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Abstract: In the context of fashion/textile innovations towards Industry 4.0, a variety of digital
technologies, such as 3D garment CAD, have been proposed to automate, optimize design and
manufacturing processes in the organizations of involved enterprises and supply chains as well as
services such as marketing and sales. However, the current digital solutions rarely deal with key
elements used in the fashion industry, including professional knowledge, as well as fashion and
functional requirements of the customer and their relations with product technical parameters. Espe-
cially, product design plays an essential role in the whole fashion supply chain and should be paid
more attention to in the process of digitalization and intelligentization of fashion companies. In this
context, we originally developed an interactive fashion and garment design system by systematically
integrating a number of data-driven services of garment design recommendation, 3D virtual garment
fitting visualization, design knowledge base, and design parameters adjustment. This system enables
close interactions between the designer, consumer, and manufacturer around the virtual product
corresponding to each design solution. In this way, the complexity of the product design process can
drastically be reduced by directly integrating the consumer’s perception and professional designer’s
knowledge into the garment computer-aided design (CAD) environment. Furthermore, for a specific
consumer profile, the related computations (design solution recommendation and design parameters
adjustment) are performed by using a number of intelligent algorithms (BIRCH, adaptive Random
Forest algorithms, and association mining) and matching with a formalized design knowledge
base. The proposed interactive design system has been implemented and then exposed through the
REST API, for designing garments meeting the consumer’s personalized fashion requirements by
repeatedly running the cycle of design recommendation—virtual garment fitting—online evaluation
of designer and consumer—design parameters adjustment—design knowledge base creation, and
updating. The effectiveness of the proposed system has been validated through a business case of
personalized men’s shirt design.

Keywords: fashion design recommendation; 3D virtual garment fitting; design knowledge base;
intelligent algorithms

1. Introduction

Industry 4.0 includes the Internet of Things, Smart Manufacturing, Cloud-based man-
ufacturing and strictly follows the continuous integration of human in the manufacturing
process to gain the continuous improvement [1]. Industry 4.0’s implementation in the
fashion industry has given the rise to the advanced digital solution acceptance to automate
the various activities of fashion supply chain at different levels. In previous few years, the
fashion industry has witnessed an explosion in the number of digital solutions to build
more personalized solutions. The big brands like Decathlon, Nike, and Adidas are using
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the innovative 3D virtual reality-based solutions for providing the highly customized
garments. The research based on consumer survey done by Deloitte shows that customers
are more likely to pay a high amount to get a more personalized experience for garment
and accessories; price is not a barrier for them [2]. Further, following the literature of fash-
ion recommendation system, the author has proposed and tested the Semantic Attribute
Explainable Recommender Systems where this semantic-based system not only provide
cloth recommendation to users, but also builds understanding about the various semantic
attributes of the garment and the reason of specific semantic attribute [3]. “The state of
fashion 2019”, Mckinsey’s survey report with US and EU purchasing managers, shows that
54% of participants mentioned that the proximity to consumer is becoming more important
and 22% mentioned it will become more important in coming years [4]. Other fashion
recommendation models, which are based on the traditional recommendation filtering
techniques. These techniques are as follows:

• Content-based filtering (CBF): The CBF technique parses an item’s description set
to analyze the user’s profile by matching the mentioned description set into their
profile. Previously, authors have developed the clothing recommendation model by
analyzing the content based image and fashion keyword library for providing best
out of garment knowledge base [5–7].

• Collaborative filtering (CF): Recommendations are usually generated by evaluating
previous feedback so that set of similar users and items can be identified. Authors
have applied the CF filtering technique to build fashion awareness personalized
ranking function by evaluating user’s feedback [8,9]. Another system where an author
presented the visually-aware recommendation system based on the implicit feedback
and visual signals in the system like product images is linked to the recommendation
task to improve the system by providing the matching styles of garments [10].

• Hybrid filtering (HF): Two or more filtering techniques are utilized to combine their
benefits. The HF technique has been widely used in e-shopping platforms. Further-
more, HF resolves the well-known problem of cold-start, content over specialization
of collaborative, and content-based filtering systems [11,12]. Further, in the literature,
an advanced hybrid recommendation system where the authors of [13] presented
a Dual hybrid recommendation systems that involved user ratings and user/item
features being combined to generate the recommendation.

• Social media-based recommendation system: In addition to the traditional filtering
techniques, social media-based recommendation systems have been developed by
tracking the user’s implicit interaction over the social media platforms. Authors have
mentioned in the literature that such systems bind the social networking activities
with the user’s historical data and generates more accurate, trending, and useful
suggestions [14,15]. Previous research work has clearly shown the integration of simi-
lar social media activities of users have the similar tendency to choose the items [16]
and such system helps to track down the wearing habits of community .

• Design-oriented recommendation system: The existing literature has also shown
many fashion design-oriented personalized recommendation systems. The authors
of [17] developed a system to create the apparel item set by evaluating the attribute
coordination of a different set of apparels based on a knowledge base using the
Takagi–Sugeno fuzzy neural network (TSFNN), solving an inevitable decision-making
problem. Another system used a interactive genetic algorithm-based design model to
give functionality to the users to sketch their apparel with a user-friendly interface,
enhancing the ease of designing own clothes without dealing with the garment
pattern’s complicated parameters [18].

As per the literature of fashion recommendation systems, we rarely found a system
considering below mentioned issues to build the system. These points are as follows:

1. The current designing tools or digital platforms are usually separated from each other
because of their separate user base, i.e., some digital tools, like 3D computer-aided
design (CAD), are only for designers and web-based design tools are for garment
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buyers. A lack of integration between these user bases hinders the efficiency of these
tools in the whole design and manufacturing processes.

2. Being a traditional industrial sector, much professional knowledge related to fashion
products like technicality behind the design of product, designer’s experience, and
perception plays a key role in fashion industry. However, this knowledge is rarely
involved in the current computational tools where the garment buyer is the common
user base.

3. The relationship between different factors, especially between human perception on
the finished product and technical parameters, is usually complex and cannot be
mastered easily.

The proposed data-driven interactive design system brings four original contributions
in comparison with the existing literature:

1. User (garment buyers) knowledge base integration with a design knowledge base
(professional designer’s activity).

2. 3D ease knowledge base integration with 3D CAD tool using the proposed service architecture.
3. Adjustment of proposed design solution based on the feedback from 3D garment

fitting evaluation, in order to generate personalized design solution.
4. Existing fashion recommendation systems where most of the solutions work with

either the design elements, fitting, or ease preferences according to the garment buyers
or professional designers, the proposed system originally combines these three factors
of garment design process (design elements, fitting, and ease) preferences according
to the professional designers as well as garment buyers’ point of view. This system
easily enables more complete design solution where garment buyers and designers
can easily evaluate the product and their preferences can be saved into system.

