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Abstract: Peer-to-peer (P2P) networking is becoming prevalent in Internet of Thing (IoT) platforms
due to its low-cost low-latency advantages over cloud-based solutions. However, P2P networking
suffers from several critical security flaws that expose devices to remote attacks, eavesdropping and
credential theft due to malicious peers who actively work to compromise networks. Therefore, trust
and reputation management systems are emerging to address this problem. However, most systems
struggle to identify new smart models of malicious peers, especially those who cooperate together to
harm other peers. This paper proposes an intelligent trust management system, namely, Trutect, to
tackle this issue. Trutect exploits the power of neural networks to provide recommendations on the
trustworthiness of each peer. The system identifies the specific model of an individual peer, whether
good or malicious. The system also detects malicious collectives and their suspicious group members.
The experimental results show that compared to rival trust management systems, Trutect raises the
success rates of good peers at a significantly lower running time. It is also capable of accurately
identifying the peer model.

Keywords: IoT; neural networks; peer-to-peer networks; reputation management; trust management

1. Introduction

The booming number of IoT devices is paving the way for peer-to-peer (P2P) architec-
ture to dominate in IoT platforms so that connectivity and latency issues usually associated
with centralized cloud services architecture are avoided [1]. Although the cloud model is
easy to manage and economical to scale, the requirements for uninterrupted internet con-
nections are too costly and burdensome for many IoT devices. However, P2P architecture
supports emerging IoT applications such as proximity sharing, where colocated devices
can cooperate with each other in real time to complete a task or share a resource. However,
in this case, devices (peers) need to discover each other, trust each other, and then make
a connection [2].

To illustrate the important role of trustworthy communication between P2P IoT de-
vices, consider a smart home where IoT devices provide functions that help make users’
daily routines more convenient. A smart door lock is a smart home IoT device that has
seen snowballing adoption in recent years. An example of such a device is one that com-
municates with another device that includes an identity verification mechanism, such
as a mobile phone. Accordingly, the smart lock identifies a user as the homeowner and
unlocks the home door automatically as they approach. When a homeowner leaves home,
the smart lock automatically locks the door behind them. This is an idealized case where
both devices are trustworthy and the user has immutable control over them. Problems
arise if a malicious actor takes over control of one or more of these devices. This could
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occur due to any of the common IoT devices’ vulnerabilities, such as poor configuration
or using default passwords. For instance, if a malicious actor were to compromise a user
identification mechanism, the smart lock can give them control over who comes in or out of
a home, thus enabling intruders to have access to the house and lock residents out of it [3].
In this context, the user identity is the resource, the smart phone is the resource provider
while the smart lock is the recipient. After each locking and unlocking event, the smart
lock would send a confirmation message to the user to ask if they are aware of the door
locking/unlocking event. The feedback about the transaction is sourced from multiple
channels (i.e., phone, email, etc.); this limits the impact of bad transactions.

Peers in a P2P network vary greatly in their behavior, from newcomers to pretrusted,
good and malicious peers. Newcomers are peers who have just joined the network. Their be-
haviors are revealed gradually once they start communicating with other peers. Pretrusted
peers are usually assigned by the founders of the network; thus, they always provide
trusted resources and honest feedback on the quality of the resources they receive. Good
peers normally provide good resources unless fooled by malicious peers, and they always
give honest feedback [4]. However, malicious peers use the vulnerability of P2P networks
to distribute bad resources [5,6] and dishonest feedback [7]. Malicious peers are usually
further classified into four categories. First, pure malicious peers provide bad resources
and dishonest feedback on other peers [8,9]. Second, camouflaged malicious (disguised
malicious) peers are inconsistent in their behavior. They normally provide bad resources,
but they also offer good resources to enhance their rating and delude other peers [10]. In
addition, they always give negative feedback on other peers [11]. Third, feedback-skewing
peers (malicious spies) provide good resources but lie in their feedback on other peers [12].
Fourth, malignant providers provide bad resources to other peers. However, they do not
lie in their feedback. Malicious peers work individually or assemble in groups [13–15].
Malicious behavior can be categorized according to two strategies: isolated and collective.
Isolated malicious peers act independently from each other while collective malicious peers
cooperate in groups to harm other peers. In contrast, they never harm their group members
with bad resources or negative feedback.

