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Abstract: Unmanned aerial vehicles (UAVs) have shown great potential in various applications such
as surveillance, search and rescue. To perform safe and efficient navigation, it is vitally important for
a UAV to evaluate the environment accurately and promptly. In this work, we present a simulation
study for the estimation of foliage distribution as a UAV equipped with biosonar navigates through a
forest. Based on a simulated forest environment, foliage echoes are generated by using a bat-inspired
bisonar simulator. These biosonar echoes are then used to estimate the spatial distribution of both
sparsely and densely distributed tree leaves. While a simple batch processing method is able to
estimate sparsely distributed leaf locations well, a wavelet scattering technique coupled with a
support vector machine (SVM) classifier is shown to be effective to estimate densely distributed
leaves. Our approach is validated by using multiple setups of leaf distributions in the simulated forest
environment. Ninety-seven percent accuracy is obtained while estimating thickly distributed foliage.

Keywords: Unmanned aerial vehicles; simulation; bio-inspired sensing; biosonar; wavelet scattering;
support vector machine

1. Introduction

Unmanned aerial vehicles (UAVs) provide cost-effective alternatives to human labor
for a broad variety of tasks such as search, rescue, monitoring and provision. Existing
sensing and navigation systems of UAVs, however, have limited capabilities as they either
rely on external motion-capture systems, where the perception challenge is eliminated,
or only operate in clear, open spaces with sparse obstacles [1,2]. Furthermore, most existing
systems are vision-based and therefore only function during daytime or in limited lighting
conditions. Active laser-based simultaneous localization and mapping (SLAM) is more
accurate and can operate in the dark but usually requires a high payload and produces
large amounts of data that are expensive to be processed by small platforms with size,
weight and power (SWaP) constraints and limited computational capabilities. It is highly
desirable to develop novel sensing and navigation systems that are parsimonious yet
suitable for complex, unstructured natural environments under varied lighting conditions.

Echolocating bats demonstrate that it is possible to perform fast, efficient navigation in
complex environments with small, low cost transducers and limited onboard computation.
Bats employ miniature sonar systems with a few transducers—a nose (or mouth) and
two ears—however, they are able to navigate freely through highly unstructured natural
habitats such as bushes and forests, often in absolute darkness. They accomplish this
by transmitting a chirp signal to the atmosphere and detecting the returned echo signal.
With the ability to process two echo signals that are 2 ms apart and to distinguish objects
that are 0.3 mm apart [3], they can not only effectively locate objects in 3D but can also

Sensors 2021, 21, 4186. https://doi.org/10.3390/s21124186 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0001-9266-6368
https://orcid.org/0000-0003-1285-0048
https://orcid.org/0000-0001-5416-149X
https://orcid.org/0000-0001-5674-6483
https://doi.org/10.3390/s21124186
https://doi.org/10.3390/s21124186
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21124186
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21124186?type=check_update&version=2


Sensors 2021, 21, 4186 2 of 11

recognize the shape and size of objects [4]. This motivates the development of biomimetic
sonars, also known as biosonars, for aerial robots. With successful deployment of airborne
biosonars, the aerial navigation capability of UAVs can be significantly improved.

In recent years, a great deal of efforts have been devoted to the design of bat-inspired UAV
systems to mimic the sensing behavior of bats. For example, Bogue [5] and Ramezani et al. [6]
developed biomimetic robots that can perform independent flying by imitating the morpho-
logical properties of versatile bat wings. In [7], a autonomous bat-like terrestrial robot was
developed that creates a 2D mapping of the environment by using echoes. The authors in [7]
developed a robotic prototype and a simulation framework to implement the bat algorithm
in swarm robotics. The established bat-inspired navigation systems have been tested on
various tasks such as object localization and identification [8–11], obstacle-avoidance [12,13],
tracking [14], landing [15] or convoy control [16].

Despite the progress, existing works have primarily focused on the creation of mecha-
nisms and structures that allow these robots to mechanically attain the agility and mobility
of bats. The underlying biosonar sensing paradigm—in particular, how bats achieve
efficient mapping and navigation based on biosonar echoes—has been less studied. Addi-
tionally, most existing biosonar-based UAV systems focus on achieving certain tasks such
as avoiding obstacles and identifying landmarks in the presence of sparsely distributed
obstacles—obstacles that are isolated in space. For example, Schillebeeckx et al. [11] fo-
cused on localizing reflectors with simple shapes such as balls or blocks; Yamada et al. [12]
achieved obstacle avoidance in an environment consisting of randomly distributed plastic
poles in a chamber. Studies into bisonar sensing under more complicated, unstructured
environments such as trees and forests are limited. Furthermore, due to the constraints
in conducting actual experiments, only human-designed laboratory environments or pre-
selected natural experimental sites are used for training and testing. For example, in [10,14],
landmark tracking is achieved via artificial trees. In [12], a sensing environment is syn-
thesized in a chamber, and in [17], two greenhouses are used as the experimental sites to
validate their approach on a terrestrial robot.

