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Abstract: In recent years, various studies have demonstrated the potential of electroencephalographic
(EEG) signals for the development of brain-computer interfaces (BCIs) in the rehabilitation of human
limbs. This article is a systematic review of the state of the art and opportunities in the development
of BCIs for the rehabilitation of upper and lower limbs of the human body. The systematic review
was conducted in databases considering using EEG signals, interface proposals to rehabilitate
upper/lower limbs using motor intention or movement assistance and utilizing virtual environments
in feedback. Studies that did not specify which processing system was used were excluded. Analyses
of the design processing or reviews were excluded as well. It was identified that 11 corresponded to
applications to rehabilitate upper limbs, six to lower limbs, and one to both. Likewise, six combined
visual/auditory feedback, two haptic/visual, and two visual/auditory/haptic. In addition, four had
fully immersive virtual reality (VR), three semi-immersive VR, and 11 non-immersive VR. In summary,
the studies have demonstrated that using EEG signals, and user feedback offer benefits including cost,
effectiveness, better training, user motivation and there is a need to continue developing interfaces
that are accessible to users, and that integrate feedback techniques.

Keywords: brain computer interfaces (BCIs); electroencephalography (EEG); rehabilitation; upper
limb; lower limb; virtual reality

1. Introduction

Brain-computer interfaces (BCIs) represent a broad field of research and development
from the last few decades. Scientists from all over the world have worked to acquire
a deep understanding of BCIs, resulting in rapid and considerable progress in systems,
development, and brainwave processing techniques including non-invasive methods such
as electroencephalography (EEG) [1]. Most relevantly, useful and novel applications devel-
oped in this domain have contributed to the evolution of technology in healthcare [2]; it is
clearly evidenced that using a BCI system plays an efficient and “natural” role in the at-
tempt to provide assistance and preventive care to people with neurological disorders [3,4].

The fields where BCIs can be applied are quite promising and diverse. In fact, it is
becoming an innovative neurological technology that successfully allows the restoration
and improvement of people’s motor and communication abilities [5,6]. According to [7–12],
its application fields can be divided into communication and control, medical applications,
training and education, games and entertainment, monitoring, prevention, detection and
diagnosis, intelligent environments, neuromarketing, advertising, security, and authentica-
tion. However, this review focuses specifically on examining the applications proposed
exclusively as support in rehabilitation processes of the upper and lower limbs of the
human body.
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For people with partial or total limitation of movement in the upper and lower limbs,
using a BCI and classifying an EEG recorded over the sensorimotor cortex in real time
gives the possibility of understanding psychological and motor parameters and inten-
tions that allow the reestablishment of communication with the environment [13–15]. In
short, BCI technology provides direct communication between the brain and an external
device, which can assist with numerous diseases [16] such as epilepsy [17], Alzheimer’s
disease [18], traumatic brain injuries [19], strokes [20,21], neurological diseases [22], multi-
ple sclerosis [23], and Parkinson’s disease [24]. Indeed, this problem demands innovative
advances that counteract the varied impacts that humanity has on a social level, with the
economic situation and life of each patient and his or her family coming into play [25].

With the goal of identifying advances and opportunities for improvement in the re-
habilitation of upper and lower limbs in the human body, this review includes studies
published between 2011 and 2020. In line with the goal of the review, for the included
proposals, the devices used for EEG signal acquisition are described, as well as the pro-
cessing methods within the system, and the BCI applications that support rehabilitation
processes in the upper and lower limbs. On the other hand, it was observed that most
studies involved BCI systems focused on the upper limbs, and the use of EEG signals and
user feedback showed improvements in BCI systems. The objective of this review is to
identify the contributions that have been made so far as well as describing opportunities
for improvement and limitations that should be taken into account in order to guide future
proposals focused on supporting rehabilitation processes of limbs of the human body based
on the treatment of EEG signals and user feedback.

2. Materials and Methods

This section describes the process and criteria taken into account to identify, select,
and evaluate relevant papers, as well as to collect and analyse the data from the studies of
the articles included in the document review, according to the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA) method [26–28].

2.1. Eligibility Criteria

The eligibility criteria taken into consideration for the inclusion of studies in this
review were: (i) publications in English language and (ii) publications with full text
availability. A relevant element in this review is that the included studies have described
BCI applications in body limb rehabilitation processes and included virtual reality (VR)
environments as part of the feedback.

2.2. Search Strategy

A search was carried out on the 23rd of February, 2021, using the PubMed, IEEE
Xplore, Scopus, and Web of Science databases. The keywords used in the search were
obtained according to the inclusion criteria, whose search terms were classified as follows:
(i) medical aspects: “rehabilitation”; (ii) use of electroencephalographic signals: “elec-
troencephalography”, “EEG”; (iii) body part on which rehabilitation is focused: “upper
limb”, “lower limb”, “hand”, “leg”; (iv) design of brain-computer interfaces: “BCI”; (v)
use of virtual environments: “virtual” and “augmented”. In the search parameters used
in the databases, the OR operator was included for groups among the terms considered
synonyms and the AND operator was used to separate groups.

2.3. Description of the Selection Process of the Study

The paper selection process included four stages: first, the identification of studies
according to the search parameters; second, the application of a filter using the eligibility
criteria; third, a screening phase, which filtered the studies, eliminating those that did not
fit the research approach according to the inclusion and exclusion criteria in Table 1, and/or
those that appear in multiple databases; and finally, an inclusion phase, which allowed the
identification of relevant studies to be included in the review.
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Table 1. Inclusion and exclusion criteria.

Inclusion Criteria Exclusion Criteria

Use of encephalographic signals (EEG) Application or device developed for rehabilitation in upper and
lower limb of the human body unspecified

Applications for the rehabilitation of upper and lower limbs of
the human body.

Articles that present analyses of the BCI interface design
procedure or are review articles

Applications whose focus is to rehabilitate motor intention or
assist with movement

Articles describing brain-computer interfaces with invasive
procedures

Use of virtual environments as a feedback technique. Articles describing brain-computer interfaces with invasive
procedures or not indicating EEG signal processing techniques

2.4. Data Collection Process

The data collection process for extracting relevant information from the articles was
based on an information independent matrix. For each included article, the main charac-
teristics were extracted, as shown in Table 2. In addition, for each proposal, the following
items were extracted: the number of electrodes used, the EEG signal acquisition devices
used, the EEG signal processing and classification methods used, the operation of the BCI
application, and the integrated virtual environment. These processing details are described
throughout Section 3.

