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Abstract: A rapid and nondestructive method is greatly important for the classification of aflatoxin B1
(AFB1) concentration of single maize kernel to satisfy the ever-growing needs of consumers for food
safety. A novel method for classification of AFB1 concentration of single maize kernel was developed
on the basis of the near-infrared (NIR) hyperspectral imaging (1100–2000 nm). Four groups of AFB1
samples with different concentrations (10, 20, 50, and 100 ppb) and one group of control samples
were prepared, which were preprocessed with Savitzky–Golay (SG) smoothing and first derivative
(FD) algorithms for their raw NIR spectra. A key wavelength selection method, combining the
variance and order of average spectral intensity, was proposed on the basis of pretreated spectra.
Moreover, principal component analysis (PCA) was conducted to reduce the dimensionality of
hyperspectral data. Finally, a classification model for AFB1 concentrations was developed through
linear discriminant analysis (LDA), combined with five key wavelengths and the first three PCs.
The results show that the proposed method achieved an ideal performance for classifying AFB1
concentrations in a single maize kernel with overall accuracy, with an F1-score and Kappa values of
95.56%, 0.9554, and 0.9444, respectively, as well as the test accuracy yield of 88.67% for independent
validation samples. The combinations of variance and order of average spectral intensity can be
used for key wavelength selection which, combined with PCA, can achieve an ideal dimensionality
reduction effect for model development. The findings of this study have positive significance for the
classification of AFB1 concentration of maize kernels.

Keywords: hyperspectral image; maize kernel; aflatoxin B1; key wavelength selection; dimensional-
ity reduction

1. Introduction

Maize is one of the most important food crops in the world, but it is vulnerable
to fungus infection (e.g., flavus infection) in unsuitable storage conditions. Aflatoxin
is a secondary metabolite of some species of Aspergillus fungi (e.g., A. flavus and A.
parasiticus), which has been listed as ‘I’ carcinogen by the International Agency for Research
on Cancer (IARC) due to its carcinogenicity and mutagenicity [1]. Aflatoxin can be divided
into AFB1 (C17H12O6), AFB2 (C17H14O6), AFG1 (C17H12O7), AFG2 (C17H14O7), and
approximately 20 other subtypes, among which AFB1 is the most common and toxic,
therefore its contents in food are strictly limited in many countries [2]. The limited standards
of China are 20 µg/kg (ppb) and 100 ppb in food and feed grades, respectively. The Food
and Drug Administration of the United States limits the highest level of 20 ppb AFB1 for
human food and products [3].

In the previous decades, AFB1 was detected mainly by thin layer chromatography
(TLC), high-performance liquid chromatography (HPLC), and enzyme-linked immunosor-
bent assay; although these methods are accurate, their instruments are complex and
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detection speed is slow. In other words, these methods mentioned above could not meet
the needs for a rapid nondestructive method in modern industry, as they are inefficient for
a large of samples.

As a rapid and nondestructive technology, hyperspectral imaging technology inte-
grates image information and spectral information into one system, which could record
spatial and spectral information of given samples simultaneously [4,5]. At present, hy-
perspectral imaging technology has been used to detect the aflatoxin concentration of
crops. On the basis of hyperspectral imaging, Han et al. [6] proposed a convolutional
neural network (CNN) method to detect aflatoxin in peanuts, and obtained an overall
recognition rate above 95% on a pixel-level and above 90% on a kernel level. Jiang et al. [7]
collected the near-infrared (NIR) hyperspectral images between 970 and 2570 nm of peanut
kernels and judged whether peanut kernels were moldy by combining PCA and threshold
segmentation method, achieving a test accuracy of 87.14%. Bertani et al. [8] developed a
classification model of slurried almonds with support vector machine (SVM) algorithm
based on the fluorescence spectra induced by specific wavelength; the classification accu-
racy exceeded 94% for low and high concentrations of AFB (AFB1 + AFB2). These results
illustrated the feasibility of using hyperspectral imaging technology to detect aflatoxin in
food. In terms of the classification of AFB1 concentration of maize kernels, Chu et al. [9]
collected the hyperspectral images of maize kernels contaminated by AFB1 using the short-
wave infrared hyperspectral imaging system, a qualitative classification model of AFB1
concentration was developed by combining the first five principal components (PCs) with
SVM algorithm. Zhu et al. [10] proposed the integration of fluorescence and reflectance
visible/near infrared (VNIR) hyperspectral images to detect aflatoxins in maize kernels.
PCA and a least squares support vector machine (LS-SVM) were used to classify contami-
nated and healthy kernels, with the overall prediction accuracy of 95.33%. Tao et al. [11]
established the classification models of maize kernels with different AFB1 concentrations
with 410–1070 nm and 1120–2470 nm spectra, respectively, and the results showed that the
effect of using NIR spectra was better than that of VNIR bands. Chakraborty et al. [12]
classified maize kernels with six different concentrations of AFB1, using hyperspectral
images at 400–1000 nm, and the study showed that partial least squares discriminant
analysis (PLS-DA) could achieve good results under 12 Latent Variables (LVs). Kimuli
et al. [13] investigated the feasibility of detecting AFB1 on the surface of maize kernels with
a VNIR hyperspectral imaging system. A combination of PCA and factor discriminant
analysis (FDA) was used and achieved a good discriminant result. These studies promoted
the development nondestructive detection technology in AFB1 concentration detection
of maize kernels. However, the recognition accuracies in the test of Chu et al. [9] were
low. Zhu et al. [10] achieved high classification accuracy, but only two concentrations
classification were studied; the concentration classes were too few to carry out a more
detailed classification. Tao et al. [11] and Chakraborty et al. [12] studied the differentiation
of multiple concentration levels; Kimuli et al. [13] discussed the sample differences of four
different regions of origin, but their research samples specific to a certain concentration are
too few to be widely used.