Trust management is about developing strategies for establishing dependable interac-
tions between peers and predicting the likelihood of a peer behaving honestly. It focuses
on how to create a trustworthy system from trustworthy distributed components [16,17],
which is paramount, especially for newly emerging forms of distributed systems [16],
such as cloud computing [18,19], fog computing [20] and IoT [1,6]. Trust management
systems monitor peers’ conduct and allow them to give feedback on their previous trans-
actions; thus, good and bad peers can be identified. This binary classification of peers
is the approach followed by most previous studies [12,21–23], disregarding the fact that
peers vary greatly in their behavior between the two extremes. Additionally, existing trust
management systems considered neither predicting the specific peer model nor identifying
other members within his/her malicious group. To bridge this gap, this paper proposes
Trutect, which is a trust management system that uses the power of neural networks to
detect malicious peers and identify their specific model and other group members, if
any. The proposed system is thoroughly evaluated and benchmarked based on rival trust
management systems, including EigenTrust [24] and InterTrust [25].

Among the main contributions of this paper are the following:

• A trust management system that exploits the power of neural networks to identify the
specific peer model and its group members.

• A large dataset of behavioral models in P2P networks that can be used to advance
research in the field.

• A well-controlled evaluation framework to study the performance of a trust manage-
ment system.
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2. Literature Review

Due to the rapid adoption of IoT technologies, they are becoming an attractive tar-
get for cyber criminals who take advantage of lack of security functions and abilities to
compromise IoT devices. Therefore, a plethora of research is emerging to elucidate the
security attacks and different security and trust management mechanisms involved in IoT
applications [26,27].

In identifying malicious peers, trust and reputation management systems follow
different approaches [25], such as trust vectors [24], subjective logic [25] and machine learn-
ing [8]. EigenTrust [24] is one of the most commonly used trust management algorithms
based on a normalized trust vector. Despite the widespread use of EigenTrust, it suffers
from drawbacks, mainly related to the ability of a peer to easily manipulate the ratings it
provides on other peers. Additionally, its heavy reliance on pretrusted peers makes them
focal points of failure. In [28], an enhancement of the EigenTrust algorithm to ensure that
a peer cannot manipulate its recommendation is proposed; hence, this approach is called
nonmanipulatable EigenTrust. In [29], another reputation scheme based on EigenTrust
where the requester selects a provider peer using the roulette wheel selection algorithm
to reduce the reliance of pretrusted peers was introduced. For the same reason, [30] intro-
duced the concept of honest peers, i.e., a peer with a high reputation value who can be
targeted, instead of pretrusted peers, by new peers.

Among the early trust management systems is the trust network algorithm using
subjective logic (TNA-SL) [31]. Trust in TNA-SL is calculated as the opinion of a peer
on another peer based on four components: belief, disbelief, uncertainty and a base rate.
Opinions provide accurate trust information about peers; however, the main drawback
of TNA-SL is its exponential running time complexity due to the lengthy matrix chain
multiplication process for transitive trust calculations. Thus, InterTrust [25] was proposed
to overcome this issue. InterTrust maintains the advantages of the original TNA-SL while
being scalable and lightweight with low computational overhead by using more scalable
data structures and reducing the need for matrix chain multiplications.

Machine learning can help with the prediction and classification of peers’ trustworthi-
ness in either a static or a dynamic manner [32]. In static approaches, the peers’ extracted
features are selected offline to produce one final model, thereby decreasing the computa-
tional overhead. In contrast, dynamic approaches extract peers’ features online while the
application is running, which incrementally updates the model based on past data and
offers the ability to detect malicious peers based on new behavioral information. However,
these advantages usually result in high computational overheads.

A static generic machine learning-based trust framework for open systems using
linear discriminant analysis (LDA) [33] and decision trees (DTs) [34] was presented in [35].
In this approach, an agent’s past behavior is not considered when determining whether
to interact with the agent; instead, the false positive rate, false negative rate, and overall
falseness are used. A trust management system for the IoT based on machine learning and
the elastic slide window technique was proposed in [6]. The main goal was to identify
on-off attackers based on static analysis.

Another static approach using machine learning for the problem of trust prediction
in social networks was presented in [7]. The study uses recommender systems to predict
the trustworthiness of each peer. In [36], a trust-based recommendation system that
assesses the trustworthiness of a friend recommendation while preserving users’ privacy
in an online social network is introduced. Friends’ features were statically analyzed, and
recommendations about peer trustworthiness were derived using the K-nearest neighbors
algorithm (KNN).