Table 2. Main characteristics of the included studies.

No Limb Being
Rehabilitated

Purpose of
BCI

Application

Category of
BCI

Application
BCI Application

Type of
Feedback to

Uset

Type of Virtual
Reality Reference

1 Upper limb Motor
intention Virtual limb Virtual upper

limb Visual Fully Immersive
Virtual reality [29]

2 Upper limb Motor
intention Video game VR shooting

game
Visual,

Auditory
Fully Immersive

Virtual reality [30]

3 Lower limb Assist with
movement Wheelchair 2D virtual

wheelchair
Visual,

Auditory
Non-immersive
virtual reality [31]

4 Lower limb Assist with
movement Wheelchair Simulated or real

wheelchair. Visual Non-immersive
virtual reality [32]

5 Lower limb Motor
intention Virtual limb Ball-kicking

simulation Visual, Haptic Semi-immersive
virtual reality [33]

6 Upper and
lower limb

Assist with
movement Video game Virtual maze Visual Non-immersive

virtual reality [34]

7 Upper limb Assist with
movement Virtual limb 3D robotic hand Visual Semi-immersive

virtual reality [35]

8 Upper limb Assist with
movement Virtual limb

Robot (virtual
robot and mobile

robot)

Visual,
Auditory

Non-immersive
virtual reality [36]

9 Upper limb Motor
intention Virtual limb Upper virtual

limb

Visual,
Auditory,

Haptic

Non-immersive
virtual reality [37]

10 Upper limb Motor
intention Video game Neurogame

(Rowing game)
Visual,

Auditory
Fully Immersive

Virtual reality [38]

11 Upper limb Assist with
movement Virtual limb Virtual hands

through MI.
Visual,

Auditory
Fully Immersive

Virtual reality [39]

12 Lower limb Motor
intention Virtual limb

Avatar walking
in a virtual

environment
Visual Non-immersive

virtual reality [40]

13 Upper limb Motor
intention Orthosis Electric-action

hand orthosis Visual Non-immersive
virtual reality [41]

14 Lower limb Motor
intention

Electrical
stimulation

(FES) system

Dorsiflexion of
the foot with a

FES system
Visual, Haptic Non-immersive

virtual reality [42]
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Table 2. Cont.

No Limb Being
Rehabilitated

Purpose of
BCI

Application

Category of
BCI

Application
BCI Application

Type of
Feedback to

Uset

Type of Virtual
Reality Reference

15 Upper limb Assist with
movement Video game Nine training

movements

Visual,
Auditory,

Haptic

Semi-immersive
virtual reality [43]

16 Upper limb Assist with
movement Video game Target shooting

game Visual Fully Immersive
Virtual reality [44]

17 Lower limb Motor
intention Virtual limb Robotic

monocycle Visual Non-immersive
virtual reality [45]

18 Upper limb Motor
intention

Soft
Exoskeleton

A soft finger
exoskeleton

Visual,
Auditory

Non-immersive
virtual reality [46]

3. Results

This section presents the findings obtained from the literature review, as well as the
characteristics of the papers included in the systematic review and the individual results
presented in the selected publications.

3.1. Selection of the Study

The chart for the systematic review is presented in Figure 1. In the first stage, “identi-
fication”, the results of which came from documents published between the years of 2003
and 2020. In short, 46 articles were eliminated (18 duplicates and 28 according to exclusion
criteria), which meant that 18 studies were included in the review. The 18 studies finally
included were published between 2011 and 2020.
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3.2. General Characteristics of the Study

The main characteristics of the 18 studies included in the review are classified into five
groups: (i) limb to be rehabilitated (upper, lower, or both); (ii) purpose of the proposed BCI
application (assistance with movement or motor intention); (iii) type of BCI application; (iv)
type of feedback to the user; (v) type of virtual reality used for the rehabilitation process.

Figure 2 presents a general map of some relevant characteristics of the study, revealing
the focus of the included proposals and the connections between the limb to be rehabilitated
(upper, lower, or both), the type of BCI application, and the type of feedback provided to
the user.
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In addition, Figure 3 presents a general map of the connections between the type of
BCI application and the type of virtual reality used for the rehabilitation process.
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3.2.1. Type of Limb Being Rehabilitated

According to the review of the 18 studies included, 11 of them corresponded to BCI
systems whose objective was to rehabilitate upper limbs, six focused on rehabilitation of
lower limbs, and one was oriented towards rehabilitating both limbs.

3.2.2. Purpose of the BCI Application (Assistance with Movement or Motor Intention)

BCI applications are developed to restore motor function inducing activity-dependent
brain plasticity or by providing control over assistive devices that augment or restore
movement [47]. Of the 18 studies included in the review, 10 of them presented applications
whose purpose was associated with movement intention, i.e., the user’s attempt to move
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the limb autonomously. In contrast, eight of the studies were focused on applications
whose purpose was to assist movement, i.e., the support provided by a device to assist in
the movement of the limb, such as neuro-prostheses, mobile robots or wheelchairs [48,49].

3.2.3. Type of BCI Application

In the review process, it was observed that the BCI applications described in the
literature by the included works supported rehabilitation processes and were divided into
the following categories: eight simulated virtual limbs, five implemented video games,
two (11%) were oriented towards the use of wheelchairs, one towards the use of orthoses,
one towards integration with functional electrical stimulation (FES), and one focused on
the activation of soft exoskeletons.

3.2.4. Type of Feedback Provided to User

Regarding the type of feedback provided to the user, in other words, the different
modalities provided by the BCI system (visual, auditory, and haptic [50]) from which the
subject perceives sensations, it was shown that eight of the proposed works was based
exclusively on visual feedback, six on combined visual and auditory feedback, two on
haptic and visual feedback, and two implemented visual, auditory, and haptic feedback.

3.2.5. Type of Virtual Reality Employed

Dividing the 18 proposals according to three types of virtual reality employed, it
was observed that four made use of fully immersive virtual reality, i.e., it has realistic
simulations, complete with sight and sound, where the user needs to wear appropriate
virtual reality glasses or a head-mounted display [51]. In three of the studies, semi-
immersive virtual reality was utilized, in other words, the environment is partially virtual,
as users perceive a different reality when they focus on a digital image, but they are also
connected to their physical environment [52]. Finally, 11 used non-immersive virtual reality,
i.e., a computer-generated environment is provided, allowing the user to be fully aware
of and maintain control of their physical environment. These environments rely on a
computer or video game console and a screen [53,54].