Linear discriminant analysis (LDA) is a classic classification algorithm, which is widely
used in the field of pattern recognition and image processing. Nowadays, LDA has been
successfully used in the classification of hyperspectral data. Li et al. [14] proposed a new
method to analyze the age of blood stains using hyperspectral image. LDA was applied,
and achieved an ideal effect. Garcia-Allende et al. [15] detected spurious elements in
raw material processing chains on the basis of the hyperspectral image of materials, and
identified the components in tobacco with LDA, achieving a good recognition effect. On
the basis of hyperspectral images of 17 varieties of maize kernels, Xia et al. [16] classified
the variety of maize kernel with successive projection algorithm (SPA) coupled with LDA,
achieving an accuracy of 90.31%. These studies show that LDA can be applied to classify
hyperspectral data with good results in some application fields. This study explored the
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application effect of LDA, coupled with NIR hyperspectral imaging, in AFB1 concentration
detection of single maize kernels.

The hyperspectral image information is huge and redundant within adjoining wave-
lengths; it is needed to compress data from high dimensionality to low dimensionality for
improving detection efficiency using variable selection algorithms. Previous studies on
this aspect often reduced the dimensionality of hyperspectral image with a dimensionality
reduction algorithm, and then achieved the classification of different concentrations of
AFB1 samples combined with the classification model. In this study, the dimensionality
reduction in hyperspectral data was discussed, and a new key wavelength selection method
was proposed by considering the between-class variance and order of average spectral
intensity. A new attempt was carried out on combining this method with dimensionality
reduction algorithm for compressing hyperspectral data; the result was better than that
of using dimensionality reduction or characteristic wavelength alone, and the efficient
compression of hyperspectral data is realized.

The present study aims to investigate the feasibility of using the combination of
dimensionality reduction and key wavelengths to obtain the best modeling data in the NIR
region of 1100–2000 nm, combined with classification model to detect AFB1 concentration
in maize kernels. The specific objectives of this study were to: (1) compare the differences
between raw and pretreated spectra of different AFB1 concentrations of maize kernels
and analyze the effects of pretreatment; (2) select the optimal dimensionality reduction
algorithm for this study through analysis and comparison of different dimensionality
reduction methods; (3) select key wavelengths according to spectral features, such as the
variance and order of average spectral intensity, and identify the optimal data for modeling
through the combination of specific wavelength and dimensionality reduction algorithm;
and (4) obtain an optimal calibration model by comparing different classification models
based on low-dimensional data.

2. Materials and Methods
2.1. Sample Preparation

The variety of maize kernel in this study is Zhengdan 958, which is widely planted in
China. All samples were provided by Beijing Academy of agriculture and Forestry Sciences,
and were planted in Xiaotangshan, Beijing, North China, one of the main maize producing
areas in China. Therefore, the research object of this study is representative. A total of 450
maize kernels without any defect were selected to make the maize kernel samples, with
five different concentrations of AFB1. In order to ensure that there were no pre-existing
natural toxins, 20 representative kernels were randomly selected from each group and the
samples were tested as toxin-free by Beijing Putian Tongchuang Biotechnology Co., Ltd. In
order to prepare the maize samples with five different concentrations of AFB1 artificially
(0, 10, 20, 50, and 100 ppb), five different concentrations of AFB1 diluent were prepared
according to the average kernel weight (about 0.5 g).