The work in [37] enables the prediction results to be integrated with an existing
trust model. It was applied on an online web service that helps customers book hotels.
Features related to the application domain were selected and statically analyzed by several
supervised algorithms, such as experience-based Bayesian, regression, and decision tree
algorithms. A reputation system for P2P using a Support vector machines algorithm (SVM)
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was built in [22]. The system dynamically collects information on the number of good
transactions in each single time slot. The system outperformed the other system even
more at very high imbalance ratios because the overall accuracy increased, and the system
tended to classify almost all nodes as malicious.

All previously mentioned works are static and focus on the binary classification of
peers’ trustworthiness, which means that a peer is either good or bad. In contrast, D-
Trust [38] presents a dynamic multilevel social recommendation approach. D-Trust creates
a trust-user-item network topology based on dynamic user rating scores. This topology uses
a deep neural network, focuses on positive links and eliminates negative links. Another
dynamic neural network-based multilevel reputation model for distributed systems was
proposed by [15]. It dynamically analyses global reputation values to find the peer with the
highest reputation. In [39] a deep neural network was used to build trustworthy communi-
cations in Vehicular Ad hoc Networks (VANETs). The trust model evaluates neighbours’
behaviour while forwarding routing information using a software-defined trust-based du-
eling deep reinforcement learning approach. Additionally, a multilevel trust management
framework was proposed in [14]. This approach uses dynamic analysis with an SVM to
classify interactions into trustworthy, neutrally trusted, or untrustworthy interactions.

Based on the above surveyed work, trust and reputation management systems usually
follow a binary classification approach to identify a peer as either good or bad. Few
studies [14,15,38] have considered the multiclassification of peers. However, these works
have considered neither predicting the specific peer model nor identifying other members
of a malicious group. Therefore, this paper proposes Trutect to bridge these gaps.

3. System Design

As shown in Figure 1, the Trutect trust management system consists of three main
components that can run on the cloud or in a fog gateway device. Alternatively, each
component can be placed in a separate fog gateway device. However, in this case, these
deceives are better placed in close vicinity to each other to reduce communication delays
and possible communication problems.

• Registry manager: The system registry manager is a centralized component responsi-
ble for administering and updating three lists: resource, transaction, and rating lists.
The resource list maintains resources in the system and information on their owners.
The transaction list contains the resource requests with the receiver and provider
of each. Finally, the rating list includes the sent and received sublists for each peer.
The sent list of a peer logs for each peer sending transactions, the resource sent, the
resource receiver ID and the rating received for the transaction. The received list of
a peer stores information about transactions where this peer was the resource receiver,
including the provider, and the peer ratings of the transaction. The system registry
manager updates the rating list after each transaction.

• NN component: This component employs an NN classifier to learn peers’ models
(see Appendix A). It has twenty-five input nodes and five output nodes. The network
weight is one and its depth is two as depicted in Figure 2. The NN is trained offline on
a trust dataset that was constructed by simulating a P2P network using QTM [11]. The
model simulated 100,000 transactions over 100,000 resources owned by 5000 peers.
The peers included 1000 good peers (of whom 5% were pretrusted peers), 1000 pure
malicious peers, 1000 feedback-skewing peers, 1000 malignant peers, and 1000 dis-
guised malicious peers. Fifty percent of the malicious peers of each type are isolated,
and 50% are in groups.

• Predictor: The predictor contains two main parts: the peer model predictor and the
collective behavior analyzer. The peer model predictor feeds the provider information,
based on the sent and received lists, into the trained NN, which predicts the peer
model. If the peer model is good, then the requester peer is signaled to approve
the peer as a candidate provider. Otherwise, if the peer is not an isolated malicious,
the peer model is studied by the collective behavior analyzer to identify their group
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members. Finally, all transaction information is logged in the system registry and sent
to the system administrator upon request.

Figure 1. Trutect system architecture showing the main system components.

Figure 2. Trutect neural networks architecture to model peer behaviours.

The Trutect logic flow is diagrammed in Figure 3. Once a resource request arrives,
the system randomly selects a provider of this resource from the resource list. Then, the
NN predicter module determines, based on the sent and received lists of the provider,
whether it is a good, purely malicious, feedback-skewing, malignant or disguised malicious
peer. If the peer is good, the resource provider is approved, and the receiver rates the
interaction as either positive or negative. Otherwise, if the receiver is malicious, the peer
model is analyzed by the collective behavior analyzer, as shown in Figure 4, to determine
which strategy the malicious peer is following, whether isolated or collective; and its group
members, if any. Accordingly, the peer’s previous interactions and ratings are analyzed
based on the sent and received lists; in addition, the generated information, which includes
the malicious peer strategy and detected peer members, is sent to the system administrator
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to take an action and decide whether to proceed with resource sharing, provide a warning,
or look for another provider.