3.3. BCI Systems as Support for the Motor Rehabilitation of Human Limbs

A brain-computer interface (BCI), whose architecture is shown in Figure 4, is a system
that receives brain signals in order to analyse, transfer, and translate them into commands
that are then transmitted to applications that perform particular tasks, thus providing
direct communication between the brain and any external device. This avoids the use of
normal neuromuscular pathways [9,55–57].
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In order to know the main details of the architecture of the BCI system proposed in each
included article, an extraction of information was carried out as mentioned in Section 2.4.
Throughout this section and according to this extraction, for each of the 18 documents
analysed, the following are described: the number of electrodes used, signal acquisition,
preprocessing, feature extraction, classification, operation of the BCI application, feedback,
and the findings given by the authors.

Table 2 presents the main characteristics of each of the 18 studies analysed and
identifies how they supported rehabilitation through various categories of applications
and feedback. In this sense, several articles focused on upper and lower limb rehabilitation
were found in the literature, thus showing strong trends in the use of visual feedback and
non-immersive virtual reality.

3.3.1. Processing Techniques and Signal Classification Methods

A brain-computer interface, as presented in Figure 4, consists of the following steps:
signal acquisition, preprocessing, feature extraction, classification, translation to commands,
application, and feedback [4,9,10].

After the first step, which corresponds to acquiring brain waves, i.e., measuring and
removing noise from the recorded brain signal to enhance the relevant information it
contains [11], signal processing is performed. In this step, the non-relevant information
is removed and the acquired signal is prepared, filtered in such a way that the associated
time or frequency information is acquired, the features are extracted and selected, and the
dimensionality is reduced in such a way that the requirements for the design of the BCI are
obtained in an optimal and efficient way [58–60]. According to [4,11,61–63], the following
signal processing techniques are commonly used:

• Spatial filters: low-pass, high-pass, band-reject, band-pass, common average reference
(CAR) or surface Laplacian (SL).

• Temporal filters: discrete Fourier transform (DFT), finite impulse response (FIR), or
infinite impulse response (IIR).

• Feature extraction methods: amplitude extraction from spectra of EEG signals, au-
toregressive parameters or Hjorth parameters, band powers (BP), wavelets, cross-
correlation between EEG band powers, frequency representation (FR), power spectral
density (PSD), time frequency representation (TFR), short-time Fourier transform
(STFT), Wigner-Ville distributions, adaptive Gaussian representations, parametric
modeling, time frequency representations with Q-constant frequency decomposition,
inverse model and specific techniques used for P300 and VEP such as peak picking
(PP), calculation of slow cortical potentials (SCPs), fractal dimension of signals or
multifractal spectrum.

• Dimensionality reduction: spatial filters, referencing methods, principal component
analysis (PCA), independent component analysis (ICA), common spatial patterns
(CSP), common spatial subspace decomposition (CSSD), frequency normalization
(Freq-Norm), or genetic algorithms.

According to the exploration carried out in each of the studies, the different techniques
applied during EEG signal processing presented in Figure 5 were extracted. It was ob-
served that, in terms of feature extraction methods [64], the common spatial patterns (CSP)
algorithm is widely used, and spectral density estimation (SDE), a statistical procedure
used to estimate the spectral density of a random signal [65], is among the most commonly
used techniques within EEG processing. Similarly, it is evident that a wide variety of
techniques were employed for feature extraction, filtering, and analysis of practical signals
in BCI.

On the other hand, as shown in Figure 6, it was demonstrated that among the main
methods used to perform the classification and modeling of the control system, i.e., to
categorise that class of feature vectors previously obtained, in order to represent the type
of mental task being performed by the user of the BCI system [4], the linear discriminant
analysis is the most commonly used. LDA is a nonparametric method since it maxi-
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mizes between-group variability relative to within-group variability, but it can also be a
parametric procedure for classification [66].
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Furthermore, the proposal made by [44] was one of the most novel studies included
in the review, since it included deep learning (DL) algorithms and convolutional neural
networks (CNN). DL is a subfield of machine learning concerned with implementations of
multilayer stacks of modules, which learn and compute non-linear input-output mappings
and, one of the important aspects is that these layers of features are not designed by
humans, they learn from data [67,68]. On the other side, a CNN is a feature extractor, a
classifier, and a regressor, which is set up from multiple feature maps. A CNN is designed
to process data that come in from multiple arrays and its artificial neurons in each feature
map share the same set of weights, but they apply their weights to a different part of
the input [67,69].

Additionally, the authors of the proposal indicated that these classifiers performed
better than previous architectures, achieving hit rates of up to 78.6% for one of the classes
performed. In the study, a motor imagery-BCI system (MI-BCI) was developed with a
virtual reality game for the limbs of the human body. The dataset was formed by 1500 EEG
recordings, 16 electrodes identified according to the international 10–20 system with a
sampling frequency of 160 Hz were used to acquire the EEG signals, a sixth order Butter-
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worth filter was applied at 0.5–75 Hz with forward and backward steps, a standardization
was performed to calculate exponential moving means and variances, and finally, feature
extraction and classification were performed by the deep neural network (DNN).

In this review, it was found that the interfaces in the included studies had between 1
and 64 electrodes for EEG signal acquisition, with 8, 16, and 32 being the most commonly
used quantities. The proposal carried out by [35] has highlighted that the system employs
a device with only one channel. The Mindwave II device (NeuroSky, San Jose, CA, USA)
whose sampling rate is 512 Hz, has a 12-bit resolution. Its supported frequency range
is between 0.5 and 100 Hz, and it integrates advanced filters for noise reduction. The
proposal was for a BCI system with an experimental model of a 3D robotic hand, which eye
blinks were detected based on the electroencephalographic (EEG) signal acquired from the
embedded chip of the NeuroSky headset. The authors developed an algorithm in LabVIEW
that acquired, processed and implemented the instructions of the robotic hand, and its
operation was based on the voluntary blinking of the user’s eyes according to a graphical
control panel (one blink enabled the transition between commands for the extension and
flexion of the five fingers, and two blinks selected the specific command that triggered the
action associated with any given finger). Additionally, the system incorporated modules to
achieve integration between the three devices used: the Arduino Uno board, the NeuroSky
headset, and the computer.