The diluent and samples were prepared as follows: initially, 5 mL of AFB1 toxin
(2 µg/mL), 5 mL of 100% methanol, and other necessary equipment were prepared. Then,
0.2 µg ml−1 diluent was created by mixing 0.25 mL of solution of toxin with 2.25 mL
of methanol, and 90 samples with 10 ppb AFB1 contents were prepared by depositing
25 µL diluent on each embryoid side of each kernel (25 µL × 0.2 µg/mL = 0.005 µg of
toxin per 0.5 g kernel). To achieve 20 ppb kernel samples, 0.4 µg/mL diluent was created
by mixing 0.5 mL of solution of toxin with 2 mL of methanol, and 25 µL of diluent was
deposited on each kernel to achieve 20 ppb (25 µL × 0.4 µg/mL = 0.01 µg of toxin per 0.5 g
kernel). Following a similar procedure, different concentrations of diluents were prepared
by changing the mixture ratio of toxin and methanol. Then, the diluents of different
concentrations were dropped on the kernels to achieve 50 and 100 ppb. Each sample in
the control group was treated with a 25 µL methanol-alone drop to eliminate the effect
of diluent treatment as much as possible. After these kernels were inoculated, they were
placed in a chemical hood to allow the diluent to dry. Then, after 120 min, the methanol in
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these samples volatilized, and AFB1 was absorbed completely by the samples [17–19]. All
samples were prepared and could be used for spectral collection.

2.2. Hyperspectral Imaging System

A line-scanning NIR hyperspectral imaging system (Figure 1) was used to acquire
the hyperspectral images of the samples. The system consists of a 14-bit NIR charge-
coupled device camera (Xeva−2.5−320, Xenics Ltd., Leuven, Belgium), a high-resolution
spectrometer covering 930–2548 nm with an interval of 6.32 nm (ImSpector N25E, Spectral
Imaging Ltd., Oulu, Finland), two 300 W halogen light area sources (Antefore International
Co., Ltd., Taiwan, China), a precision mobile platform (EZHR17EN, AllMotion, Inc., Union
City, CA, USA), and a computer (Dell, Intel (R) Core (TM) i5-2400 CPU @ 3.10 GHZ).
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In order to acquire the high-quality hyperspectral images, the distance between the
lens and the sample stage was set at 380 mm, and two halogen light area sources were
mounted at 45◦ angles from horizontal to avoid oversaturation. The movement speed of
the sample and the exposure time of camera were set at 42 mm/s and 2 ms, respectively,
to avoid image spatial deformation. In order to improve the image collection efficiency,
90 samples with the same AFB1 concentrations (15 rows and 6 columns) were placed on
the transport platform and scanned line by line each time. Each NIR hyperspectral image
consists of 256 congruent subimages, with wavelengths ranging from 930 nm to 2548 nm.
Due to the severe noise in the spectrum before 1100 nm and after 2000 nm, only the spectral
range covering 1100–2000 nm (145 wavelengths) was used for the NIR imaging modes to
minimize the effect of noise [20].

2.3. Hyperspectral Image Correction

The spatial intensity variation in the plane of the scene produced by halogen lamps
and the dark current in the CCD camera generally led to the signal of the camera chip
to be nonzero when no light hit the detectors and resulted in a large amount of noise
in some bands [20]. Therefore, white and dark references were used to correct the raw
hyperspectral images to eliminate these adverse interruptions for further analysis. The
white reference image was obtained using a white diffuse reflectance board under the
same system parameters. The dark reference image was obtained by covering the lens and
turning off the lamps [21]. The raw image data were corrected as follows:

D =
Draw −Ddark

Dwhite −Ddark
(1)
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In Equation (1), Draw represents the original uncorrected hyperspectral image, Ddark
represents the dark reference, Dwhite represents the white reference, and D represents the
calibrated hyperspectral image.

2.4. Spectral Data Extraction

A hyperspectral image consists of image information and spectra information. In
order to develop a maize kernel classification model with different concentrations of AFB1,
the image and spectra information of maize kernel were extracted as follows:

Step 1. The grayscale image at 1210.3 nm was selected to segment the maize kernel
from the background due to their obvious intensity difference;

Step 2. Threshold segmentation and morphological filtering were employed to remove
the background and edge region of the maize samples while remaining in the effective
region at the grayscale image at 1210.3 nm;

Step 3. The filtered image was used as the region of interest (ROI) of the sample to
mask the original hyperspectral image and extracted the region of each kernel;

Step 4. The spectra data of each kernel within the ROI were averaged at each wave-
length, and the average spectra were used for further analysis.