In this paper, we present a simulation study for the estimation of foliage distribution
as a UAV equipped with biosonar navigates through a forest. In contrast to existing
approaches, our study makes several unique contributions: (1) instead of mimicking the
mechanisms and structures of bats, we explore the working mechanism of bats’ biosonar
through simulation and statistical learning; (2) instead of assuming sparsely distributed
obstacles, we focus on unstructured natural environments such as trees and forests that
consist of many reflectors; (3) unlike existing research that depends on experimental
data, our simulation framework can produce richer sensory data that are not otherwise
available under experimental setups, making training and testing inexpensive, flexible,
and efficient; (4) instead of focusing on specific tasks such as obstacle avoidance, our
simulation framework allows for more sophisticated sensing and navigation scenarios.

In our previous work [18], we built a simulation framework that generates natural
sensing environments and produces biosonar echoes under various sensing scenarios.
The goal of this paper is to extend our previous work by developing an approach to
estimate the environment based on simulated biosonar signals. Specifically, we consider
an aerial robot equipped with a biosonar sensor navigating through a forest full of foliage.
As the UAV navigates, chirp signals are sent to the trees or to other vegetation, which
results in echoes reflected from the environment. We adopt the approach described in [19]
and [18] to simulate a random forest consisting of natural looking trees and adopt the
bisonar simulator described in [18,20,21] to simulate foliage echos by mimicking a bat’s
biosonar. The returned echoes consist of the reflections of chirp signals from various
numbers of leaves. Based on these echoes, we aim to estimate the approximate locations as
well as the density of leaves. These estimations allows us to synthesize a partial map of the
environment, based on which navigation decisions can be made. We distinguish the cases
of sparsely and densely distributed tree leaves and adopt different feature extraction and
estimation approaches. In particular, a batch processing method is used to estimate sparsely
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distributed leaf locations; in the case of densely distributed leaves, we employ wavelet
scattering to extract features from the echo signals and feed them to a support vector
machine (SVM) classifier to estimate the leaf density. Precisely, for efficient navigation,
a UAV must understand the environment in real-time. Therefore, our study presents a
novel framework for estimating the foliage distribution of the environment in real-time.
Once a UAV is equipped with the proposed biosonar-based environment sensing system,
any standard navigation protocol can be employed for navigation through the forest.

The rest of the paper is organized as follows. Section 1 entails related work and
highlights the significance of our study. In Section 2, we introduce our methods and
demonstrate its effectiveness under multiple setups, with a detailed description of our
results in Section 3. Section 4 concludes this paper.

2. Method and Materials

In this section, we elucidate our estimation approach. We considered a UAV/UAVs
equipped with a biosonar navigating in a forest whose map was not known a priori.
The UAV was thus required to quickly evaluate the environment for efficient navigation.
We set up our sensing environment by first simulating natural looking trees using Linden-
mayer systems (L-systems) and 3D Computer-Aided Design (CAD). The simulated trees
were then used to form a forest. The random locations of trees were generated from an
inhomogeneous Poisson process (IPP) [22]. Details can be found in [18,21]. As the UAV
navigated through the simulated forest, its biosonar collected measurements in the form of
foliage echoes. These echoes were then used to estimate the location and density of foliage.
This process could be performed as needed when the UAV navigates, and partial maps of
the forest could be formed by synthesizing estimates from different scans. In this section,
we describe two different approaches for foliage estimation—one for sparse leaf scattering
and the other for densely distributed leaves.

2.1. Batch Processing

In the case of sparsely scattered leaves, we first recorded the impulse responses
received by the biosonar as the UAV navigatedw. We considered different hover positions
of the UAV around a tree and then recorded the impulse response signals received from
the leaves. In each simulation, we also varied the number of leaves randomly. This was
performed to generate training data which were then used to estimate certain parameters
that helped us to predict the number of leaves that generated the impulses. Below, we
discuss this process in detail.