3.3.2. BCIs Supporting Upper Limb Motor Rehabilitation

As mentioned in Section 3.2.1, the studies were divided according to which limb was
being rehabilitated by the BCI system. The percentages indicated that the most studied
applications are those involving the upper limb. Similarly, the studies were separated into
two groups, taking into account whether the application involves the intention to move the
limb or whether it involves assisting with movement.

Motor Intention for Upper Limbs

Within the BCI systems presented by each of the included studies, applications divided
into the following classes were implemented: virtual limb simulators or avatars, video
games, orthoses, and soft exoskeleton. It is important to note that the works involved at
least one form of feedback to the user, including haptic stimulation. For example, [48]
proposed a motor imagery based BCI for a virtual avatar featuring the upper limbs, which
employed functional electrical stimulation (FES) as feedback to provide sensorimotor
integration for rehabilitation.

First, to carry out the acquisition of the proposed [37], a recoveriX system (g.tec
medical engineering GmbH, Schiedlberg, Austria) and 16-channels with sampling rate
of 256 Hz were used. The bandpass filter was set at 0.1 to 30 Hz and also set to extract
the features, a fifth-order Butterworth filter with pass frequency from 8 to 30 Hz was
employed. Next, the CSP algorithm was used and LDA was utilised as the classification
method. The operation of the system consisted of delivering sound and visual signals to
the user as an instruction to execute wrist dorsiflexion, while mirroring the avatar’s hand
movement. Also, the FES was activated when the system detected the user was imagining
movement on the instructed side, in order to help cause the wrist dorsiflexion. According
to the participation of 16 people, the results were evaluated by means of the Fugl-Meyer
Assessment (FMA) of motor function. As a result, a higher level of improvement was
obtained in the patients treated with the BCI-FES system compared to those who did
not use it.

Avatars are definitely a promising application to support rehabilitation processes,
offering benefits and improvements in performance outcomes [70,71]. For example, one
of the papers that integrated EMG signals, although no difference was identified in terms
of correlation values between the three experimental conditions (repeating the movement
from memory, repeating the movement while viewing it on a screen, and repeating the
movement while viewing it in immersive virtual reality), showed that the use of immersive
virtual reality resulted in higher alpha desynchronization during movement. In addition,
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they found that using EEG and EMG together lead to a better result. This development,
led by [29], is a virtual avatar presenting either upper limb movements of shoulder flexion-
extension, shoulder abduction-adduction, or elbow flexion-extension. For this purpose,
the interface used an EEG cap (BioSemi ActiveTwo, Amsterdam, The Netherlands) with
32 active electrodes placed according to the 10–20 system and using a sampling frequency
of 2048 Hz (later reduced to 128 Hz). It utilized four surface EMG electrodes (Delsys Trigno
Wireless EMG, Natick, MA, USA), with a sampling frequency of 2000 Hz. Subsequently,
for EEG signal acquisition, after downsampling the signal from 2048 Hz to 128 Hz, a
zero-phase fourth-order Butterworth filter with cutoff frequencies of 0.1 and 2.0 Hz was
applied. Then 11 features were selected, and by linear regression, classified. At the same
time, seven features were selected from the EMG signals and classified using a 45-neuron
network. The second stage of the architecture corresponded to the application of another
multiple linear regression model to obtain the final result of the “predictor”. Finally, the
prediction entered the virtual scenario where the avatar was floating, developed using
Unity 5.3.

Works based on games, as is the case of the proposal by [30], showed effectiveness
when using the interactive game with virtual reality, since the performance was higher
compared to studies using traditional rehabilitation. However, the authors commented
that the clinical experiments only collected data from 12 subjects, so the results may
contain errors. The proposed application is a shooting game using virtual reality, an
interactive system for upper limb rehabilitation that integrated a motion device (MTD) and
measurement of EEG signals to monitor patient treatment in real time. The interface was
based on identifying the trajectory of hand movement and the angle of wrist pronation and
supination. The system proposed an EEG device whose electrodes were placed according
to the 10–20 system and, after the signals were received from the Cz electrode, the theta
wave and beta wave were extracted using the Fast Fourier Transform (FFT) and a bandpass
filter. Then, the theta-beta ratio (TBR) value was calculated to classify the attention levels,
which were compared with the threshold in the virtual environment developed with
Unity. In a basic sense, the interface monitored the subject’s attention and used virtual
reality to enhance the person’s interest. During treatment, the system collected data on a
baseline in order to evaluate the progress and effectiveness of the patient’s rehabilitation.
Additionally, it integrated visual and auditory stimuli that are activated when the user’s
attention dropped.

Another study that involved using games as BCI applications was the one that [38]
presented. They proposed a BCI system integrated with VR and MI to rehabilitate upper
limbs. This was the previously mentioned rowing game where the user collected flags.
For online EEG data processing, the signals were processed with a bandpass filter for
frequencies from 8 to 30 Hz, then a CSP, and finally a LDA sent the signals to a finite state
machine (FSM). Also, for the offline EEG analysis, a high pass filter at 1 Hz was used, and
then an independent component analysis and Welch’s method were utilized to obtain the
power spectral density at the frequencies alpha (8–12 Hz), beta (12–30 Hz), theta (4–7 Hz)
and gamma (35–90 Hz).

In terms of hand and wrist rehabilitation, two proposals were identified in the review.
The first application is a BCI-controlled electrically-actuated hand orthosis [41], where
authors designed an experiment that consisted of voluntarily grasping and relaxing one
hand to cause the orthosis placed on the opposite hand to close or open, according to a
textual signal displayed on a monitor. Data acquisition was carried out in real time using a
60-channel EEG device located according to the international standard 10-10. However,
32 electrodes were used together with a bio amplifier, a 0.01 Hz bandpass filter with
a sampling frequency of 256 Hz using a resolution of 22 bits. Data analysis for offline
mode was performed in MatLab using an artifact rejection algorithm, PSD, dimensionality
reduction with principal component analysis (CPCA), and its features were extracted
using LDA. A Bayesian classifier was then employed and evaluated using cross-validation.
Finally, these data were stored for real-time EEG analysis and during online operation,
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where data was acquired every 0.25s, and they were then combined in a data window.
Afterwards, the orthosis system was modeled as a binary state machine and calibrated
as a whole. Users demonstrated control of the orthosis after training/calibration, with
average performances of 1.15 false alarms and 0.22 omissions per minute. Additionally,
the analysis indicated a correlation of 0.58 between voluntary movements mediated by
the BCI interface and, based on the results obtained in the online test, cross-correlations
indicated that control of the system could be maintained over time and that high correlation
coefficients might be achieved.