2.5. Spectral Pretreatment

The hyperspectral data also contained some disturbances (e.g., external stray light or
scattering noise generated by the camera) during the NIR spectra acquisition. In order to
reduce the influence of nontarget factors and to establish a stable model, the raw spectra
must be pretreated before further analysis [22]. Savitzky–Golay (SG) smoothing was used
to reduce the influence of noise from environment and instrumental fluctuations [23]. After
SG smoothing, two spectral pretreatment algorithms, including first derivative (FD) and
second derivative (SD), were used to preprocess the spectra to highlight the differences
between different AFB1 [24].

2.6. Key Wavelength Selection

Variable selection methods are usually used to select the key wavelength. Variance
could reflect the differences between groups; in this study the key wavelengths used for
the classification of AFB1 content in maize kernels were determined by combining the
variance of spectral intensity with their order. The specific method is as follows:

Step 1. Calculated the average spectrum of each group;
Step 2. Ordered the average spectral intensity of five groups at each band, and divided

the bands with the same order into the same subset. In order to eliminate the effect of
tiny intensity difference on ordering, the spectral intensity of adjacent groups would be
regarded as equal if their difference was less than 100 times of variance;

Step 3. Calculated the variance of spectral intensity for each band, and only the
wavelength with the largest variance was retained in the same subset; the remaining
wavelengths were removed;

Step 4. All the remaining wavelengths were sorted according to the variance from
large to small, and the first few retained wavelengths were the final selected characteris-
tic wavelengths.

The flowchart of key wavelength selection in this study is shown in Figure 2. Bi
represents the i-th wavelengths, and m is the total number of all wavelengths. Sor is the
wavelength subset sorted according to the second step, and n is the number of subsets.
Sor(max) is the remaining wavelength after the third step. SN−KW is the set of key wave-
lengths selected after the fourth step, and N is the number of selected key wavelengths.
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2.7. PCA for Dimensionality Reduction

PCA is a well-known algorithm of multivariate analysis [25]. The main goal of PCA
is to reduce the dimensionality of a data set with a large number of inter-correlated vari-
ables, while retaining as much of the information that is present in the data as possible.
It is commonly used for data dimensionality reduction, elimination of multicollinear-
ity, and enhancement of the hyperspectral dataset to simplify feature selection [26,27].
The hyperspectral image is a massive data cube, therefore PCA is promising to reduce
the dimensionality of hyperspectral data and improving the detection efficiency of the
prediction model.

2.8. Model Development

The basic idea of LDA is to compress the dimensionality of feature space and extract
the classification information through projecting the high-dimensional data into the optimal
discriminant vector space. The projected data have the minimum within-class distance and
the maximum between-class distance in the new subspace, that is, the pattern has the best
separability in the new vector space [28].

For a given data set D = {(xi, yi)}
m
i=1, where sample xi is an N-dimensional vector, yi

is the label of the i-th sample, and m is the number of samples. ω is the optimal classification
vector space, the projection of the centre of the samples on the optimal hyperplane isωTµ,
where µi is the mean vector of class i in the original space vector. ‘Within-class scatter
matrix’ and ‘between-class scatter matrix’ are represented as Sw and Sb, respectively. Sw
and Sb are defined in Equations (2) and (3), respectively.

Sw =
C

∑
i=1

∑
x(k)i ∈Xi

(x(k)i − µi)(x
(k)
i − µi)

T
(2)

Sb =
C

∑
i=1

Ni(µi − µ)(µi − µ)
T (3)

In Equations (2) and (3), C is the number of classes of the samples, Ni is the number of
samples of class i, µ is the mean vector of all samples, x(k)i is the k-th sample of class i, and
Xi is the sample of class i.

J = argmax
ωTSbω

ωTSwω
(4)

According to the nature of the ‘Generalised Rayleigh Quotient’, the optimal classifica-
tion vector space ω can be obtained [29,30]. Then, the class of unknown samples can be
predicted according to the optimal vector space.