The arrival times of the impulse responses, when multiplied with the speed of sound,
provided the travel distance of the emitted sound, which thus could be used to estimate
the distance between the sonar and the reflectors. However, the arrival time of the impulse
response is not sufficient to determine the leaf locations for two reasons: first, the exact
location of a leaf in the sonar beam depends on both the distance to the sonar receiver
and the incident angle; there are multiple locations in the sonar beam that have the same
distances to the sonar sensor. Second, in most cases there are multiple leaves around a
given location; thus, the impulse response is a superposition of reflected waveforms from
numerous leaves. As a result, the distance calculated from arrival time alone only gives
a rough estimate of the whole group of leaves. We therefore combined arrival times and
other features extracted from the impulse response to estimate the leaf locations.

One feature that carries important information about the leaves is the amplitude of
impulse responses. For a single leaf, ideally, the number of peaks in the amplitude remains
the same irrespective of the leaf location. For a cluster of leaves, the number of peaks will
be influenced by the total number of reflectors. However, this information can be leveraged
to estimate the number of reflectors in the sonar beam. Specifically, we used a training
dataset to learn a mapping between the number of peaks in the amplitude and the number
of leaves in the sonar beam. We note here that the beam width and orientation of the sonar
beam influences the amplitude of the impulse response. However, we were only interested
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in the number of peaks in the amplitude, not their actual values. We thus normalized the
amplitudes by dividing them by the maximum value. The nonzero amplitudes were first
extracted by imposing a threshold on the impulse response signal, based on which the
number of peaks was counted.

We thus employed two features to estimate the leaf distribution: the arrival times
ti and the number of amplitude peaks pi. Each ti is the arrival time of the maximum of
peaks, which was used to estimate the distance between the sonar and the leaf cluster.
We denote the estimated distance by dmax

i . To estimate the actual number of leaves ni,
we assumed a general mapping of the form ni = f (pi) + εi. Specifically, we assumed a
linear model ni = αpi + β + εi, i = 1, . . . , n, with n being the number of training samples.
Note that the linear assumption was chosen based on extensive training and testing
compared with alternative linear or nonlinear models including the generalized linear
model, Gaussian process regression model and generalized additive model. Based on this
model, we performed least-squares estimation, also called batch processing [23], to obtain
the best estimate of α and β. Once the two estimates were computed, they could be used to
predict the number of leaves given pi. Let n̂i denote the predicted leaf number; we further
estimated the leaf locations by sampling n̂i leaf locations from a Gaussian distribution,
denoted by N (ci, σi). We set the center of the Gaussian distribution ci to be the location
on beam center with distance dmax

i . To obtain the standard deviation for the Gaussian
distribution σi, we also computed leaf distances based on the arrival times of the minimum
peak values. Since there were two possible distances, we selected the location closest to the
sonar location and denoted the distance as dmin

i . Note that dmin
i could be computed as we

knew the number of peaks as well as the arrival times of peaks. The standard deviation
was then computed by σi = ||dmax

i − dmin
i ||/2, where || · || denotes the standard Euclidean

norm. The sampled leaf locations were then utilized to construct the map.
From our experience, for all practical purposes, a random sampling from the Gaussian

distribution produces a good approximation of the actual leaf locations. We also would like
to note that, when performing the training and prediction, we divided the sonar beam into
a few segments and treated the impulse response signals within each segment separately.
This not only produced richer training data but also allowed us to obtain a more accurate
prediction of different regions of the sonar beam.

2.2. Data Structure and Prepossessing

The received echo signal consisted of varied magnitudes and lengths of impulses
depending upon the number of leaves and their exposed surface area intercepted by the
transmitted lobe. A few example raw echo samples representing distributed leaf reflections
are shown in result section, with the number of leaves varying from 1 to 12. Moreover, the
time interval between impulse envelopes in a received echo signal also varied. Though such
discontinuity reflected the structure of the leaf cluster, it had a trivial correlation with the
leaf density intercepted by the lobe.

We addressed these challenges by (i) removing dead zones—signal values in between
−10−3 and 10−3 that resulted in a significant data dimensionality reduction; i.e., up to a
maximum sample length of 4096 instead of 8192 raw data points—-and (ii) re-scaling the
varying length of truncated data samples by means of up/down sampling to a fixed length
of 4096 data points.