The general principles of the proposed recommendation service can be applied to all
kinds of garments. The proposed service specifically targets the online garment configura-
tor of the men’s formal made-to-measure shirt knowledge base, where recommendations
and suggestion are generated based on the similar biometric profile. It will create a profes-
sional designer’s knowledge base in order to help the designer to design the most relevant
customized garment according to the consumer’s biometric data describing his/her body
shape and desired garment fashion style selected. In the related computational models, the
techniques of incremental machine learning, including BIRCH (), incremental clustering,
and Adaptive random forest classifier, have been used to produce the best real-time rec-
ommendations. The proposed system architecture has been followed to build data-driven
interactive design system. A complete proposed service architecture can be seen in Figure 1.
Section 2 gives an overview of the design knowledge base creation steps with the help of
Figure 2, where a web-based garment configurator has been used to acquire the relevant
data of shirt customization, the biometric profile, customized attribute, and a detailed view
of the data-driven service architecture. Section 3 gives an detailed description of each
step’s input and output. Section 4 describes the modeling of the data-driven service using
data mining algorithms, incremental clustering, incremental classification, association
mining, and the radial basis function approximation method. Section 5 presents the service
architecture validation, and Section 6 presents the conclusion.
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Figure 1. Data-driven service architecture.

Figure 2. The structure of the proposed garment knowledge base.
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2. Garment Design Knowledge Base Creation

Garment design knowledge base creation includes the following dataset:

1. Consumer profile dataset (biometric parameters related to customized garment, fash-
ion requirements, and garment configurator data related to garment types to be
selected by consumers).

2. Garment design process dataset (garment patterns, parameters of real and virtual (dig-
ital) fabrics with various colors, 3D human models adapted to the target population,
and pattern adjustment parameters).

Consumer profile data and the predefined design attributes of garments(men’s formal
shirts) have been collected from an online e-shopping platform. The 3D CAD tool has
been utilized to collect the data associated with the designer’s activity of the customized
garment creation process. Then, the association rules over the collected data generated by
exploiting the relations between consumer data and data on design attributes of shirt like
the fabric collar, cuff, etc., so that the best combination of garment design elements with
higher confidence level can be determined as insight for the garment buyers as well as the
designers. The structure of the proposed garment knowledge base is shown in Figure 2.

3. Flow Chart of Proposed Data-Driven Interactive Design System Architecture

The proposed system (see Figure 3) aims at recommending the most relevant gar-
ment design solution for the specific morphology by supplying the biometric parameters
(weight, height, collar size), and these attributes are denoted as W, H, and C, respectively,
in Figure 3. The number of biometric parameters strongly depends on the type of garment
and the customized design elements provided by the fashion e-shopping platform. The
attribute collection for men’s formal shirts is limited to the data provided by the fashion
company. The proposed interactive design system has been composed of five operational
modules, which results (influenced by body shape group, garment fitting style, design
attribute-based rules, fabric parameters, and ease allowance) in prediction and finally
constitutes together to give the final design solution. The following points give the brief of
these operational modules:

1. Prediction of most relevant body shape group based on the user’s biometric profile.
The similarity was found using the incremental clustering BIRCH algorithm.

2. Prediction of the most relevant garment fitting style adapted to the identified human
model, which is related to body measurements. Incremental classification model
trained using adaptive random forest classifier to get the prediction.

3. Identification of the most relevant garment style attribute combinations by filtering
the association rules knowledge base. The association rule knowledge base has been
created using the FP-growth algorithm.

4. Identification of the most relevant fabric by finding the similarity between the drape
image profile of real fabric and existing virtual fabric library, which is associated
with the 3D CAD tool and Kd-tree algorithm has been utilized to find the nearest
fabric from the existing knowledge base. This module will help to build insight in
advance for manufactures and designers to judge new fabric’s performance based on
its similarity with the existing similar fabric’s performance.

5. Radial basis function neural network (RBFNN) has been utilized to build the 3D
ease prediction model, which is trained over the body measurements, shirt pattern
measurements, and fabric mechanical properties. This module will help the new
designers to recreate the new shirt pattern.
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Figure 3. The flow chart of the data-driven interactive design system.
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4. Modeling of Data-Driven Interactive Design System

The model building process divided in five consecutive steps to establish the proposed
system architecture. All steps have been shown in Figure 1. This section provides the
detailed description of data mining techniques (clustering, classification, and association
mining) and radial basis function approximation method to build the prediction model.

4.1. First Step: Prediction Model to Find Most Relevant Biometric Profile
4.1.1. Balanced Iterative Reducing and Clustering Using Hierarchies Clustering Theory

BIRCH stands for Balanced Iterative Reducing and Clustering using Hierarchies.
BIRCH is an unsupervised hierarchical clustering data mining algorithm. The BIRCH
algorithm usually applied to build dynamic and incremental clustering model and works
on multidimensional metric data points; it handles a large data set with superior time
complexity and space efficiency [19]. The BIRCH clustering algorithm consists two steps to
extract clusters from data:

• Build the CF Tree: The first step is building the CF Tree and loading data into a cluster
feature tree (CF Tree). The CF Tree represents or keeps data in a compressed form in
memory. The BIRCH algorithm becomes highly efficient by using summary statistics
for minimizing large data sets. The CF Tree is built with CFs and each CF is composed
of three summary statistics [19]:

– The N represents the number of data points in the cluster
{−→

Xi

}
where i = 1, 2, .., N.

– The linear sum is the sum of individual data points and helps to measure the

location of the cluster where
{−→

Xi

}
is a cluster.

−→
LS =

N

∑
i=1

−→
Xi (1)

– The squared sum is the sum of squared data points and helps to measure the

spread of the cluster, where
{−→

Xi

}
is a cluster.

SS =
N

∑
i=1

(
−→
Xi )

2 (2)

A cluster feature tree is a tree structure composed of CFs. A CF tree represents a
compressed form of data, preserving any structure in the data. A CF tree has the
following parameters:

– Branching Factor B. It determines the maximum children allowed for a non-leaf node.
– Threshold. It gives the upper limit to the radius of a cluster in a leaf node.
– Number of Entities in a leaf Node L.