In this study, there were four groups of samples with different AFB1 contents and one
control group of samples without AFB1. All 450 samples (five groups with 90 samples in
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each group) were randomly divided into the calibration set or prediction set, according to
the ratio of 1:1. Thus, 225 samples (45 of each group) were selected as the calibration set
to develop the calibration model, and the remaining 225 samples (45 of each group) were
used as the prediction set to verify the performance of the developed model. To eliminate
the influence of random sample division on the prediction ability of the developed model,
the prediction model was developed 10 times by random sample division; the model
which came closest to the average performance of the 10 developed models was taken
as the final model. To evaluate the classification performance of the proposed method,
three parameters, namely accuracy, F1-score, and Kappa, were considered [31,32]. The
model development treatments were conducted in the Python 3.7.4 (Guido van Rossum,
Netherlands). The flowchart is shown in Figure 3.
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3. Results
3.1. Comparison of Spectral Pretreatment Method

The raw and pretreated spectra of all samples in the calibration set are presented in
Figure 4; it could be seen easily that the differences of raw spectra are very small in the
between-class, and relatively large in the within-class (Figure 4a). In order to eliminate
the noise existing in the raw spectra, firstly SG smoothing of 15 points was employed
(Figure 4b). Then, FD and SD were used to further highlight the spectral difference
of different AFB1 concentrations [33]. The results show that the spectra pretreated by
SD contains a lot of burrs (Figure 4d), while the spectra pretreated by FD shows subtle
differences in different AFB1 concentrations (Figure 4c). In order to evaluate the effect of
spectral pretreatment methods on the classification for different AFB1 concentrations, the
full wavelength spectra pretreated by SD and FD were used to develop the classification
models using LDA classifier. The classification results (Figure 5) demonstrate that SG–FD
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pretreatment is better than that of the others, therefore the pretreated spectra by SG–FD
method was used for subsequent analysis.
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3.2. Results of Key Wavelength Selection

The key wavelengths were selected according to the variance of average spectral in-
tensity, and their orders are shown in Table 1 (only the first six key wavelengths are shown).
V0, V10, V20, V50, and V100 represent the average spectral values when AFB1 concentration
is 0, 10, 20, 50, and 100 ppb at the selected wavelength, respectively. The variance at the
first five bands were 4.37, 1.89, 1.83, 1.12, and 1.06, respectively, but the variance decreases
rapidly from the sixth wavelength, therefore only the first five wavelengths (1160.5, 1391.8,
1700.9, 1827.9, and 1981.0 nm) were selected as key wavelengths according to our proposed
method (Figure 6).
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Table 1. Variance and order of average spectral intensity at different wavelengths.

Variance (×10−7) 4.37 1.89 1.83

Wavelength 1160.5 nm 1827.9 nm 1981.0 nm
Order of size V0 > V10 = V20 = V50 > V100 V100 = V50 = V20 > V10 > V0 V100 > V50 > V20 = V10 > V0

Variance (×10−7) 1.12 1.06 0.45
Wavelength 1391.8 nm 1700.9 nm 1898.0 nm
Order of size V20 > V0 = V10 = V50 > V100 V20 = V10 = V50 > V100 > V0 V50 = V100 = V20 = V10 > V0
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The reflected spectra are related to some chemical bonds, associated mainly with C–H,
O–H, and other functional groups due to hydrogenic stretching, bending, or deformation
vibration [34]. According to the analysis of chemical bonds, 1160.5 nm corresponds to
the C–H regions, 1391.8 nm contributes to the O–H regions stretching the first overtone,
1700.9 nm corresponds to the C–O regions, 1827.9 nm is ascribed to the C–C1 stretch, and
1981.0 nm is associated with the O–H stretch functional group of water and starch [26,35].
In addition, the selected key wavelengths can also reflect the spectral intensity difference
of different AFB1 concentrations, as the variable selection method proposed by this study
mainly considered the variance of average spectral intensity. Hence, the selected key
wavelengths were mostly located at the peaks or valleys of pretreated spectra (Figure 6).

Kandpal et al. [36] analyzed the spectra of samples with different AFB1 concentrations
in the range of 1100–1700 nm; six key wavelengths were found using the beta coefficients
of the PLS-DA model, of which 1150 nm is close to one of the key wavelengths in this study
(1160.5 nm). Wang et al. [26] analyzed the key wavelengths associated with AFB1 concen-
tration in maize seeds in the range of 1000–2500 nm, of which 1146, 1406, and 1704 nm were
close to the 1160.5, 1391.8, and 1700.9 wavelengths selected in this study, respectively. Some
key wavelengths selected in this study are basically the same as Wang et al. and Kandpal
et al. However, there are also some wavelength inconsistencies. To analyze the reasons,
firstly, different pretreatment methods and key wavelength selection methods have a great
influence on the selection of key wavelengths. Secondly, different AFB1 concentration
levels of the study object also affect the selection of the key wavelengths.