The second application was aimed to support the hand rehabilitation process devel-
oped an interface for use of a soft finger exoskeleton [46]. In the study authors explained
that they acquired the data coming from six channels of the Emotiv EEG headset device
(San Francisco, CA, USA), a bandpass filter from 4 to 30 Hz, and extracted the features by
applying steps such as ERPset energy, differences of ERPset, energy, FilterSet, zero crossing
rate, and FFT. Classification was performed in MatLab using learning tools and classifiers
such as LDA, QDA, and SVM. The output of this stage was the action input for the control
of the virtual actuators and the hand actuators. The result of the project, although it had an
important limitation, which was related to a slight delay in signal processing and actuator
control (1 second), achieved an overall manual control accuracy rating of 40% and 30% for
automatic control in BCI online.

Assisting with Movement in Upper Limbs

Similarly, to assist with movement as support in rehabilitation processes, the BCI
applications was based on a 3D robotic hand, a mobile robot, a virtual hand simulation
and various video games.

The 3D robotic hand was proposed by [35]. As previously mentioned, authors de-
veloped a BCI system with an experimental model of a 3D robotic hand. The authors
noted that the study produced an efficient model with which training sessions aimed at
increasing safety and confidence in BCI interfaces could be offered.

The study proposed by [36] utilised a BCI interface to control a mobile robot based
on EEG analysis and two mental tasks: a relaxed state and the motor imagination of the
right hand. In the first session, participants received no feedback (it was simply used to set
the classifier parameters), and in the second session, they received continuous feedback.
The interface employed two channels according to the international 10–20 system, the
amplification was carried out by a Guger Technologies (Schiedlberg, Austria) device, and
it was digitised at 128 Hz with an NI USB-6210 data acquisition card. Subsequently, the
algorithms designed for processing were implemented in MatLab. An LDA classifier was
used both for the first session where the error time was calculated with cross-validation
and for the second session where the extracted feature parameters were used. The control
commands were then translated into four movements: turn 90 degrees to the right, turn
90 degrees to the left, move forward a fixed distance, and move backward a fixed distance.
The virtual environment was created using the C programming language with OpenGL
for the graphics, OpenAL for the audio, and ODE for the physical simulation. Also,
in a second phase, they experimented with a mobile robot (EPFL educational e-puck,
Lausanne, Switzerland). At the end of the experiment, an average accuracy of 74.84% was
obtained. The authors indicated that it would be interesting to investigate the probability
of a navigational command based on the previous sequence of movements in order to
organise the commands in order of probability. They also pointed out that the results were
less satisfactory for case two, presumably because it was the first time the subjects were
confronted with an audio-only interface.

Another proposal that has already been mentioned was made by [39]. Authors de-
signed three experimental conditions in the immersive conditions of multimodal virtual
reality with motor priming (VRMP), whose objective was to execute the motor task before
training, to have an immersive multimodal virtual reality condition and, to have a control
condition with 2D feedback. Using questionnaires, authors collected data on workload,
kinesthetic imagery, and presence. Among the findings, they found an increased abil-
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ity to modulate and enhance brain activity patterns and a strong relationship between
electrophysiological data and subjective experience.

In terms of games, the first one identified came from [44]. The game consisted of hitting
one of the targets through employing a motor imagination interface and virtual reality.
The next was a novel work whose system consisted of six training scenarios: nine training
movements that could be chosen by the physician according to the patient’s needs, as well
as real-time visual, haptic, and auditory feedback; it was developed by [43]. This MI-BCI
and VR-based system to rehabilitate the upper limb function of stroke patients employed 8
channels of a 64-channel EEG device. The VR environment was developed in Unity3D and
3ds Max, which was based on presenting upper limb animations of 3D models.

As in most of the studies analysed in the review, EEG signals were taken from MI, and
the processing system was based on the use of MatLab, which performs pre-processing,
feature extraction, and classification. The communication between the devices happened
through a UDP protocol and the control commands were directed to the 3D model. As a
result, motor imagery accuracy increased using visual feedback through the games and the
average correct rate for five participants increased by 18.7%. Authors wrote that the VR
environment could be designed depending on the group of participants and according to
their needs in order to increase rehabilitation performance.

3.3.3. BCIs Supporting Lower Limb Motor Rehabilitation

Although the studies corresponding to lower limb rehabilitation identified for inclu-
sion in the review were the minority, it was also important to categorise them according
to the purpose of the application. As a result, four studies fell into the motor intention
category and two into the movement assistance category.

Motor Intention for Lower Limbs

For articles focused on motor intention, the final identified applications within BCI
systems were scenarios with avatars, dorsiflexion exercises with haptic stimulation, and a
novel robotic monocycle.

It has been shown that FES technology has produced good results in rehabilitative
applications targeting movement restoration [72], and that the combination of FES and
VR can be used to reduce difficulties in performing MI tasks and improve classification
accuracy. In [33], an interface whose BCI application is a ball kicking scenario based on VR,
MI, and FES was proposed to stimulate users’ lower limbs, so that they experience muscle
contraction and improve their attention prior to seeing motor imagery. For this purpose,
a 32-channel EEG acquisition system (a NeuroScan system including Quick-cap, Grael
amplifier and Curry8 software) was used. The electrodes were placed according to the
10-20 system with a sampling frequency of 256 Hz. Then a bandpass filter, a window with a
length of 512 sampling points sliding along the time axis at 256-point intervals, the common
spatial pattern (CSP) algorithm, a support vector machine (SVM), and the radial basis
function (RBF) were all used. The motion scenario, which consisted of kicking the ball, was
designed with Unity3D. The results obtained showed that the group subjected to VR and
FES obtained the best performance, classification accuracy, and activation intentionality.