• Global Clustering: The second step is clustering the sub-clusters. After the creation of
the CF Tree, the existing clustering algorithm on the CF Tree Leaf nodes(sub-clusters)
is applied to combine sub-cluster into clusters.

4.1.2. Building Prediction Model by Applying BIRCH Incremental Clustering Algorithm

The customized men’s shirt order dataset contains 5291 records, which includes both
males and females. The order dataset has 4898 records for customized men’s shirts and
393 women’s shirts data. Therefore, in total 4898 records have been utilized to train the
model. In this step, we trained an unsupervised incremental clustering model, permitting
a biometric profile corresponding to the chosen customized garment (men’s shirt) to be
classified according to the user biometric profile. First, we acquired the data from fashion
e-shopping digital platform, which are specifically dedicated for men’s customized shirt. A
three-dimensional input vector (height, weight, collar size) was extracted from the user’s
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biometric profile data. The implementation steps of the birch algorithm using the men’s
shirt dataset are as follows:

• First, selection of the appropriate threshold T value, where T is the upper limit to
the radius of BIRCH cluster in a leaf node and radius is obtained by merging the
new samples.

• The best value for threshold T has been selected based on the initial collected data and
analyzing the silhouette score.

• Figure 4 shows silhouette score for choosing the best threshold value to setup initial
model and to find the cluster of biometric profiles. silhouette score value ranges
between (−1,1).

• The silhouette score was calculated to evaluate the cluster’s formation corresponding
to threshold value. In Figure 4, it can be clearly seen that threshold value 1.7 predicts 2
cluster with maximum silhouette score 0.3846 which indicates better cluster formation.
Therefore, threshold value 1.7 has chosen to set up biometric profile prediction model.

• The BIRCH model created a total of two clusters from the initial dataset corresponding
to the threshold value 1.7, and its formation and total record count are shown in
Figure 5 and Table 1, respectively.

Table 1. Detailed description of clustered data.

Fit Cluster_0 Cluster_1

Super Slim Fit 1112 136
Comfort fit 357 770
Regular 1752 771
Total 3221 1677

4.2. Second Step: Prediction Model to Find Most Relevant Fitting Style
4.2.1. Adaptive Random Forest (ARF) Classification

Adaptive random forest (ARF) classifier is a streaming classifier. ARF is an updated
version of random forest classifier. ARF classifier has been utilized well to build the
classification model over streaming data. Also, to build real time data mining classifier
model. Contrarily traditional random forest classifier needs to be retrained fully by merging
new set of data to the existing dataset or just override the previously trained version with
new one. Previous research work has shown the significant use of ARF classifier, which is
described as follows [20]:

• Random forest classifier requires multiple passes over input data and it becomes
infeasible if classifier is handling streaming data.

• Random forest to streaming data application requires an online bootstrap aggregating
process; and limiting each leaf split decision to a subset of feature.

• ARF uses the drift detection method to cope with evolving data stream.
• Once the drift is detected ARF uses a threshold value to detect the warning and

resultant create a background tree that a trained along the ensemble without affecting
the existing ensemble’s prediction. Drift detection raises warning signal, which then
replaces the respective background tree.

• In ARF votes are weighted using the test then train accuracy method.
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Figure 4. Cluster evaluation corresponding to different threshold.

Figure 5. Cluster formation with silhouette score 0.3846.
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4.2.2. Building Shirt Fitting Style Prediction Model

In the previous step, we segregated the user’s profile by using the biometric param-
eters as per the collected data. Further, in step 2, N ARF classifier models were trained
where N is the number of clusters found in step 1. The existing dataset was separated
into two clusters by applying the unsupervised BIRCH clustering algorithm. This model
has been used to find the most relevant fitting style to a specific biometric profile of cus-
tomized garment; here, men’s formal shirt has been taken as a customized garment. First,
we set up the ARF classifier by supplying input vector [X, Y] where X consist of three
biometric parameters (height, weight, collar size) and Y contains fitting type (Super Slim
Fit, Comfort fit, Regular). Table 1 shows the three different types of fitting style with its
count value. Second, we performed an interleaved test, then trained the method to evaluate
the ARF classification model [21]. The incremental classification prediction model cannot
be evaluated by applying cross-validation measures, unlike the static and batch learning
classification. The prequential evaluation is sequential analysis where the sample size is
not fixed initially and the model is evaluated as new data is collected. The prequential
evaluation first uses each instance to test the model and then train the model. Table 2
shows the mean performance using accuracy and kappa score measures for individual
classifiers trained over sub-datasets processed in step 1. The kappa score ranges between
1 and −1, where 1 implies perfect agreement and values less than 1 indicates less than
perfect agreement [22].

Table 2. Prequential evaluation of online adaptive random forest (ARF) classifier.

Mean Performance Cluster 1 Cluster 2

arf—Accuracy 0.7298 0.7773
arf—Kappa 0.4405 0.587

4.3. Third Step: Prediction for Most Relevant Fitting Style Rules

The online garment configuration tool on the e-shopping platform gives each and
every attribute of the garment and helps the buyer to make their own version of garment.
Therefore, here a question arises as to how the designer can know the buyer’s preferences
and the pattern of selecting style attributes. It is necessary to explore the relationship
between the styling attributes and the buyer’s styling attribute selection behaviour as well
as getting the right product at the right time. Inevitably, profitability of the business can be
raised by making the satisfactory product on time for consumers [23]. In this step, model
builds the best combination of customized shirt attributes for the predicted fitting style.
Set of attributes for a specific fitting style (Super Slim Fit, Comfort fit, Regular) calculated
in this step applying association mining algorithm.

4.3.1. Association Mining

Association rule mining is a data mining technique that is used to study attributes or
characteristics that are associated. Traditionally, association rule mining algorithms extracts
the frequent feature or item sets. It uncovers the rules to measure the relationship between
two or more attributes. This module works in two stages to process the data:

1. Finding frequent attribute sets in data within the range of a defined support count value.
2. Using the frequent item sets to generate the association rules. Only frequent attribute

sets that fulfill the minimum threshold value are used to generate the association rules.
3. Then, filtering the rules based on the threshold value assigned for support, confidence,

and lift.