3.3. PCA in the NIR Wavelength Ranges

The cumulative contribution rates can reflect the ability of corresponding PCs to
explain the original variables. Figure 7 shows the cumulative contribution rate of the first
10 PCs obtained by PCA, based on the pretreated method of SG-FD. The scores of the first
four PC (denoted by PC1, PC2, PC3, and PC4) were 55.37%, 27.67%, 10.13%, and 3.38%,
respectively. The contribution rates of the first four PC exceeded 96.5%. The cumulative
contribution rate of the fifth and subsequent PCs less than 3.5%. To select the best PCs from
the first four PCs for developing a classification model, the clustering effect was used for
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analysis. For the calibration set samples, the clustering effect of any three combinations of
the first four PCs is shown in Figure 8.
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As can be seen from Figure 8, the effects of Figure 8a,b were evidently better than
that of Figure 8c,d. Thus, PC2 and PC3 contain important information about classification.
Moreover, the effect in Figure 8a was better than that in Figure 8b, indicating that PC1 also
plays a role in classification. Therefore, the combination of the first three PCs was best for
classification of AFB1 concentrations. Figure 8a shows in the first three PC spaces, with
a certain degree of discrimination between samples without pollution and samples with
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contaminated groups, so the samples without contamination can be easily separated from
the contaminated groups; the remaining four contaminated groups have some clustering
effect, with some overlapping areas that are not fully separated. Therefore, if only the first
three PCs are used to establish a classification model, the effect will not be optimal.

3.4. Classification Results of AFB1 Level

On the basis of SG–FD pretreated spectra, the first three PCs containing the main
classification information were retained. In addition, five key wavelengths were selected
according to the combination of variance and size order of average spectra. The normalized
first three PCs, five key wavelengths, and the combination of these two datasets were used
to replace the full spectra data, respectively. All samples in the prediction set were classified
with an LDA classification algorithm; the test accuracies were 91.11%, 79.56%, and 95.56%,
respectively. The results show that the combination of these two datasets can improve the
classification accuracy compared with the first three PCs or five key wavelengths. Table 2
shows the specific results of AFB1 concentration classification on the prediction set using
the combination of these two datasets.

Table 2. Confusion matrix of the predicted results of AFB1 contents.

Data Set Real AFB1 Contents
Predicted Results

0 ppb 10 ppb 20 ppb 50 ppb 100 ppb Accuracy Overall Accuracy

Calibration set

0 ppb 45 0 0 0 0 100%

98.22%
10 ppb 0 44 1 0 0 97.78%
20 ppb 0 1 43 1 0 95.56%
50 ppb 0 1 0 44 0 97.78%

100 ppb 0 0 0 0 45 100%

Prediction set

0 ppb 45 0 0 0 0 100%

95.56%
10 ppb 1 43 1 0 0 95.56%
20 ppb 0 1 42 1 1 93.33%
50 ppb 0 2 1 41 1 91.11%

100 ppb 0 0 1 0 44 97.78%

It can be seen from Table 2 that the proposed method obtained an ideal performance,
with overall accuracy of 98.22% and 95.56% for the calibration set and prediction set,
respectively. For prediction sets, it is worth mentioning that all uncontaminated samples
were accurately recognized. However, for the 10 ppb group, one sample was mistaken
as uncontaminated (0 ppb) and one was mistaken as 20 ppb. For the 20 ppb group, three
samples were misidentified, which were mistaken as 10, 50, and 100 ppb. For the 50 ppb
group, one sample was mistaken as 20 ppb, one was mistaken as 100 ppb, and two samples
were attributed to 10 ppb. For the 100 ppb group, one sample was mistaken as 20 ppb.
It can be seen that most of the misclassified samples were divided into adjacent groups,
and the difference of AFB1 concentration between the samples of adjacent groups was not
large, which made their spectra very similar, leading to misclassification. In summary, the
recognition accuracy of each group was above 90%, with an average accuracy of 95.56%,
achieving a relatively ideal result.

3.5. Influence of Different Dimensionality Reduction Methods

To compare the performance of PCA, four other dimensionality reduction algorithms,
including independent component analysis (ICA), factor analysis (FA), t-distributed stochas-
tic neighbor embedding (t-SNE), and random projection (RP), were selected. Figure 8a
shows the clustering scatter of the first three PCs of PCA, which proves that the PCA
algorithm has a certain effect. The clustering scatter of the four other, different classifiers,
based on the first three dimensions, are shown in Figure 9.
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It can be seen from Figure 9 that the uncontaminated samples could be well discrimi-
nated from contaminated samples by ICA and FA algorithms, however the samples with
different AFB1 concentrations could not be distinguished. The t-SNE and RP algorithms
achieved poor discrimination performance as all samples were distributed disorderly.
Compared with the clustering performance of PCA, all four dimensionality reduction
algorithms were worse than that of PCA in this study, which was also confirmed by the
classification results of Table 3.