Another example of integration with FES systems was developed by [42]. Authors
presented a BCI system for direct control of foot dorsiflexion, whose experiment consisted of
recording and storing EEG signals in offline mode, and then using these data to classify EEG
signals with online mode operation. Signal acquisition was performed using an EEG device
with 64 electrodes placed according to the 10–20 system, amplified and bandpass filtered
from 0.01 to 50 Hz, a sampling rate of 256 Hz, and a resolution of 22 bits. Dimensionality
was reduced by a combination of CPCA and AIDA. Subsequently, the data were sent
to a Bayesian linear classifier, and finally, the algorithms were implemented in the BCI
software. The FES stimulator that was integrated into the interface was controlled by
means of a microcontroller, a finite state machine, and a C-language program. The requests
correspond to turning on the stimulator and its intensity, and the instructions to perform
the dorsiflexion task were presented as textual signals on the computer screen. As a
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result, all subjects were able to perform the task without omissions and BCI-FES-mediated
foot dorsiflexion epochs were highly correlated with voluntary foot dorsiflexion epochs
with latencies ranging from 1.4 s to 3.1 s; also, the correlation coefficient ranged from
0.59 to 0.77, and the classifier performance was 53%. The authors suggested that, with
additional modifications, the proposed BCI-FES system may offer a novel and effective
therapy in rehabilitation.

Regarding avatars, in the study of [40] a real-time closed-loop BCI system was pro-
posed, which decoded the joint angles of the lower limb from EEG during walking in one,
and then controlling the avatar. The system was based on 64 channels (ActiCap, Brain
Products GmbH, Gilching, Germany) localised according to the international 10–20 system
and a wireless interface to transmit data sampled at 100 Hz. Signal processing was per-
formed using C++ language, and a robust adaptive filter was applied to filter flicker and
eye movement. Features were extracted in the 0.1 to 3 Hz band (delta) in order to obtain
the joint angle signals for subsequent use of unscented Kalman filter (UKF) as a decoder.
To update the UKF parameters, CLDA was applied and the data was collected in a buffer.
Finally, to obtain the accuracy levels for decoding, EEG signals were analyzed by standard
deviation (STD) and signal to noise ratio (SNR). Likewise, the symmetry ratio (SR) and the
ROM of the avatar’s lower limbs were obtained to calculate the gait symmetry and the
quality of the avatar’s control. The satisfactory results achieved showed that the average
decoding accuracy increased in eight days, the users adapted to the avatar, and the authors
noted that the signal stability over the eight days was influenced by states such as attention,
motivation and fatigue, suggesting that these states should be quantified in future studies.

Additionally, another novel BCI application was identified using entertainment
and/or sport devices. The publication in [45] proposed to use a robotic monocycle, a
neurorehabilitation platform based on EEG, surface electromyography (sEMG) and immer-
sive virtual reality (IVR) to move the user’s legs. The system consisted of a customized
electronic board to control the monocycle according to the user’s MI, sEMG signals that
were collected from the leg muscles in order to identify onset and displacement, a serious
game, and the monocycle, which was equipped with inertial sensors placed on the pedals
that were used to measure the cadence developed by the user while pedaling. To acquire
the EEG signals, a device that recorded 22 channels, a fifth-order Butterworth bandpass
filter from 8 to 30 Hz was used, and the CSP, filter bank (FBCSP), and Riemannian kernel
(RK) methods were used for feature extraction. Subsequently, the interface integrated the
LDA and the RDA classifiers to recognize the resting and moving states of the feet. Also,
the game was designed using Unity 3D Personal Edition, which was run on a Windows
computer. The development was able to recognize MI patterns from foot motion with an
average accuracy of over 80%. The authors also indicated that the LDA classifier may be
suitable for online implementation, which decreases the cost of calculation in the calibration
and validation stages.

Assist with Movement in Lower Limbs

Wheelchairs have been an important part of BCI applications, as they are widely used
and have been under different scientific and technological fields that seek their complete
evolution. The two studies included in the review were focused on wheelchairs. However,
one of the studies was based on controlling a virtual wheelchair, while the other was based
on controlling both a virtual and a real wheelchair.

On the one hand, Ref. [31] posed a paradigm for controlling a 2D virtual wheelchair.
The paradigm was based on multi-class discrimination of the spatially distinguishable
phenomena of event-related desynchronization and synchronization (ERD/ERS) in EEG
signals associated with motor execution and hand MI. A 27-channel device with a sampling
rate of 256 Hz, placed in an elastic cap according to the international 10–20 system, was
used. The signals coming from the channels were amplified and filtered within 0.1 Hz
and 100 Hz. To extract the features, the SLD was applied as a spatial filter, the temporal
filtering was performed by power spectral density estimation, and then an MLD was
applied. Classification to obtain control signals was performed in two steps: the first
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was to identify whether the signal belonged to control commands (true positive or TP)
or non-control commands (true negative or TN) and associated with motor tasks and
EEG patterns. Finally, the control command was sent discretely while the wheelchair was
continuously moving. The study showed high accuracy, as the incorporation of ERS into
the paradigm improved the spatiotemporal feature contrast of ERS vs. ERD, the average
target hit rate was 98.4% with MI, and the average time to reach a target at 10m distance
was approximately 59 s.

Also, Ref. [32] proposed a hybrid BCI based on MI and P300 potential to control a
wheelchair, both virtual and real, in a study where participants were able to effectively
control the direction and speed of the wheelchair. A 15-channel device was used to acquire
EEG signals, which were amplified, sampled at 250 Hz, and filtered between 0.5 and
100 Hz with a band-pass filter. They were then spatially filtered with CAR, then with a
band-pass filter at 8–32 Hz and. Spatial patterns were calculated using the one vs. the rest
common spatial patterns (OVR-CSP) method. LDA was used, and finally, by using MI,
hand movement was associated with the wheelchair’s turning direction. For deceleration,
MI of the foot was used, and for acceleration, attention to a blinking button on the graphical
user interface (GUI) was used.

3.3.4. BCIs Supporting Upper and Lower Limb Motor Rehabilitation

One of the 18 studies involved the support of upper and lower limb rehabilitation.
The interface, a work developed by [34], proposed a multi-class system based on the
modulation of sensorimotor oscillations with MI, evaluated in two studies. The first one
corresponded to training users to imagine hand and foot movement in response to visual
cues, and the second one to evaluate the information transfer rate (ITR) of the interface
in an asynchronous application, corresponding to navigation in a two-dimensional maze.
The interface design offered three modes of operation: asynchronous, user-dependent
automatic parameter selection based on initial calibration, and incremental update of the
feedback data classifier parameters. The acquisition of EEG signals was based on the use
of 16 electrodes placed according to the 10–10 system. Afterwards, they were spatially
filtered for further feature extraction, which relied on the estimation of the calculated
spectral power in individualised frequency bands, which were automatically identified by
an AR-based model. MI classification was performed by means of a multinomial logistic
regressive classifier.