Figure 3. Trutect algorithm.

Figure 4. Collective behavior analyzer algorithm.

4. Evaluation Methodology

A strictly controlled empirical evaluation framework was followed to evaluate the
proposed algorithms. To allow for full control of the experimental parameters, we employed
the renowned open-source simulator QTM [11]. The simulator imitates an assortment of
network configurations and malicious peers’ behavioral models.

A P2P resource-sharing application was considered, although the system can be easily
applied to other P2P applications. The following four context parameters were controlled
to simulate representative samples of a P2P network:

• Percentages of malicious peers: Five different percentages of malicious peers were
studied to test the robustness of the system: 15%, 30%, 45%, 60%, and 75%.
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• Number of transactions: To simulate system performance under different loads, five
values of the number of transactions were examined: 1000, 1500, 2000, 2500, and
3000 transactions.

• Malicious peer model: Four different types of malicious behavior were imitated,
including pure, providers, feedback, and disguised, in each scenario to embody
a real environment.

• Malicious strategies: Two malicious strategies, collective and isolated, were imple-
mented in each scenario to represent real environments.

The number of peers and number of resources were fixed at 256 and 1000, respectively.
Pretrusted peers were 5% of the total peers. For collective malicious groups, the number
and size of groups were randomized. For simplicity, we considered a “closed world”
network model where the peers within a network are static; they do not join and leave
the network.

Two state-of-the-art algorithms, namely, EigenTrust [24] and InterTrust [25], and
a reference case with no trust algorithm (none) were employed to benchmark the proposed
algorithm performance.

Three performance metrics are used to assess the algorithm performance, the success
rate, the running time, and the accuracy, as described below.

1. The success rate is represented in Equation (1) as the number of good resources
received by good peers over the number of transactions attempted by good peers:

Success rate =
# of good resources received by good peers
# of transactions attempted by good peers

(1)

2. The running time is defined as the total time of the algorithm’s execution in seconds.
It is the time from when the system calls the main function of an algorithm until the
control returns to the caller. Due to the sensitivity of the running time measure, all
of the experiments were conducted on the same computer with an Intel core i7 CPU
with a 1.1 GHz speed, 2 GB of RAM and a 200 GB hard disk.

3. The classification accuracy is represented by the number of correctly classified sample
cases over the number of all sample cases, as shown in Equation (2):

Classification accuracy =
# of correctly classified cases

# of all cases
(2)

5. Results and Discussion

This section describes the experimental results in terms of the success rate, running
time, and accuracy. Each experiment was run several times, and the mean was calculated
and analyzed.

5.1. Success Rate

The success rate can be calculated as the total number of good resources received
by good peers divided by the total number of resources received by good peers, as in
Equation (1).

Success rate is presented in Table 1, against the percentage of malicious peers as
the number of transactions increases from 500 to 3000. The results suggest a correlation
between increasing the percentage of malicious peers and the success rate of good peers
when Trutect is utilized. This can be attributed to having more malicious peers involved
in transactions, which highlights their malicious acts. However, this does not necessarily
imply that increasing transactions would help in detecting more malicious peers. This is
because the number of transactions will grow for both good and malicious peers. Hence,
there will be more risks of good peers receiving bad resources or dishonest feedback. In
addition, as transactions increase, there will be more confusion between some models of
malicious peers, especially the disguised model and a mistaken good peer. As a result,
more good peers may be classified as malicious peers and vice versa. However, increased
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interactions among malicious peers had adverse effects on EigenTrust, InterTrust, and the
reference case (none). As shown in Figure 5, Trutect was notably superior to InterTrust,
EigenTrust, and obviously the reference case in the success rate measure.

Table 1. Success rate results as the percentage of malicious peers increases.