Table 3. Comparison the effect of different dimensionality reduction algorithms.

Pretretment
Classification

Method

Dimensionality
Reduction

Algorithms
Dimensions

Classification Results (*/**)
Accuracy

0 10 20 50 100

SG-FD LDA

PCA 3 45/45 42/45 38/45 37/45 43/45 91.11%
ICA 3 43/45 41/45 31/45 24/45 36/45 77.78%
FA 3 44/45 43/45 35/45 25/45 41/45 83.56%

t-SNE 3 40/45 10/45 13/45 6/45 29/45 43.56%
RP 3 37/45 9/45 15/45 13/45 28/45 45.33%

* represents the number of accurately predicted samples in the prediction set. ** represents the total number of samples in the prediction set.

3.6. Comparison of Different Classifiers on Discrimination Results

To highlight the superiority of LDA classifier in this study, three other classifiers,
including K-nearest neighbors (KNN), Naive Bayes (NB), and Decision Tree (DT), were used
to establish the prediction model based on the same dataset, and then their classifier result
was compared with LDA [37]. The discrimination results of four different classification
models built by four different datasets are shown in Table 4.
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Table 4. Discrimination results of different classification models.

Pretretment Wavelengths or
Dimensions

Number of
Wavelengths or

Dimensions

Accuracy/F1-Score/Kappa

LDA KNN NB DT

SG-FD

Full wavelength 145
94.67%
0.9466
0.9333

69.33%
0.6951
0.6166

80.89%
0.8076
0.7611

91.56%
0.9149
0.8944

PCs 3
91.11%
0.9094
0.8889

66.67%
0.6610
0.5833

72.89%
0.7242
0.6611

74.22%
0.7397
0.6778

Key wavelengths 5
79.56%
0.7912
0.7444

52.89%
0.5260
0.4111

49.33%
0.4942
0.3667

70.22%
0.7053
0.6278

PCs + key
wavelengths 8

95.56%
0.9554
0.9444

74.67%
0.7432
0.6833

80.44%
0.8028
0.7556

82.67%
0.8265
0.7833

Table 4 proves that the classification effect of LDA was better than DT, NB, and
KNN in this study. The combinations of the first three PCs and five key wavelengths for
classification of AFB1 contents of single maize kernel achieved accuracy, F1-score, and
Kappa values of 95.56%, 0.9554, and 0.9444, respectively. The three evaluation parameters
of the proposed method were better than full wavelengths, achieving a good classification
effect of AFB1 contamination of single maize kernel.

3.7. Independent Validation of New Samples

To further verify the effect of this model, 30 new samples in each group were re-
prepared with the same method. The hyperspectral images of samples were preprocessed
in the same way. Under the LDA model, the spectral data of the five key wavelengths and
the first three PCs combinations were used for testing, and the results are shown in Table 5.

Table 5. Test results of independent validation of new samples.

Data Set Real AFB1
Contents

Predicted Results

0 ppb 10 ppb 20 ppb 50 ppb 100 ppb Accuracy Overall
Accuracy

Independent
validation
samples

0 ppb 29 1 0 0 0 96.67%

88.67%
10 ppb 1 27 2 0 0 90.00%
20 ppb 0 2 25 2 1 83.33%
50 ppb 0 1 3 25 1 83.33%

100 ppb 0 0 1 2 27 90.00%

It can be seen from Table 5 that, based on the proposed method, AFB1 concentration
of new validation samples was classified with the desired results, and the test accuracy
of 88.67%, which is slightly lower than that of the prediction set samples due to certain
time intervals between the spectra acquisition time of the new samples and the original
samples, as well as the variability between days and the readjustment of the hyperspectral
acquisition equipment, which may also impact the spectra of samples. This aspect will be
considered in future studies.

4. Discussion

Table 6 shows the results of the comparison between the proposed method and other
researchers’ methods. As shown in Table 6, Tao et al. [11] and Chakraborty et al. [12] used
PLS-DA to select 18 and 12 LVs, respectively, and established a classification model, which
achieved fair classification results. Kimuli et al. [13] selected 12 PCs of PCA to build their
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classification model, which achieved an ideal result. Although the above research results
were ideal, they were all obtained under relatively high data dimension. Chu et al. [9]
retained only 5 PCs, but did not achieve a desired classification effect. Comparatively, this
study achieved desirable results on low-dimensional data (8 dimensional data).