Let I =
{

i1, i2, i3, ...., id
}

be the set of all features of customized garment dataset and
T =

{
t1, t2, t3, ...., tN

}
, where each transaction ti contains subset of features chosen from

I. Let A,B be sets of items; an association rule is a derivation of the form A ⇒ B , where
A ⊂ I , B ⊂ I, and where A and B are disjoint itemsets, that is , A∩ B = ∅. The strength of
extracted rules can be measured by calculating the support and confidence [24]:
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• Support (s) determines how often rule is applicable to a given dataset.

s = P(A ∩ B) (3)

• Confidence (c) of the association rule A⇒ B is the measure of accuracy of rule, which is
determined as the percentage of transaction in dataset containing A that also contains B.

c = P(B|A) =
P(A ∩ B)

P(A)
(4)

• Lift (l) computes the ratio between the rule’s confidence and the support of the itemsets
in the rule consequent [25].

l =
P(A ∩ B)
P(A)P(B)

(5)

The authors of [25] have interpreted the lift measure as follows:

Li f t =


= 1 if A and B are independent;
> 1 if A and B are positively correlated
< 1 if A and B are negatively correlated

(6)

4.3.2. Implementation of Association Rule Mining to Extract Rules for Shirt Feature Sets

• Frequent item set generation process finds all item sets which satisfy the minimum
support threshold value.

• The proposed system generates n tables for each cluster. Let proposed system receives
different fitting type element f1, f2, f3, ..., fs with repetition. Let d be the number of dis-
tinct elements namely d = |{ f1, f2, f3, ..., fs}| , and let these elements be {g1, g2, ..., gn}.
Finally, let cj be the count of gj .Thus ∑n

i=1 ci represents total number of frequent
pattern set tables generated by step 3. Similarly, in continuation, a similar number
of table schema corresponding to each frequent pattern in the relational database
management system are created via a service.

• From the frequent item sets generated in previous step, the rule generation step
extracts the rules satisfying minimum support and confidence condition.

To generate frequent item sets from the transaction database, we have used the FP-
growth algorithm. The FP-growth algorithm has been used successfully in large transaction
database, because of the use of compact data structure FP-tree to get frequent item sets
efficiently and quickly without generating the candidate sets explicitly unlike an a priori
algorithm [26]. The following steps have been followed to generate the frequent feature
sets of the customized shirts transaction database.

1. Create frequent item sets by applying FP-growth to the shirt’s feature dataset with
minimum support value 0.1 to cover most of the features in item sets.

2. Read data from database D, which contains all the records of shirt’s feature transaction
data. Corresponding to each fitting type (Comfort Fit, Regular, Super slim fit), which
is considered as labels for the classification model let C contains distinct class; the
FP-growth algorithm is applied to get the frequent item set corresponding to each
fitting class.

3. Using the frequent item sets, the system generates association rules satisfying the
minimum support and minimum confidence (0.8) conditions.

4. Tables 3 and 4 show the statistics for each fitting class rules collection in cluster 1 and
cluster 2.

5. Rules extracted from database by matching the fabric name in antecedents to get the
best shirt feature combination.

6. Association rule’s A ⇒ B usefulness and positive correlation has been measured
using lift l, where l>1, which indicates positive correlation between the antecedent and
consequent item or feature set.
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7. For a sample case, cluster 1 has been predicted for input vector weight, height, collarsize,
let these elements be w = 80, h = 190, c = 42, cluster 1 has been predicted for the given
input vector and step 2 has predicted fitting type Regular, and step 3 has read data
from association rules table for regular fitting. Table 4 shows the count of association
rule table corresponding to each available fitting type in the system. Corresponding
to regular fitting as it has been predicted in step 2 there has been 39 rules filtered from
the knowledge base, which are then further used to build the best shirt feature combi-
nation for regular fitting. Then, the rules are further filtered by matching antecedents
with a specific shirt feature. Let us say, the rules related to cuff extracted to know,
which other feature of shirt “goes together”, like collar style, fabric type, and Collar
white. Furthermore, evaluation metric confidence and lift utilized to get the strongest
rules for the prediction, and only rules with confidence value greater than 0.80 and
lift value greater than 1 considered. Matching rules for cuff are shown in Table 5.

8. computational time for the complete step starting from the finding the suitable group
for user as per his biometric profile then most relevant fitting style and then the
combination of styling attribute combination for the predicted fitting style from the
association rules is 558 ms per request.

Table 3. Frequent item set statistic for each fitting class.

Cluster 1

Fitting type FrequentItemset count support

ComfortFit 16 10–87%

Regular 58 10–100%

SuperSlimFit 15 10–92%

Cluster 2

ComfortFit 23 10–89%

Regular 58 10–100%

SuperSlimFit 19 10–89%

Table 4. Association rules statistic corresponding to each fitting class.

Cluster 1

Fitting type Number of Rules count support confidence

ComfortFit 5 11–46% 91–97%

Regular 39 11–50% 87–100%

SuperSlimFit 4 10–42% 93–96%

Cluster 2

ComfortFit 7 10–27% 89–95%

Regular 35 12–35% 80–100%

SuperSlimFit 5 11–23% 90–100%

4.4. Fourth Step: Acquisition of Real Fabric Data and Knowledge Base Integration

In the literature of CAD clothing design tools, the fabric drape has been considered as
an essential and key parameter, and previous research work has shown that mechanical
properties are highly correlated to the drape of the fabric [27]. If garment and fabric
simulations are closer to the realistic version of garment and fabric, then this digital
information can help fabric and garment manufacturers to take an adequate action before
actual production. It has also been noticed in the literature that similar size garments
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with similar styles made from different fabrics have shown easy variations [28]. Correct
drape measures and detailed description for the virtual clothing makes it possible for
designers that how good a garment will look on the avatar. Furthermore, drape is a great
indicator to know the garment conformity and body contour. Therefore, the proposed
system has used a 3D CAD tool to build the virtual fabric knowledge base by collecting
parametric information of complex fabric simulation structure. In the literature, different
fabrics were compared using their mechanical properties and how these properties affect
the fabric drape stiffness, garment ease, and fit of the virtual garment [29]. Consequently, to
build collaborated garment design knowledge base virtual fabric’s and real fabric’s drape
image profile created and analyzed by comparing the drape contour of fabric. Therefore,
the existing insights for similar drape fabric can be used for the new fabric at designing
phase of the virtual garment. Thus, to achieve the integrated solution for designers and
consumers, fabric drape data need to be considered as an essential part. Moreover, although
existing CAD tools for virtual garment creation process contain a huge library for virtual
fabrics of different types, we have used the fabric drape image analysis process to utilize
the correlation between the fabric drape and its technical parameters in order to find the
existing virtual fabric from the database, which can be compared to the real fabric based on
the drape image profile. The following parameters have been considered as per the fabric
drape image profile literature:

• Amplitude (A) is half the difference between maximum and minimum radii. It gives
the depth of the drape profile with respect to the radius of draped fabric image [30]:
AA in below equation represents average amplitude

AA =
1
n

n

∑
i=1

pi − vi
2

(7)

where pi is the maximum radius of the draped fabric image profile, v1 is the minimum
radius of the draped fabric image profile.

