction method without LossWSCE and classifier was com-
bined with IDPC for anomaly detection. In model 2, the feature extraction method without
LossWSCE and classifier was combined with the DPC for anomaly detection. In model
3, the WSFE is combined with the DPC for anomaly detection. In model 4, the WSFE is
combined with IDPC without the new threshold for anomaly detection; In model 5, WSFE
is combined with OPTICS for anomaly detection. In model 6, LLE is combined with IDPC
for anomaly detection. In model 7, AE is combined with DPC for anomaly detection. In
model 8, PCA is combined with IDPC without the new threshold for anomaly detection.
In model 9, LLE is combined with the DPC for anomaly detection. In model 10, PCA is
combined with OPTICS for anomaly detection. In models 1 to 5, the old engines use the
WSFE model trained with new engine data and the other engines use the WSFE model
trained with mixed engine data.

According to Table 8, the features extracted by traditional feature extraction methods
cannot accurately reflect the characteristics of anomalies. Regardless of what anomaly
detection methods are used, anomalies cannot be effectively detected. By adding special
structures, the feature extraction method in this paper (WSFE) could better reflect the char-
acteristics of anomalies, and most of the anomalies could be detected by different anomaly
detection methods. The anomaly detection method in this paper (WSFE + IDPC) could de-
tect most of the known anomalies and had the fewest false alarms. IDPC performed better
especially in weakly supervised conditions, which proves the superiority of the WSFE, the
LossWSCE, IDPC, and the weakly supervised clustering parameter adjustment strategy.

According to Table 9, anomaly detection algorithms which perform well in other fields
cannot be directly applied to the task of gas-path anomaly detection. Even if the anomaly
threshold of these algorithms is set to 10%, they still have a very high false negative rate,
which proves the superiority of the proposed method.
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Table 8. Anomaly detection results of different models.

Engine
Number

Total Number of False Alarms/Total Number of Samples

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9 Model
10

WSFE +
IDPC

643787 7.14% 11.36% 4.51% 3.01% 27.13% - - - - - 2.404%
699184 1.51% 15.52% 23.46% 28.51% 34.41% - - 50.68% - - 1.199%
699833 - 15.09% 7.77% 7.91% 26.95% - - - - - 0.776%
569172 - - - - - - - - - - -
569469 4.07% - - - - - 21.37% - - - 0.810%
645580 - 9.83% - - - - 20.14% - - - 9.295%
645764 0.91% - - - - - 20.10% 3.11% 9.27% 4.58% 1.350%
697511 0.05% - - - - - - - 25.33% - 0.597%
699244 - - - - - 18.45% - - - - 1.742%
699501 0.61% - - 23.82% - - - - 24.52% 9.32% 0.611%
699796 - - - - - - 32.96% - - - -
699896 - - - - - - 28.71% - - - -
False

negative
rate

9/17 12/17 13/17 12/17 13/17 16/17 12/17 15/17 14/17 15/17 4/17

Table 9. Anomaly detection results of the state-of-the-art algorithms.

Engine
Number

Total Number of False Alarms/Total Number of Samples

ABOD KNN I-Forest HBOS LOF SOS LSCP WSFE +
IDPC

569172 - - - - - 10.01% - 2.404%
569469 - - - - - 10.01% - 1.199%
643787 - - - - - - - 0.776%
645580 - - - - - - - -
645764 9.88% 8.43% - 9.29% 8.99% - 11.00% 0.810%
697511 - - - - - - - 9.295%
699184 - - - - - - - 1.350%
699244 10.14% 8.49% 10.00% 9.64% 9.41% 10.00% 10.00% 0.597%
699501 - - 10.02% 10.02% - - - 1.742%
699796 10.31% 8.02% 10.01% 9.93% 9.01% 10.01% 10.01% 0.611%
699833 - - - - - - - -
699896 - - - - - - - -
False

negative rate 14/17 14/17 14/17 13/17 14/17 12/17 14/17 4/17

6. Discussion

The purpose of this study was to realize an accurate and reliable gas-path anomaly
detection method for civil aero-engines. A weakly supervised feature extraction method
based on mapping relation mining and an anomaly detection method based on improved
density peak clustering were proposed. The mapping relationship mining model consisting
of the LSTM and the attention mechanism could accurately mine the mapping relationship
between the gas-path parameters. By combining a classifier and a new loss function, named
weakly supervised cross-entropy under extreme class imbalance, the learned mapping
relationship was strongly forced to distinguish anomaly samples from normal samples. The
deviation degree between the true values and predicted value of the mapping relationship
could be used as features to improve the accuracy of the anomaly detection, which had
good interpretability. The anomaly detection algorithm based on improved density peak
clustering could detect anomalies accurately with fewer false alarms. The weakly super-
vised clustering parameter adjustment strategy could reduce the parameter adjustment
complexity by using weakly supervised labels. Finally, the experimental results showed
that the method proposed in this paper is a gas-path anomaly detection method with wide
application prospects.