Table 6. Comparison of the results with others.

Methods Wavelength
Range

AFB1
Concentration

Level
Principal Method Dimensions of

Modeling Data
Accuracy of

Prediction Set

Proposed method 1100–2000 nm 0, 10, 20, 50, and
100 ppb

PCA + key
wavelengths

LDA

3PCs + 5 key
wavelengths 95.56% and 88.67%

Tao et al. [11] 410–1070 nm and
1120–2470 nm

0, 10, 20, 50, 100,
500, and 1000 ppb PLS-DA 18 LVs 91.4% and 97.1%

Chakraborty et al.
[12] 400–1000 nm 25, 40, 70, 200, 300,

and 500 ppb PLS-DA 12 LVs 94.7%

Kimuli et al. [13] 400–1000 nm 0, 10, 20, 100, and
500 ppb

PCA
FDA 12 PCs >96%

Chu et al. [9] 1000–2500 nm <20 ppb, 20–100
ppb, and 100 ppb

PCA
SVM 5 PCs 82.50%

Using NIR spectroscopy technology to discriminate the AFB1 concentration of single
maize is still in the exploratory stage. It is difficult to control the content of AFB1 produced
by natural mold, therefore the artificial inoculation of toxin becomes a simple and effective
sample preparation method due to the surface distribution characteristics of AFB1 [38].
Tao et al. [11], Chakraborty et al. [12], and Kimuli et al. [13] also prepared the contaminated
maize kernel samples with the same or similar method as this study.

An ideal result for classification of different AFB1 concentration was obtained based
on the proposed method of this study. Although the established model has achieved
satisfactory results, the success rate for classification of 20 and 50 ppb groups still needs to
be improved. Figure 8a shows that there is an overlapping area between 20 ppb and 50 ppb
groups and their adjacent groups. In addition, Table 1 shows that the average spectral
intensities of 20 ppb and 50 ppb samples were almost the same at three of the five selected
key wavelengths. Therefore, it is not difficult to understand why the classification effects
of these two groups were slightly poor. It can also be analyzed that the overlapping areas
of the other three groups (0, 10, and 100 ppb) in Figure 8a were not as much as those of
20 ppb and 50 ppb, and the spectral intensity difference from the other three groups in the
five key wavelengths was also higher than that of those two. Therefore, the classification
effects of the three groups were better than that 20 ppb and 50 ppb.

PCA has good dimensionality reduction effect. It can be seen from Figure 8 that
the first three PCs contained the main classification information about AFB1 concentrate,
and the classification model was fairly good when only the first three PCs were used for
modeling. However, it does not mean that increasing the number of PCs could improve
the accuracy of classification. In this study, when the number of PCs used for modeling
exceeded three, the classification accuracy almost ceased to improve with the increase of
PCs. Therefore, the first three PCs were selected in this study, which not only retained the
most important classification information, but also made the data dimension as small as
possible. The key wavelength selection method proposed in this study takes into account
both the variance and order of spectral intensity of different groups simultaneously. The
characteristic wavelengths with certain classification ability were combined by limiting a
large number of key wavelengths with repeated features, and reserving a few characteristic
wavelengths with spectral differences of different groups. However, the result yield by
five key wavelengths was not ideal, as the key wavelength was selected according to
the variance of average spectral intensity of between-class, and ignored the difference
of various spectral intensity of within-class. In this study, the key wavelength selection
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method we proposed was combined with PCA to establish an effective classification model.
The test results on the prediction set and independent verification set show that the scheme
in this study is feasible.

5. Conclusions

On the basis of the NIR hyperspectral image in the 1100–2000 nm, with pretreatment
by SG and FD, five key wavelengths were selected by combining variance and order
of spectral intensity, and the data of the first three dimensions were obtained by PCA
dimensionality reduction based on full wavelength. Then, LDA was used to establish
the classification model based on the data of combinations of five key wavelengths and
the first three PCs. The proposed algorithm achieved an ideal result to classify the AFB1
concentrations of maize kernels. Four groups of samples with different AFB1 contents
and a group of control samples were selected for this study; 90 samples of each group
were divided into the calibration set and the prediction set, according to the ratio of 1:1.
The results show that the average test accuracy of AFB1 concentrations of maize kernels
in the prediction set was 95.56%, which is better than the results of full wavelengths and
other dimensionality reduction methods. For independent validation samples, the test
accuracy reached 88.67%. This study has certain reference value for the classification of
AFB1 concentrations of single maize kernels. In the future work, different varieties of
maize kernels and more accurate detection of AFB1 concentration levels will be studied.
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