3.3.5. User Feedback within the BCI Systems

After the application control system receives signals and uses them to run an appli-
cation, it integrates a final stage called feedback. This is a really important part of the
process, and most of the current BCI applications incorporate it. The feedback given to
the user can be visual, auditory, or haptic. All three kinds have demonstrated that they
can enhance motivation and minimize frustration in training, rehabilitation processes, and
using assistive devices [73,74].

As another important point, it was observed that the most commonly used technology
for the design of virtual environments as part of the visual feedback was Unity, a multi-
platform, a fully integrated professional game engine for interactive content such as creating
games and visualization, etc. [75]. Six of the 18 studies based their virtual environment on
Unity, which suggests that this tool is very useful in the design of brain-computer interfaces.

Likewise, the Oculus Rift virtual reality system, which is a line of virtual reality
headsets developed and manufactured by Oculus VR (Menlo Park, CA, USA) [76], was
the most widely used for fully immersive virtual reality applications. According to the
results presented in [38], whose proposal integrated the Oculus Rift system and Unity, it
was noted that although the overall classification performance remained low, the results
showed an increase in brain activation due to the effect of virtual reality training and
feedback. In addition, the authors found improvements in upper limb scores and increases
in brain activation measured by fMRI, indicating neuroplastic changes in the brain’s
motor networks.
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The application in [38] consisted of and examined the effectiveness of a BCI system
integrated with virtual reality and motor imagery to rehabilitate upper limbs. The objective
of the study was to row a boat through graphics in order to collect the most flags in a fixed
period of time. The interface used the Enobio 8 sensor with eight EEG channels to acquire
24-bit data at 500 Hz, according to the 10–20 system. Vibrotactile feedback was delivered
using a custom module made with an Arduino Mega, board motors, and vibrating parts.
Auditory feedback included ambient sounds, paddle movement, and events for when the
player captured a flag.

Another project presented in [39] which also employed the Oculus Rift system and
whose visual and auditory feedback was designed with Unity 3D, presented the use of
headphones for spatial sound, multimodal VR simulations, and motor priming (MP) in a
BCI task with upper limb MI, in addition to proposing a BCI paradigm for patients with
low-level motor control.

For this purpose, the authors used 8 active electrodes, a biosignal amplifier, a 256 Hz A/D
converter and the distribution according to the 10–20 system. The Leap Motion controller
was used to map the movement of the hands and the OpenVibe platform was used for signal
acquisition and processing. Feature extraction was given using a CSP filter. Subsequently, for
the classification of the left and right hands, LDA analysis was used and then the information
was transmitted to the RehabNet control panel (RehabNetCP) through the VRPN protocol, in
order to control the virtual environment.

In addition, the type of virtual reality, primarily as part of visual and auditory feedback,
was considered with great interest in the systematic review. It was found that, although
the majority of the systems featured non-immersive reality, the next percentage presented
applications of fully immersive reality.

Use of Fully Immersive Reality

The applications within immersive reality are related to avatars and video games.
In the study presented in [29], authors found that most of the people involved showed
more comfort with this technology compared to the other conditions, which increases the
feasibility of further exploring this technology. Authors developed a virtual avatar’s upper
limb movements of shoulder flexion-extension, shoulder abduction-adduction or elbow
flexion-extension in three conditions, and whose virtual scenario was developed using
Unity 5.3.

There were three other fully immersive studies. One was proposed in [38] (system
based on a rowing game to collect flags), whose results showed an increase in brain activa-
tion due to the effect of virtual reality training and feedback. The second work presented
in [39], involved a motor task that was experienced before training, in an immersive multi-
modal virtual reality condition and in a control condition with 2D feedback, whose analysis
indicates that the activation of the ipsilateral primary sensorimotor cortex (SMC) in the
mirror neuron system are important in action execution and imitation enhanced by VR.
Finally, the third study developed a target shooting game. The authors note that one of the
participants stated, “It’s a bit weird, because it feels like my hands.” [44].

Use of Semi-Immersive Reality

The studies that feature semi-immersive reality were: the ball-striking based proposal
designed in Unity3D [33], the 3D robotic hand by [35] employing algorithms in Labview,
and the system featuring upper limb animations in 3D models, developed in Unity3D
and 3ds Max, for which it was noted that motor imagery accuracy increased using visual
feedback through gaming and that the average correct rate for 5 participants increased
by 18.7%.

Use of Non-Immersive Reality

Finally, obtaining the highest percentage, there were 11 studies involving non-immersive
virtual reality. There were the following: a game proposed in [30], which showed greater
effectiveness compared to traditional rehabilitation, a wheelchair [31], the system to control
a mobile robot based on EEG analysis, and two mental tasks (relaxed state and motor
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imagination of the right hand) [36], systems with FES [37,42], the system that decoded
lower limb joint angles during walking [40], the rehabilitation hand [46] and the robotic
monocycle of [45].

Also, Ref. [34] proposed a multi-class interface based on the modulation of sensori-
motor oscillations with motor imagery, which was evaluated in two studies and, whose
feature selection was carried out by a criterion based on mutual information. The results
showed an accuracy of 74.84%, thus demonstrating that the use of interfaces outside the
laboratory is possible.

4. Discussion

In recent years, the great potential of using EEG signals in BCI systems to support the
rehabilitation process of human limbs has been demonstrated in proposals such as those
evidenced in the systematic review. The evidence shows that the use of EEG signals within
a BCI system is optimal and suitable when said system has the following elements: the
incorporation of non-invasive and inexpensive equipment, good resolution, ease of use,
and portability [77–79]. Also, the use of these signals for the development of BCI systems
that support rehabilitation processes is natural and intuitive [80] since the process directly
extracts information about the user’s motor intention. The use of EEG signals in these
systems has received satisfactory results both in terms of system efficiency and patient
satisfaction [44]. For this reason, the use of EEG signals was one of the main inclusion
criteria, and from the analysis of the studies reviewed it was observed that BCI-EEG
systems have a clear validation of their value in real life in terms of efficacy, practicality,
and their impact on the quality of life of their users. It is also important to note that future
BCI systems should be even more comfortable, more convenient, easier to set up, operate
for longer periods of time in all environments, and more easily interact with a wide range
of applications through virtual reality [81–84].