500 Transaction 2000 Transaction

%Malicious Trutect EigenTrust InterTrust None %Malicious Trutect EigenTrust InterTrust None

15 96.8 91.6 93.5 88.3 15 94.8 94.5 95.0 88.0
30 95.8 92.7 94.1 83.7 30 95.4 92.9 91.9 79.2
45 95.9 91.7 93.2 71.7 45 95.3 92.1 91.5 73.0
60 96.4 89.8 91.7 64.7 60 95.4 92.0 91.2 65.4
75 97.1 91.0 91.0 56.9 75 96.9 92.4 93.0 58.6

1000 transaction 2500 transaction

%Malicious Trutect EigenTrust InterTrust None %Malicious Trutect EigenTrust InterTrust None

15 94.7 93.5 93.5 87.4 15 95.1 94.7 94.4 89.2
30 96.0 94.3 92.3 83.0 30 95.0 94.8 93.7 80.0
45 96.1 90.7 90.5 75.8 45 95.8 90.4 91.6 74.5
60 94.9 92.9 92.6 63. 60 95.9 94.2 92.2 65.3
75 97.7 91.0 91.0 56.4 75 97.0 92.5 93 57.5

1500 transaction 3000 transaction

%Malicious Trutect EigenTrust InterTrust None %Malicious Trutect EigenTrust InterTrust None

15 95.3 94.7 93.3 88.0 15 95.0 94.9 94.6 89.6
30 95.3 93.5 92.9 80.2 30 94.7 92.8 93.4 80.7
45 96.7 93.3 92.1 75.0 45 95.2 92.6 93.6 75.4
60 97.0 91.9 92.1 66.8 60 95.6 92.9 92.0 64.0
75 96.9 91.9 92.2 60.3 75 97.3 90.8 90.9 57.0

Figure 5. Algorithms in ascending order of success rate.

5.2. Running Time

Running time is defined as the total time of the algorithm’s execution in seconds.
The running time is displayed against the percentage of malicious peers as the number of
transactions increases from 500 to 3000 in Table 2.

As shown in the table, Trutect outperformed InterTrust in running time while simulta-
neously maintaining a high success rate. The running time for InterTrust remained constant
for different percentages of malicious peers; in contrast, the running time for EigenTrust
approximately doubled as the percentage of malicious peers increased. More importantly,
in most cases, an increase in the malicious peer percentage decreased Trutect’s average
running time. For example, the running time decreased by 21% as the malicious peer
percentage increased from 15% to 75% when the transactions were 1000. The running
time decreased as the percentage of malicious peers increased because the system did not
always need to predict the peer type; the system had already learned the initial type from
previous transactions. Increasing the number of transactions increased the running times
for other algorithms, including the baseline scenario, none, that did not achieve meaningful
results. In summary, as shown in Figure 6, In term of runtime, Trutect have a moderate
and reasonable running time. Eigentrust was a good competitor with Trutect. However,
Trutect is more efficient when it comes to busy and large networks. This can be attributed
to the fact that most of the Trutect running time is due to neural network operations, while
EigenTrust running time is dependent on the numbers of transactions and peers, so when
these numbers grow largely, EigenTrust gets slower.
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Table 2. Run time results as the percentage of malicious peers increseas.

500 Transaction 2000 Transaction

%Malicious Trutect EigenTrust InterTrust None %Malicious Trutect EigenTrust InterTrust None

15 498 2 465 0.97 15 877 8.38 1348 10
30 547 6 446 0.95 30 1123 54 1337 2.22
45 502 27 446 2.02 45 959 150 1344 2.55
60 497 71 461 1.13 60 938 207 1488 2.23
75 452 229 463 1.12 75 915 337 1421 0.76

1000 transaction 2500 transaction

%Malicious Trutect EigenTrust InterTrust None %Malicious Trutect EigenTrust InterTrust None

15 1006 5 1236 1.23 15 889 20 1801 0.48
30 1000 26 1144 1.39 30 1001 121 1833. 1.41
45 1235 109 1024 0.44 45 844 188 1833 2.23
60 758 152 920 0.55 60 814 359 1807 1.90
75 793 263 1060 0.63 75 751 488 1833 2.03

1500 transaction 3000 transaction

%Malicious Trutect EigenTrust InterTrust None %Malicious Trutect EigenTrust InterTrust None

15 889 11 1801 8.87 15 903 31 3327 0.57
30 1152 72 1833 1.15 30 866 157 3036 0.65
45 1170 180 1726 1.28 45 821 378 3038 0.75
60 786 321 1537 3.29 60 772 405 3021 0.95
75 730 401 1436 1.81 75 813 508 2363 2.00

Figure 6. Algorithms in ascending order of running time.

5.3. Accuracy in Predicting Malicious Model and Group Members

To illustrate Trutect’s ability to define a peer model and recognize its team members,
screenshots from the system are shown in Figure 7. Given a peer ID, the system can define
the peer type. It can also suggest peers that may be in the same malicious group. The
examples show real peer models compared to predicted models and real and predicted
members of groups. The following sections study this prediction accuracy in detail.