2.3. Representation Learning

In this study, we employed the wavelet scattering transform (WST) [24] to extract
discriminant features from the pre-processed echo signals. Specifically, WST refers to an
iterative process of applying a set of wavelet transforms and nonlinearities at different
scales, making it stable in the case of small deformations and invariant to input signal trans-
lations/rotations. As shown in Figure 1, the operations necessary for the transformation of
the input signal x into a wavelet are (1) convolution, (2) nonlinearity and (3) averaging. Pre-
cisely, the WST coefficients are obtained by applying the convolution operator ? between
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the wavelet modulus and low-pass filter φ. Assuming wavelet ψ(t) to be a band pass filter
with a central frequency normalized to 1 at time index t, the wavelet filter bank ψλ(t) is
defined as follows:

ψλ(t) = λψ(λt), (1)

where λ = 2
j

Nw , ∀j ∈ Z considering Nw as the number of wavelets per octave. The term
1/Nw represents the order of the wavelet bandwidth ψ(t); thus, the filter bank is composed
of band pass filters with a frequency bandwidth of λ/Nw (centered in the frequency domain
defined by λ).

Figure 1. A wavelet scattering transform iterates on a set of wavelet modulus operators to compute
cascades of wavelet convolutions and moduli, generating averaged scattering coefficients.

At the initial stage, we had a single coefficient, defined as

S0x(t) = x ? φ(t), (2)

which for our echo signals was close to zero. By averaging the wavelet module with φ, the
following coefficients were obtained:

Sx(t, λ1) = |x ? ψλ1 | ? φ(t) (3)

The coefficients of the second order were used to detect the high-frequency amplitude
modulation of each frequency band in the first layer.

Sx(t, λ1, λ2) = ||x ? ψλ1 | ? ψλ2 | ? φ(t). (4)

Since the wavelets ψλ2 with an octave resolution of NW2 can be different from NW1 , we
set NW2 = 1 for echo signals with more time support to define wavelets. Consequently,
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we obtained a sparse, deep representation concentrating on a small number of wavelet
coefficients for which the low-pass φ filter ensured local invariance to echo signal time shifts.

Figure 1 shows the topology of the wavelet scattering coefficients resembling the
structure of deep neural networks (except for the fact that WST provides intermediate
outputs). Features from the second order were normalized to ensure that the higher order
of scattering depended on the amplitude of the echo signal component. A scattering
feature vector for a particular frame was concatenated in both the first and second orders
of WST. Furthermore, to ensure frequency translation invariability, the scattering preserved
more detail in the echo signal by employing log-mel to each higher-order feature vector
coefficient. Thus, stable deformations along with the local translation invariability were
achieved in both the time and log frequency domains.

Specifically, to obtain wavelet scattering coefficients of pre-processed echo signals,
we used an invariant scale of 0.22 s and an over-sampling factor of 2. Consequently,
the resulting feature dimension of each data sample was n = 211, which was then used to
train and evaluate the classification model.

2.4. Classifier

In order to estimate the density of leaf clusters, we employed the Support Vector
Machine (SVM), which is one of the most powerful supervised machine learning algorithms.
The key advantage of using the SVM is that, unlike many other machine learning algorithms
such as neural networks, the SVM does not require extensive hyper-parameter tuning
to obtain good results. The SVM offers low inference latency and thus is suitable for
classification in real-time. This performant algorithm determines the optimal hyperplane
by handling non-linearly separable data using kernels. Precisely, neural networks find the
hyperplane by iteratively updating its weights and trying to minimize the cost function. It
produces an optimal hyperplane that could best separate the data—a hyperplane in which
the margin between the decision boundary and the closest data points is maximized.

For a given dataset, D = {(xi, yi) | xi ∈ Rn, yi ∈ {−1, 1}}m
i=1, where n represents the

dimensionality of the input data, and m represents the total number of samples, consider
the equation of the hyperplane w · x = −b, where w represents the trainable parameters of
the SVM classifier. Thus, if the point (x,y) is on the hyperplane, w · x + b = 0; if the point
(x,y) is not on the hyperplane, the value of w · x+ b could be either positive or negative (the
two classes considered for binary classification problem optimization). To achieve better
performance for our challenging non-linearly separable echo signal data, we employed the
well known Radial Basis Function (RBF) kernel defined by K(xi, xj) = exp(−γ||xi − xj||2).
The RBF kernel is also called the Gaussian kernel. It can learn complex decision boundaries.
The RBF kernel contains a parameter γ. A small value of γ will cause the model to behave
like a linear SVM. A large value of γ will mean that the model is heavily impacted by the
support vector examples.