On the other hand, as observed in studies and papers presented in [3,12,85,86], the
obstacles when designing and implementing BCI systems that should be taken into account
during the development of applications are related to: neurological issues, technological
difficulties, ethical concerns, non-stationarity of data from the same user (changes in signal
patterns over time), signal acquisition hardware, information transfer rate, and the training
process: indeed, longer training should help subjects learn to generate more consistent and
distinct MI activity. Additionally, shorter trials and improvements in feedback to the user
are also helpful.

Furthermore, in the literature, improvements in rehabilitation processes were identi-
fied when feedback elements were integrated in some of its modalities (visual, auditory,
or haptic) and virtual environments. For instance, in [36], a higher level of improvement
was obtained in the patients treated with the BCI-FES system compared to those who did
not use it. It was also shown in [29] that the use of immersive virtual reality resulted in
higher alpha desynchronization during movement. The same could be said about the case
of the proposal by [30], which showed effectiveness when using an interactive game with
virtual reality; the performance was higher compared to studies using traditional rehabili-
tation. Furthermore, in [35], it was noted that the accuracy of motor imagery increased by
using visual feedback through gaming and that the average rate of correctness increased
by 18.7%.

In this sense, it became evident that it is particularly essential to provide feedback to
the person about the motor intention that has been recognised by the system in order to let
the user know if he/she has correctly executed the mental task, which will consequently
help the user to better control his/her brain activity and obtain greater efficiency in the
rehabilitation process. Indeed, having a feedback opens the possibility to exploit the control
of interfaces and even generate personalised models as indicated in [42,44].

Virtual environments in this framework can play a fundamental role. This is because
they are useful as a diagnostic and/or rehabilitation tool, and their effects can be monitored
by recording both clinical and electroencephalographic data. For example, in [87] the
case of a 17-year-old patient is presented. She had a disorder of consciousness (DoC),
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and a VR training to improve her cognitive-behavioral outcomes which were assessed
using clinical scales was presented. At the end of the training, significant improvements
in clinical and neurophysiological outcomes were achieved. As a result, it is suggested
that neurophysiological data and BCI systems in combination with virtual reality could
be used to evaluate the reactions induced by different paradigms and help in diagnosis
and rehabilitation.

Although it was evidenced during the analysis of the articles that several strategies
have been investigated, in strategies that included motor training, direct observation, and
VR techniques, the feedback to the user regarding the use of virtual environments showed
more benefits, as users acquired greater confidence and control of the system. On the
other hand, as mentioned in [38], even though growing evidence of the positive impact
of methods using VR has been demonstrated, patients with low level of motor control
have benefited from BCIs. For this reason, it is also important to opt for the use of motor
imagination, other feedback methods, or integration with VR. There are people who have
severe impairments in their limbs and therefore may not have autonomy to carry out
activities of daily living.

Advancements in the DL field have also improved efficiency in the accuracy of process-
ing signals and BCI system performance, as shown in the included paper written by [44],
and in another example from [88]. In this study, DL was used in order to recognize four dif-
ferent movements from a recorded EEG. Data from 10 volunteers showed a success rate of
70% from the raw EEG and a success rate of 96% from the spectrum. DL methods are better
than machine learning algorithms when the data is complex, unstructured, abundant, and
feature rich [89,90]. Also, DL can easily describe complex relationships and preserve the
information extracted from brain networks [91] or even as [92] expressed, DL techniques
are useful to infer information about the correctness of action in BCI applications.

In addition to observing that training with feedback improved test’s scores, it was
evidenced that the incorporation of VR in BCI systems can offer forms of low-cost support,
accessibility, ease of use, and agility in reconfiguration [40]. Also, it is important that the
variation between calibration, training, and real-time operation continues to be improved
in order to obtain high performance percentages and low effects on users’ mental states.
Taking into account that studies have confirmed that using mechanisms such us the
use of VR promote brain plasticity, produce positive effects in the restoration of motor
function, and strengthen rehabilitation processes in human limbs [93,94]. In conclusion,
machine learning and deep learning algorithms to classify EEG signals, visual, auditory,
and haptic feedback, and EEG within brain-computer interfaces offer wide possibilities of
development that efficiently support limb rehabilitation, helping not only the users, but
also their families and the people around them to benefit, improving the quality of life of
all, impacting social growth.

5. Conclusions

Especially for people with motor limitations, a BCI is a system that provides a way
to re-establish direct communication with what the user wants to do, making it possible
to assist or restore their autonomous mobility [13,15]. This review included papers that
focused on supporting limbs rehabilitation through the use of EEG and feedback. The
analysed articles demonstrated that the integration of BCIs with visual, auditory and/or
haptic stimulation is useful and increases the efficiency of the interface in rehabilitation,
since it enhances the physiological and emotional effects of the person.

Inspecting the results and advances in signal acquisition and processing technologies
opens the possibility of continuing to innovate the use of this technology as support in
motor rehabilitation processes. These systems in combination with non-invasive methods
lead to more efficient, economical, fast, and risk-free rehabilitation processes. On the other
hand, it was identified that the use of processing techniques, statistics, machine learning,
and deep learning are vital in the processing of recent and future works, since they attempt
to minimise errors and increase the efficiency and speed with which the system operates.
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In general, the studies were based on applications to rehabilitate the upper limbs.
The highest percentage of studies were focused on BCI applications related to avatars and
video games, so the feedback to the user was mostly visual. However, the use of visual,
auditory, and haptic feedback was considerable. It is also important to note that within
EEG signal processing techniques, common spatial patterns (CSP) is used together with
linear discriminant analysis (LDA) as classification algorithm. On the other hand, the most
commonly used type of VR is non-immersive, and importantly, among the studies included
according to the inclusion and exclusion criteria, none used augmented virtual reality.

Finally, it was determined that within the systems to support the rehabilitation of
human limbs, BCIs offer extensive benefits along with the use of EEG signals and feedback
provided to the user. Benefits in training, monitoring, calibration, and motivation may lead
to inherent improvements within the rehabilitation processes, the quality of life for people
who suffer from motor limitations and will ultimately result in a positive impact on their
families and society.
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