Predicting Malicious Models

An advantage of Trutect is its ability to determine peer models in addition to mali-
ciousness. Some malicious types offer good resources but dishonest feedback; other types
may offer bad resources but honest feedback. Ultimately, knowing specific behaviors will
help users appropriately handle malicious peers.

The accuracies of detecting malicious models for isolated malicious peers are repre-
sented in Table 3. The accuracies are displayed against the percentage of malicious peers as
the number of transactions increased from 500 to 3000.
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Figure 7. Screenshots of peer identification by Trutect.

Table 3. Accuracy of predicting peer models.

500 Transaction 2000 Transaction

%Malicious Pure Feedback Providers Disguised %Malicious Pure Feedback Providers Disguised

15 0.85 0.83 0.83 0.86 15 0.8 0.81 0.97 0.92
30 0.77 0.52 0.78 0.83 30 0.81 0.76 0.81 0.85
45 0.88 0.71 0.84 0.89 45 0.8 0.77 0.80 0.9
60 0.78 0.78 0.838 0.79 60 0.72 0.7 0.80 0.73
75 0.85 0.78 0.90 0.84 75 0.8 0.7 0.80 0.67

1000 transaction 2500 transaction

%Malicious Pure Feedback Providers Disguised %Malicious Pure Feedback Providers Disguised

15 0.90 0.85 0.92 0.83 15 0.8 0.81 0.75 0.72
30 0.84 0.79 0.80 0.75 30 0.76 0.77 0.8 0.61
45 0.8 0.73 0.87 0.66 45 0.77 0.75 0.83 0.80
60 0.75 0.70 0.83 0.88 60 0.77 0.71 0.77 0.70
75 0.73 0.70 0.79 0.84 75 0.75 0.65 0.72 0.85

1500 transaction 3000 transaction

%Malicious Pure Feedback Providers Disguised %Malicious Pure Feedback Providers Disguised

15 0.91 0.91 0.90 0.93 15 0.80 0.90 0.88 0.80
30 0.87 0.92 0.87 0.91 30 0.80 0.76 0.84 0.82
45 0.75 0.75 0.81 0.79 45 0.80 0.70 0.70 0.81
60 0.76 0.77 0.79 0.80 60 0.72 0.70 0.80 0.7
75 0.75 0.70 0.80 0.76 75 0.71 0.62 0.85 0.70
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Trutect successfully identified good, pure malicious, feedback-skewing malicious, and
malignant provider peers and whether they were collective or isolated with an accuracy up
to 97%. In detail, Trutect was able to predict pure malicious peers with an accuracy of up to
91% and no less than 71%. In the same way, the system could identify malignant providers
with an accuracy of up to 97%, and no less than 70%. For disguised malicious peers,
the highest and lowest accuracy values were 93% and 62%, respectively. For feedback-
skewing malicious peer prediction, the accuracy had a positive correlation with transaction
number: the accuracy increased alongside an increase in the number of transactions. The
experiments showed that the system had some difficulty in identifying feedback malicious
peers, since they act as good peers by providing good files. Table 4 first column sorts peer
models based on the prediction accuracy of Trutect from high to low. Trutect was able
to detect pure malicious peers with the highest accuracy value since they have obvious
malicious behavior. Trutect faced some difficulties finding feedback types since they
provide good files. On the other hand, malicious providers were easier to detect due to
their bad files. Disguised malicios were more difficult to detect than pure and providers
malicious because sometimes they behave as good peers which makes their true identity
more confusing. It is interesting that a disguised malicious peer is easier to identify than
a feedback malicious which may lead us to conclude that Trutect is more efficient when it
comes to protect the network from malicious files than from dishonest feedback.

Table 4. Peer model and group members in descending order of prediction accuracy by Trutect.

Peer Model Prediction Accuracy Group Members Prediction Accuracy

Highest Pure Pure

Providers Feedback

Disguised Providers

Lowest Feedback Disguised

One contribution of Trutect is its ability to determine the other peers in a collective
group. The accuracy of detecting the malicious group members of collective malicious
peers is shown in Table 5 The accuracy is displayed against the percentage of malicious
peers as the number of transactions increased from 500 to 3000.

Table 5. Accuracy in predicting Group Members.