• Average distance: average distance from zero or mean of contour

AD =
1
n

n

∑
i=1

pi + vi
2

(8)

• maximum peak: pmax is the maximum radius of peak from center.
• maximum valley: vmax is the maximum radius of valley from center.
• N is the number of peaks in the draped shadow.

In this step, the real drape contour image integrated to the virtual fabric library by
creating the drape profile using polar coordinate technique. The polar coordinate method
has been used widely and successfully to analyze fabric drape in a low-stress mechanical
way. Integration of the virtual fabric knowledge base could help the designers; therefore,
new real fabric integration into the knowledge base and finding fabric with similar drape
can be utilized to draw the insight for new fabric before starting the production process.
The proposed data-driven service can be used by designers and technologists to get insights
of new fabric by correlating with existing fabrics and garment fitting style knowledge base.

The following steps have been followed for building the virtual fabric knowledge base
using fabric drape image as follows:

• The Drape profile for each virtual fabric was created using the polar coordinate
technique and extracted parametric information was added to the knowledge base;
similarly, for the real fabric drape image profile and respective parameters added,
average amplitude, average distance, maximum peak, minimum valley, and number
of nodes of drape contour image.

• The system builds insights for new fabric from the existing virtual fabric knowledge
base. Unsupervised kd-tree algorithm was trained over the fabric image profile
parameters to get the nearest fabrics from the system.
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4.5. Fifth Step: Acquisition of 3D Ease Allowance Parametric Information

Further, in this section, literature related to the garment ease and its automation
process is presented and followed to build the prediction model to predict the 3D ease
value of key body parts. We found various studies for the garment ease calculation process
for virtual garment to speed up the garment making process. One paper proposed a
methodology to define, quantify, and control the ease allowance in the 3D virtual CAD tool
by defining a template of 3D ease allowance for personalized garments [31]. However, it has
been mentioned in the proposed study that to achieve the baseline template to automate the
ease allowance, the whole process of garment design needs to repeated. Therefore, that the
ease allowance template using consumer morphology can be achieved, and then once it is
achieved it can be automatically utilized for the garment customization in the 3D CAD tool
environment [31]. Another smart and efficient pattern making technique introduced by the
author, where the proposed method has been proved robust and well suited for loose and
tight-fitting garments, also collectively considered garment ease allowance, fabric elasticity,
and draping to propose a versatile pattern making approach in a 3D environment [32].
In the literature, a method of reconstructing 3D individual body shape for a skirt in a
computerized pattern making system has been proposed where the author has created
unique body shape by utilizing ease allowance values for pattern making [33]. In the
literature mentioned above, we found that advanced 3D CAD tools always require an
expert’s knowledge, activity, and supervision to achieve the best solution by doing the
repetitive action. In this context, we have worked to automate the process of getting the
ease value for the garment using the radial basis function approximation method. The
proposed 3D ease prediction model effectively can reduce the professional designer’s
intervention and can help the new designers to learn from the established prediction
model based on the professional designer’s activity. Proposed automated process of ease
allowance prediction model based on the past action of professional designers. So that
the garment pattern making process could become easier and quick for the new designers.
Furthermore, the fabric insights based on the ease value can be generated for better choice
of fabric.

4.5.1. General Scheme

The general scheme of 3D ease allowance prediction model is created based on the
Figure 6 and used radial basis function neural network(RBFNN) architecture to build
prediction model. Following steps to build the 3D ease prediction model are as follows:

• A 3D garment ease prediction model has been developed using the RBFNN model.
First input set to the model is key body parts (across back, across front, bust, waist,
pelvis) of 3D avatar extracted from the lectra 3D CAD tool have been used, second
input set to the model is garment measurement corresponding to each key body part
of the actual garment, the third input set is the mechanical properties of fabric, and
the output set contains ease allowance data corresponding to key body parts (across
back, across front, bust, waist, pelvis).

• The proposed model tested and validated by splitting the initial data set into two
subsets: First subset of data have been used to train RBFNN, second subset of data
have been used to validate the trained model to evaluate the generalization ability
of model.
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Table 5. Association rules for shirt feature cuff.

Id Antecedent Consequent Confidence Lift

1 {’Square 2 Buttons _cuff’} {’Classic Point _collar’} 0.875 3.44
2 {’Square 2 Buttons _cuff’, ’15_735.2BENGO2_20_fabric’} {’Classic Point _collar’} 0.875 3.44
3 {’Square 2 Buttons _cuff’} {’Classic Point _collar’, ’15_735.2BENGO2_20_fabric’} 0.875 3.44
4 {’Italian Semi-Spread_collar’, ’Round Single_cuff’} {’n_collarwhite’} 1 1.072
5 {’Italian Semi-Spread_collar’, ’15_735.2BENGO2_20_fabric’, ’Round Single_cuff’} {’n_collarwhite’} 1 1.072
6 {’Italian Semi-Spread_collar’, ’Round Single_cuff’} {’n_collarwhite’, ’15_735.2BENGO2_20_fabric’} 1 1.072
7 {’Hai Cutaway_collar’, ’Round Single_cuff’} {’n_collarwhite’} 1 1.072
8 {’Hai Cutaway_collar’, ’15_735.2BENGO2_20_fabric’, ’Round Single_cuff’} {’n_collarwhite’} 1 1.072
9 {’Hai Cutaway_collar’, ’Round Single_cuff’} {’n_collarwhite’, ’15_735.2BENGO2_20_fabric’} 1 1.072
10 {’Classic Point _collar’, ’Round Single_cuff’} {’n_collarwhite’} 1 1.072
11 {’Classic Point _collar’, ’15_735.2BENGO2_20_fabric’, ’Round Single_cuff’} {’n_collarwhite’} 1 1.072
12 {’Classic Point _collar’, ’Round Single_cuff’} {’n_collarwhite’, ’15_735.2BENGO2_20_fabric’} 1 1.072
13 {’Double inc. Cufflinks_cuff’} {’n_collarwhite’} 1 1.072
14 {’Double inc. Cufflinks_cuff’, ’15_735.2BENGO2_20_fabric’} {’n_collarwhite’} 1 1.072
15 {’Double inc. Cufflinks_cuff’} {’n_collarwhite’, ’15_735.2BENGO2_20_fabric’} 1 1.072
16 {’Round Single_cuff’} {’n_collarwhite’} 0.9677 1.038
17 {’15_735.2BENGO2_20_fabric’, ’Round Single_cuff’} {’n_collarwhite’} 0.967 1.038
18 {’Round Single_cuff’} {’n_collarwhite’, ’15_735.2BENGO2_20_fabric’} 0.967 1.038
19 {’Classic Point_collar’, ’Round Single_cuff’} {’n_collarwhite’} 0.95 1.023
20 {’Double inc. Cufflinks_cuff’} {’n_collarwhite’} 0.94 1.014
21 {’Round Single_cuff’} {’n_collarwhite’} 0.93 1.00
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Figure 6. Architecture of ease prediction model.