The feature extraction experiments showed that the feature extraction method could
intuitively reflect most of the anomalies, and most of the anomalies were very different
from the predicted values derived from the mapping relationship, which is significantly
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better than traditional feature extraction methods. The anomaly detection experiments
showed that the anomaly detection method proposed in this paper had a better ability to
identify anomaly features, and the new outlier threshold had a better ability to capture
outliers. Excluding outliers from the clustering process can significantly reduce the impact
of outliers on clustering results. However, different K-nearest neighbor numbers had a
certain influence on clustering results, and they had to be adjusted several times, which was
subjective to some extent. Therefore, a weakly supervised clustering adjustment strategy
was proposed, and anomaly labels were used to guide the parameter adjustment process,
which greatly reduced the difficulty of parameter adjustment. However, this adjustment
strategy was only applicable to engines with more than one anomaly sample, which limits
the strategy application.

It is worth noting that the features extracted in this paper can reflect the health status
of different engines. Some normal samples of new engines are very stable, while some
normal samples of old engines show an obvious deterioration trend. Models trained with
different training datasets have different abilities to reflect anomalies, and models trained
with new engine data are more sensitive to anomalies. These extracted features of different
engines must be detected separately to avoid reducing the anomaly detection accuracy
greatly. It can be speculated that the dataset used in this paper was not sufficient and
the model was not trained by enough engines with different health statuses, which led
to an insufficient generalization ability for engines with poor health status and obvious
differences in the features of different engines.

In view of the limitations of the model proposed in this paper, more original gas-path
parameters and more anomaly samples should be gathered in the future to improve the
generalization ability of the feature extraction model and to avoid detecting anomalies
for each engine alone, which could improve the performance of the model in engineering
applications. If more anomaly samples can be collected, the anomaly detection method
will be further verified and optimized.

7. Conclusions

In this paper, a weakly supervised anomaly detection method based on mapping
relationship mining and improved density peak clustering was proposed. First, a mapping
relationship mining model for gas-path parameters was established using the attention
mechanism and LSTM, and the deviation degree between the predicted and original values
was used as the feature for anomaly detection. The weakly supervised cross-entropy loss
function under extreme class imbalance combined with a classifier was proposed to force
the mapping relationship mining model to reflect the difference between normal samples
and anomaly samples. Finally, the improved density peak clustering-based anomaly detec-
tion method and the clustering adjustment strategy under weakly supervised conditions
were proposed to realize an anomaly detection method without a complex parameter
adjustment process. Compared with traditional methods, the feature extraction method
proposed in this paper could better reflect the performance change of the engines, and the
anomalous samples were more obvious. The anomaly detection algorithm proposed in this
paper could detect anomalies more accurately with minor false alarms.

8. Limitations and Directions for Future Research

It is important to note that the method proposed in this paper has some limitations
with regard to engineering applications. As mentioned above, the method in this paper
needs sufficient samples, otherwise there will be a big difference between the models
trained by different training sets. The method proposed in this paper can have a good effect
when the proportion of anomalies is relatively small, but it still needs enough anomaly
samples. The dataset used in this paper had only 17 anomaly labels, which cannot fully
reflect the superiority of the method. To improve the accuracy, anomaly detection should
be carried out separately for each engine, which is not conducive to the application. Most
importantly, the dataset used in this paper had incomplete labels, so it was difficult to
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determine whether the unlabeled data was normal or not, and the accuracy of anomaly
detection results was difficult to evaluate. To reduce the false negatives, some false positives
had to be tolerated.

In the future, a sufficient dataset could be collected to train the model proposed in this
paper. With more anomaly samples, the weakly supervised cross-entropy will be further
verified and optimized, and how to directly realize anomaly detection under extreme
sample imbalance using the classifier can be researched. Based on the feature extraction
method in this paper, a secondary feature extraction method based on time-domain features,
such as slope, amplitude, kurtosis, margin, etc., could be researched to unify anomaly
detection for all engines. If a supervised dataset can be obtained, it will be more conducive
to adjusting the model and evaluating the results.
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