500 2000

%Malicious Pure Feedback Providers Disguised %Malicious Pure Feedback Providers Disguised

15 0.93 0.93 0.94 0.94 15 0.97 0.92 0.95 0.95
30 0.90 0.90 0.88 0.91 30 0.93 0.92 0.9 0.92
45 0.92 0.93 0.94 0.94 45 0.92 0.93 0.92 0.9
60 0.92 0.92 0.92 0.92 60 0.924 0.93 0.93 0.92
75 0.93 0.95 0.94 0.93 75 0.94 0.92 0.92 0.9

1000 2500

%Malicious Pure Feedback Providers Disguised %Malicious Pure Feedback Providers Disguised

15 0.95 0.93 0.94 0.92 15 0.95 0.94 0.93 0.93
30 0.92 0.91 0.94 0.92 30 0.95 0.94 0.95 0.94
45 0.96 0.96 0.95 0.94 45 0.91 0.9 0.9 0.87
60 0.9 0.9 0.91 0.91 60 0.93 0.93 0.92 0.91
75 0.93 0.92 0.92 0.91 75 0.95 0.95 0.9 0.9

1500 3000

%Malicious Pure Feedback Providers Disguised %Malicious Pure Feedback Providers Disguised

15 0.95 0.94 0.95 0.94 15 0.93 0.94 0.95 0.91
30 0.95 0.94 0.95 0.95 30 0.94 0.95 0.95 0.94
45 0.93 0.91 0.92 0.9 45 0.94 0.95 0.95 0.94
60 0.9 0.9 0.9 0.9 60 0.94 0.92 0.93 0.89
75 0.92 0.92 0.9 0.9 75 0.97 0.95 0.95 0.95
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The Trutect system’s accuracy of finding collective group members reached 91% and
was no less than 87%. The accuracy remained almost stable, even when the number of
transactions and the malicious peer percentage were changed. This situation occurred
because a large part of the accuracy formula was specified for nonrelevant samples that
were classified as nonrelevant. Although this scenario applies to the accuracy of defining
collective and isolated malicious peers, it was clearer with the accuracy of the members
because, in general, the number of team members for each peer will be less than the number
of collective peers.

Table 4 second column sorts peer models based on the ability of Trutect to predict
their group members from high to low. When finding members of a malicious team, we
can see that pure malicious peers are also the easiest to identify due to their clear malicious
behavior pattern. Furthermore, feedback malicious teams are easier to be identified than
isolated counterparts due to their honest feedback to their teammates. The same goes for
the malicious provider collectives who give their malicious group members good files
while the bad files go to the peers outside their team. Finally, disguised malicious team
members are the hardest to reveal since they may give their team members bad files or bad
ratings in order to make their true identity hidden.

6. Conclusions

Many studies have considered discerning malicious peers, but none have focused on
identifying the specific type and group members of a malicious peer. Trutect is proposed in
this paper to bridge this gap. It exploits the power of neural networks to build models of
each peer and classify them based on their behavior and communication patterns.

Trutect performance was evaluated against existing rival trust management systems
considering the success rate, running time, and accuracy. For success rate, Trutect showed
the highest success rate as it does not only reveal malicious peers but also their team
members which makes it easier to identify good providers in the whole network after few
rounds of transactions. Trutect also shows significant improvement in running time as
the malicious peer percentage increases. Generally, Trutect recorded a significant result in
identifying malicious peer models and group members. In addition, an increased number
of transactions and a higher malicious peer percentage had clear positive effects on the
accuracy of defining collective members in particular. In summary, Trutect is effective,
especially on poisoned and busy networks with large percentages of malicious peers and
enormous numbers of transactions.

Several interesting future research directions are opened by this research. For example,
the accuracy of identifying disguised malicious peers might be improved by constructing
a separate dataset with only good and disguised malicious peers. Additionally, Trutect’s
performance at detecting malicious peers can be improved by considering dynamic learning
where the system incrementally learns from newly classified instances. We would also
consider sybil attackers who constantly change their identity to erase their bad histories.
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Appendix A

More details about the NN are presented in Figure A1. It has learning rate of (0.2),
momentum of (0.08), and training time was (2000). There are 24 numeric attributes as the
input, and five classes. The input includes negative rate attributes, receiver attributes, and
sender attributes, as described below.

Figure A1. Details of NN structure.

• Negative rate attributes: these attributes describe the sources where peers have re-
ceived their negative rates (if any) and to whom they provide negative rates (if any).