4.5.2. Learning Data Acquisition

Steps to build the knowledge base for digital garment creation process is as follows.

• Step 1: Eight different body measurements were considered to construct 3D man-
nequins using 3D lectra CAD tool and the key body parts measurements are collected
and shown in Table 6.

• Step 2: Standard men’s shirt size chart shown in Table 7 has been utilized to construct
the shirt pattern for the 3D mannequins constructed in step 1.

• Step 3: Each shirt pattern then further utilized to create the virtual shirt for the 3D
avatar constructed in step 1 and the final shirt garment measurement data obtained as
shown in Table 8.

• Step 4: Each and every virtual shirt created in 3D tool lectra then further tested
against the five different fabrics with different fiber compositions and its mechanical
properties. Detailed description of chosen fabric has displayed in Tables 9–11.

• Step 5: After the construction of virtual shirts ease data collected for key body parts
of shirt (across back, across front, bust, waist, and pelvis). Each key body part’s five
ease values obtained corresponding to 5 chosen fabrics to see the influence of fabric
on the garment ease.

• Step 6: All the 8 human body measurements, 8 different shirt sizes, and 5 fabrics with
different fiber composition are utilized to evaluate the 3D ease of virtual shirt. This
experiment resulted to 320 records to make the knowledge base, obtained records
then further utilized to implement 3D ease non linear functional approximation
prediction model.

Table 6. 3D Mannequins key body part’s measurement data for virtual shirt.

3D Mannequin’s Key Body Measurement for Shirt

No Across Back Across Front Bust Waist Pelvis

1 34.71 37.04 86.98 87.98 73.89
2 35.71 38.11 90.99 91.87 78
3 36.73 39.85 95 95.96 82.01
4 37.75 40.3 99.01 99.99 86.02
5 38.86 41.49 103 104 90.04
6 39.29 41.95 107 107.83 94
7 40.67 43.42 110.99 111.41 98.01
8 41.47 44.29 114.97 115 102.21
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Table 7. Standard men’s shirt size chart.

Id Size Size Unit Length Breat Girth Sleeve Length Sleeve Opening

1 38 cm 62.00 82.00 63.00 16.00
2 40 cm 64.00 86.00 64.00 17.20
3 42 cm 66.00 90.00 65.00 18.40
4 44 cm 68.00 94.00 66.00 19.60
5 46 cm 70.00 98.00 67.00 20.80
6 48 cm 72.00 102.00 68.00 22.00
7 50 cm 74.00 106.00 69.00 23.20
8 52 cm 76.00 110.00 70.00 24.40

Table 8. Pattern measurement for key body part’s of shirt.

Key Body Parts Pattern Measurements for Shirt

Across Back Across Front Bust Waist Pelvis Size

44.33 44.69 91.89 103.88 104.49 38
44.93 46.03 96.54 107.6 109.12 40
46 47.46 96.47 111.29 112.39 42
47.11 48.09 98.31 115.07 116.27 44
48.36 49.53 100.12 118.82 120.42 46
49.48 50.65 102.02 122.87 122.96 48
50.71 51.49 104.4 126.2 127.16 50
52.09 52.59 107.78 130.53 131.09 52

4.5.3. Learning Data Formalization

Steps to train the prediction model has been formalized as follows: Let F = { f1, f2, ..... fn}
where n = 5 are involved fabric set. Let FjP = { f j p1, f j p2, ..... f j pm}, where m = 15 and f j pm is the
mthmechanical property of fabric f j where f j(jε{1, 2..., n}). Let P = {p1, p2, ..., pn}, where n = 8
be a set of male body measurements involved. Let PiBPM = {pibpm1, pibpm2, ..., pibpmq},
where q = 5 is the involved key body parts measurement set and values are extracted from 3D
avatar of pi where pi(iε{1, 2..., n}). Let PiBPGM = {pibpgm1, pibpgm2, ..., pibpgmq}, where q = 5
is the vector of involved key body parts garment measurements extracted from 3D virtual garment
of pi where pi(iε{1, 2..., n}). Let PiE = {pie1, pie2, ..., pieq}, where q = 5 is vector of involved key
body parts to measure the ease allowance for ith person P pi where pi(iε{1, 2..., n}).

Table 9. Fabric data with mechanical properties.

Id W C TH BR1 BR2 TREMT1 TREMT2 TRLT1

1 95.00 100% Cotton 0.05 5.89 3.56 2.85 6.27 0.76
2 288.00 100% Wool 0.07 17.66 11.77 5.80 3.94 0.69
3 32.00 100% Silk 0.05 0.74 0.34 4.35 16.70 0.80
4 342.00 100% Cotton 0.05 34.64 21.46 9.23 5.18 0.69
5 192.00 94% Cotton 5% Polymid 1% Elasthane 0.06 9.93 8.71 4.73 27.23 0.65

Table 10. Continuation of Table 9.

Id TRLT2 TRWT1 TRWT2 SRG1 SRG2 SRT1 SRT2

1 0.67 5.30 10.35 0.81 0.81 14.72 14.72
2 0.70 9.76 6.77 1.72 1.53 14.72 14.72
3 0.81 0.85 3.33 0.17 0.17 9.81 9.81
4 0.66 15.65 8.39 3.37 3.01 49.05 49.05
5 0.53 7.51 36.94 1.84 1.35 15.00 15.00
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Table 11. Fabric properties description table for Tables 9 and 10.

Abbreviation Description Abbreviation Description

W Weight TR
LT2 TensileResistanceLTWeft

C Composition TR
WT1 TensileResistanceWTWarp

Th Thickness (unit cm) TR
WT2 TensileResistanceWTWeft

BR1 BendingResistanceWarp SR
G1 ShearingResistanceGWarp

BR2 BendingResistanceWeft SR
G2 ShearingResistanceGWeft

TR
EMT1 TensileResistanceEMTWarp SR

T1 ShearingResistanceTWarp

TR
EMT2 TensileResistanceEMTWeft SR

T2 ShearingResistanceTWeft

TR
LT1 TensileResistanceLTWarp

4.5.4. Implementation of Radial Basis Function Neural Network

The radial basis function neural network (RBFNN) is a feedforward neural network
model with proven universal approximation ability with no local minima problem [34].
RBFNN is a neural network that uses radial basis functions as activation functions. The
RBFNN architecture contains three layered feedforward neural network [35,36]. The first
layer of the RBFNN receives input and distributes the input signal to hidden layer and
neuron in the input layer, which corresponds to each predictor variable; it has a second
layer which has a hidden layer and uses radial basic function functions; the means in each
neuron in the hidden layer consist of a radial basic function like Gaussian function at the
end finally third layer makes the output layer and has a weighted sum of outputs from the
hidden layer. Figure 7 shows general architecture of radial basis function neural network.
The activation function for the each hidden unit in hidden layer for an input vector xj is
calculated as per given Equation (9), where µi is the ith cluster center in the hidden layer
and σ, also known as spread, was the smoothing parameter,

gi(xj) = exp
(
−||xj−µi ||2

2σ2
i

)
, j = 1, 2, ..., h (9)

Following steps followed to determine the cluster center k-mean algorithm is utilized:

• Step 1. Initial set of cluster center was supplied to the hidden layer.
• Step 2. Then based on the Euclidean distance metrics used to assign the closest cluster

center for each input of the hidden layer.
• Step 3. New cluster center computed µk.
• Step 4. If the cluster center changed then repeat the step 2 and step 3; otherwise, stop.

The output layer neurons are fully connected to the hidden layer through the weights
wik. The kth output value for an input xj is calculated as per Equation (10), where

yk(xj) =
h

∑
1

wikgi(xj), k = 1, 2, ..., n (10)
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Figure 7. Architecture of RBFNN [37].

4.5.5. Train, Validate, and Test RBFNN over Collected Data

1. Selection of σ value for the hidden layer has been identified by training the and
validating model with 20% data, 500 epoch, beta value is 1, and momentum of
RMSprop is 0.0, learning rate is 0.001 and 60 neurons in hidden layer with 12 different
σ values as shown in Table 12. The model’s σ value insight has been taken based
on the MSE value in the resultant table sigma value 0.1 to 1 has shown continuous
decrease in the MSE values and gradual increase in the model’s accuracy after the
sigma value 1 to 3 consistent decrease in the model’s accuracy and increase in the
MSE value, except the sigma value 2.5 has shown slight increase but very low as
compare to the 0 to 1 range of the sigma values. Therefore, σ = 1 has been utilized to
build the RBFNN model.

Table 12. Calculated and analyzed MSE for the different sigma values.

Epoch Sigma Mse Accuracy

500 0.1 0.0188 0.7578
500 0.25 0.0079 0.793
500 0.5 0.0058 0.793
500 1 0.0028 0.8047
500 1.25 0.0027 0.7969
500 1.5 0.0070 0.7617
500 1.75 0.0153 0.7383
500 2 0.0418 0.6562
500 2.25 0.1161 0.4883
500 2.5 0.2044 0.5234
500 2.75 0.3204 0.4531
500 3 0.3391 0.3711

2. Comparison of the RBFNN model with Backpropagation neural network (BPNN)
and the difference between the two models on the same data sample with 20% of the
validation set; the accuracy curve for train and validation set is created. Accuracy
curve data for 500 epochs for RBFNN and BPNN is shown in Tables 13 and 14.
Figures 8 and 9 clearly show that the RBFNN model’s accuracy curve corresponding
to test set has more generalized accuracy curve unlike the BPNN accuracy curve
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against the validation set. RBFNN and BPNN model compared over the 500 epochs
and result can be seen in Table 15.

Table 13. RBFNN accuracy curve.

Epoch Loss Accuracy Mse Val_loss Val_accuracy Val_mse

0 1.025581 0.191406 1.025581 0.876186 0.171875 0.876186
1 1.020244 0.195312 1.020244 0.873400 0.171875 0.873400
2 1.016299 0.199219 1.016299 0.870802 0.171875 0.870802
3 1.012945 0.199219 1.012945 0.868433 0.171875 0.868433
4 1.009710 0.207031 1.009710 0.866253 0.171875 0.866253
.. ... ... ... ... ... ...
495 0.002823 0.808594 0.002823 0.012917 0.765625 0.012917
496 0.002815 0.804688 0.002815 0.012571 0.781250 0.012571
497 0.002913 0.808594 0.002913 0.012797 0.765625 0.012797
498 0.002861 0.804688 0.002861 0.012664 0.765625 0.012664
499 0.002823 0.804688 0.002823 0.012685 0.781250 0.012685

Figure 8. RBFNN accuracy curve.

Figure 9. BPNN accuracy curve.
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Table 14. BPNN accuracy curve.

BPNN

Epoch Loss Accuracy Mse Val_loss Val_accuracy Val_mse

0 1.255189 0.230469 1.255189 0.973620 0.140625 0.973620
1 1.065259 0.234375 1.065259 0.823501 0.140625 0.823501
2 0.909692 0.230469 0.909692 0.702508 0.140625 0.702508
3 0.780366 0.234375 0.780366 0.598431 0.109375 0.598431
4 0.669734 0.234375 0.669734 0.511944 0.093750 0.511944
.. ... ... ... ... ... ...
495 0.005829 0.683594 0.005829 0.006387 0.671875 0.006387
496 0.005823 0.687500 0.005823 0.006382 0.671875 0.006382
497 0.005820 0.687500 0.005820 0.006380 0.671875 0.006380
498 0.005809 0.683594 0.005809 0.006372 0.671875 0.006372
499 0.005803 0.683594 0.005803 0.006365 0.671875 0.006365

Table 15. RBFNN and BPNN comparison.