1. NRFP: the percentage of negative rates given to the peer from other pre-trusted peer.
2. NRFG: the percentage of negative rates given to the peer from other good peers.
3. NRFPure: the percentage of negative rates given to the peer from other pure

malicious peers.
4. NRFFeed: the percentage of negative rates given to the peer from other feedback

skewing users.
5. NRFProvider: the percentage of negative rates given to the peer from other

malignant providing users.
6. NRFDisguised: the percentage of negative rates given to the peer from other

disguised malicious users.
7. NRTP: the percentage of negative rates provided by the peer to other pre-trusted users.
8. NRTG: the percentage of negative rates provided by the peer to other good users.
9. NRTPure: the percentage of negative rates provided by the peer to other pure

malicious users.
10. NRTFeed: the percentage of negative rates provided by the peer to other feedback

skewing users.
11. NRTProvider: the percentage of negative rates provided by the peer to other

malignant providing users.
12. NRTDisguised: the percentage of negative rates provided by the peer to other

disguised malicious users. Table A1 summarises the negative rates attributes.
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Table A1. Negative rate attributes.

Attribute No. Attribute Name Attribute Description:
Percentage of . . .

1 NRFP Negative rates from other pre-trusted peers.
2 NRFG Negative rates from other good peers
3 NRFPure Negative rates from other pure malicious peers
4 NRFFeed Negative rates from other feedback skewing users
5 NRFProvider Negative rates from other malignant providing users
6 NRFDisguised Negative rates from other disguised malicious users
7 NRTP Negative rates to other pre-trusted users
8 NRTG Negative rates to other good users
9 NRTPure Negative rates to other pure malicious users

10 NRTFeed Negative rates to other feedback skewing users
11 NRTProvider Negative rates to other malignant providing users
12 NRTDisguised Negative rates to other disguised malicious users

• Receivers attributes: these are attributes that describe the peer models of all peers
received from other peers:

1. RecvP: the percentage of pre-trusted receivers.
2. RecvG: the percentage of good receivers.
3. RecvPure: the percentage of pure malicious receivers.
4. RecvFeed: the percentage of feedback skewing receivers.
5. RecvProvider: the percentage of malignant providing receivers.
6. RecvDisguised: the percentage of disguised malicious receivers.
Table A2 summarises the receivers’ attributes.

Table A2. Receivers’ attributes.

Attribute No. Attribute Name Attribute Description:
Percentage of . . .

13 RecvP Pre-trusted receivers
14 RecvG Good receivers
15 RecvPure Pure malicious receivers
16 RecvFeed Feedback skewing receivers
17 RecvProvider Malignant providing receivers
18 RecvDisguised Disguised malicious receivers

• Senders attributes: these attributes describe the peer model of all peers who send files
to the peer.

1. SendP: the percentage of pre-trusted senders.
2. SendG: the percentage of good senders.
3. SendPure: the percentage of pure malicious senders.
4. SendFeed: the percentage of feedback skewing senders.
5. SendProvider: the percentage of malignant provider senders.
6. SendDisuised: the percentage of disguised senders.

Finally, the peer is classified by using the class attribute ‘type-of-user’, which varies
from 0 to 4, where 0 represents good or pre-trusted peers, pure malicious are represented
by 1, feedback malicious are represented by 2, malicious providers are represented by 3,
and disguised malicious are represented by 4. Table A3 summarises the senders attributes.
Table A4 shows the data set characteristics.
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Table A3. Senders attributes.

Attribute No. Attribute Name Attribute Description

19 SendP The percentage of pre-trusted senders.
20 SendG The percentage of good senders.
21 SendPure The percentage of pure malicious senders.
22 SendFeed The percentage of feedback skewing senders.
23 SendProvider The percentage of malignant provider senders.
24 SendDisuised The percentage of disguised senders.

25 Type-Of-User

Class attribute {0,1,2,3,4}:

• Good and pre-trusted are 0.
• Pure malicious are 1.
• Feedback malicious is 2.
• Malicious providers are 3.
• Disguised malicious are 4.

Table A4. Data set characteristics.

Number of Missing Values 0

Number of good peers 1000

Number of transactions 100,000

Number of malicious peers 4000

The results of the training are shown in Table A5. The most common classification
error was with disguised malicious type (class type 4), since that class shows similar
behaviours as good peers. However, the training accuracy reached maximum of 99.9% and
minimum of 84%.

Table A5. Results of applying classification to training data set.

Classified as: Good Pure
Malicious

Feedback
Skewing

Malignant
Provider

Disguised
Malicious

Good 932 0 0 0 68
Pure malicious 0 999 0 0 0

Feedback skewing 0 1 994 0 5
Malignant provider 0 0 0 986 10
Disguised malicious 68 0 4 14 848
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