RBFNN

Epoch Loss Accuracy Mse Val_loss Val_accuracy Val_mse

499 0.002823 0.804688 0.002823 0.012685 0.781250 0.012685

BPNN

Epoch Loss Accuracy Mse Val_loss Val_accuracy Val_mse

499 0.005803 0.683594 0.005803 0.006365 0.671875 0.006365

3. The application of ease prediction model has shown in Figure 10. Following sample
record has been utilized to get the ease values for five key body parts of shirt across
back, across front, bust, waist, pelvis. Input vector x = [34.71, 37.04, 86.98, 87.98,
73.89, 44.33, 44.69, 91.89, 103.88, 104.49, 95, 0.05, 5.89, 3.56, 2.85, 6.27, 0.76, 0.67, 5.3,
10.35, 0.81, 0.81, 14.72, 14.72] supplied to model and then resultant y vector returned
y = [9.299779, 7.5186224, 4.83331, 15.186139, 30.181925], which represents ease of five
key body parts across back, across front, bust, waist, pelvis. Further designers have
utilized the predicted ease values to recreate the shirt pattern using the 3D CAD tool.
This method gives quick insight by showing the variations in ease values due to the
change in body measurement, fabric, and pattern size, without repeating the complete
process in the 3D CAD tool.

4. Computational time for the ease prediction model after deploying it as a service
is 45 ms.

All above steps have been organized as shown in Figure 3 for the creation of data-
driven interactive design system.
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Figure 10. 3D ease prediction service module.

5. Service Architecture Validation

This section puts light on the general architecture of the garment co-design interactive
system Figure 11, which is utilized to evaluate and integrate the proposed data driven
interactive design service architecture. Figure 11 shows the complete process of service
integration with the offline designing tool and online e-shopping platform using the
proposed data-driven service architecture. Following the architecture shown in Figure 11,
a number of interactions can be realized between the consumer and the designer by
repeatedly performing the cycle of design recommendation—virtual fitting visualization—
interactive performance evaluation and selection—design parameters adjustment. The
following points explains the changes, which will occur after following the proposed
system structure.

1. The system creates a new BIRCH cluster object without affecting the old clustered
data and should append the new data to the existing cluster, If new data do not form
a new cluster.

2. The system introduces a new adaptive random forest classifier object, if a new fitting
type is introduced in the data.

3. The system creates a frequent pattern table in the SQL Server database automat-
ically corresponding to new fitting type, which may occur in new or old BIRCH
cluster object.

4. The system creates association rule table in SQL server corresponding to new fitting,
which may occur in new or old BIRCH cluster object.

5. The system integrates real fabric to existing knowledge base by parsing the fabric
drape image, which is extracted from the drape meter and fabric drape image profile
shall be created and saved into system.

6. Updated shirt pattern measurements, body measurements, ease allowance value of
key body parts and fabric details shall be saved into SQL server database table schema
to retrain the RBFNN ease prediction model.

An application case shall run following statements successfully to get the best design
selection for users and designers from data driven interactive design system.
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Figure 11. General architecture of the garment co-design interactive system.

1. Most relevant biometric profile influenced group for a specific consumer.
2. Most relevant fitting style of shirt as per the biometric profile influenced group.
3. Identification of the relevant style attributes for predicted fitting style.
4. Identification of the closest fabric by comparing the drape.
5. Identification of the parametric value of garment ease corresponding to predicted

styles of shirt. Then pattern creation and evaluation of the pattern by the designers.
6. In Section 4.3.2, point 7 set of the predicted values based on the user’s biometric profile

has been carried further in Section 4.5.5, where point 3 is used to get the ease value
for the key body parts specified by the professional designers. In this step, prediction
values were generated using all the aforementioned five modules and has been
carried further by designers to create the virtual garment in 3D CAD tool. The design
solutions before and after the adjustment can be transformed into the 3D garment
fitting effects and demonstrated in a virtual environment (see Figures 12 and 13). In
this case, the visual effects for these two design solutions are slight. However, we can
see the difference by looking at the numerical parameters of the garment pressure
images Figures 14 and 15 that there is a difference at neck position. The neck length
of the human model is 39.75 cm. The garment neck length is 43.84 cm before the
adjustment and 43.25 cm after the adjustment (5 cm shorter). Its elongation value
shows that the fabric has become a little tight. All these changes mean that the
adjusted garment gives more fitting effects and closer to the wearer’s body surface.
In the cases of tight style clothing such as legging, this change can be more evident.

7. Further, we have in-cooperated the Likert scale method having rating level up to
five which helps in the understanding the garment ease satisfaction level (statistics
for eight shirt patterns over four body measurements and one single fabric 100%



Sensors 2021, 21, 4239 24 of 28

cotton). We realized after the basic pattern adjustments as shown in Table 16 that
60% of customers come under the satisfied range of the scale, out of which 21% are
highly satisfied, 31% are satisfied, and 47% have no problems with the garment ease
of the given design pattern. Only 40% of customers come under the dissatisfaction
range of the scale for the garment ease of the given design pattern. These results,
in comparison with those in Table 17, clearly show that continuous data update can
clearly improve the satisfaction rate on system’s results and system’s capacity to learn
from updated data, which can be evaluated effectively.

Figure 12. Shirt before adjustment.

Figure 13. Shirt after adjustment.
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Figure 14. Shirt fitting before adjustment.

Table 16. Satisfaction Levels for regular fitting design patterns (after adjustment).

Average High Satisfaction Range 60% Average Lower Satisfaction Range 40%
Extremely satisfied 21% Slightly satisfied 69%
Very satisfied 31% Not at all satisfied 30%
Satisfied 41%

Table 17. Satisfaction Levels for regular fitting design patterns (before adjustment).

Average High Satisfaction Range 53% Average Lower Satisfaction Range 46%
Extremely satisfied 35% Slightly satisfied 40%
Very satisfied 30% Not at all satisfied 60%
Satisfied 35%
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Figure 15. Shirt fitting after adjustment.

6. Conclusions

In this paper, we have proposed a data-driven interactive design system architecture
in order to help the designers to create the most relevant customized garment based on
the garment buyer’s preferences in combination with designer’s technical knowledge.
The proposed system architecture supports the process to formalize the structure of cus-
tomized garment design process. Based on the designer’s feedback over the final results,
it automatically adds the technicality on the insights generated for the garment buyers.
Continuous data update mechanism and new data integration shows progressive enhance-
ment in proposed system architecture. Proposed system can be utilized. In this context, the
proposed system is directly involved in the process of increasing the proximity between
designers, consumers, and fabric manufacturers. In future, service can be extended further
by receiving more parametric information from 3D CAD garment design tools to build
strong relationship between the fashion consumers and designers.
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