However, the SVM was primarily designed for binary classification. For its extension
to a multi-class classification framework, in this study, a one-versus-the-rest approach (also
known as one-vs-all) was used to estimate the number of leaves considering various classes.
Thus, we iterated over c ∈ C classes and treated the data from a particular class c as its
positive class and all the other classes as one negative class. Consequently, such a binary
classification formulation reduced the distance between data point x and the actual class c
while maximizing the distance of x from all the other classes.

3. Results and Discussion

In this section, we show the validation of our proposed approach by means of a
simulation framework. All the experiments were carried out with an Intel® 2 × 16 Core™
E5-2683v4 Broadwell processor 2.1 GHz and 128 GB Intel processors, 2400 MHz RAM with
Ubuntu 16.04 LTS in the MATLAB environment. We performed a pilot study by designing
a simple sensing scene that involved multiple trees and a UAV (as a bat) navigating across
them. The trees were constructed by combing an extended L-system with CAD-developed
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object files as described in [18] . We took two scenarios into account: (1) the leaves were
sparsely distributed, and (2) the leaves were densely distributed. In each simulation,
the impulse responses of a virtual biosonar sensor were collected and analyzed. In various
sites of the field, impulse responses were calculated to imitate a hovering quad-rotor. In
Figure 2, we illustrate several examples of the sparsely distributed leaves. The main lobe
was selected to have a bandwidth of 30 dB.

Figure 2. The main lobe was divided into five equally spaced segments using hyperplanes. The leaf position can be seen on
the left side. The right side of the plots shows the recorded echo peaks and their time spans. Here, the X-axis denotes the
time span and the Y-axis denotes the amplitude of the recorded signal.

A few simulation setups for the sparsely distributed leaves are demonstrated in
Figure 2. On the left column of Figure 2, we show four different leaf distribution setups,
with the number of leaves in the main lobe varying from 1 to 12. In each setup, we repeated
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the simulation 10 times by randomly selecting the location of the leaves in the main lobe.
The main lobes in each of the four cases were divided into five segments separately by
hyperplanes that contained points with equal distances to the sonar receiver. As elucidated
in Section 2, we estimated αi, βi using the training data from each of these segments.
The estimated values were then averaged to obtain the required parameters α and β, which
were then used to estimate the locations of leaves. On the right column of Figure 2,
we mark the peaks of the amplitude on the impulse response signals. Thus, to generate
ground-truth labels, the leaf density (number of leaves in the lobe) was estimated using
our proposed batch processing approach, as elucidated in Section 2.

The overall dataset comprised 13,200 data samples representing 11 classes (1200 sam-
ples per class). We varied the number of leaves that fell inside the main lobe of the sonar
from 0 to 100 and evaluated two scenarios of different discrete resolutions: 10 and 20 leaves,
respectively. For example, in Figure 3a, the leaves were varied from 0 to 100 with an
increment of 20 leaves. In this particular setting, we aimed to classify input samples as
having either 1, 20, 40, 60, 80 or 100 leaves in the lobe. Consequently, we had 7200 samples
in total, out of which we randomly picked 5040, 1440 and 1080 samples and treated them
as training, validation and testing sets, respectively. In Figure 3b, a histogram of the signal
length of the data samples is presented, where the dead points (−10−4 < signal-strength
< 10−4) from the raw echo signal were removed to extract a trimmed/finer version of the
data. Consequently, echo samples of varied lengths, each representing a particular class,
constituted the proposed dataset. Similarly, for the resolution of 10 leaves (see Figure 3c,d),
we aimed to classify input samples as having either 1, 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100
leaves in the lobe. Consequently, we had 13,200 sample in total, out of which randomly
picked 9240, 1980 and 1980 samples as training, validation and testing sets, respectively.

However, with a growing leaf density, merely counting the number of spikes in the
echo signal could not precisely reflect the leaf density in the sparse mode. In Figure 4,
we demonstrate an example of this. The left panel of Figure 4 shows a bird’s-eye view
of the scene, consisting of a single tree and a biosonar, and the right panel shows the
reconstructed map based on our target estimation result. As illustrated in the left panel
of Figure 4, to collect data, the UAV scanned its surroundings from top to bottom and
from left to right with intervals of 5 degrees. The resulting impulse responses were used to
predict the number of leaves. Therefore, we made use of Machine Learning techniques to
predict the number of leaves in the lobe.

Specifically, based on the wavelet scattering coefficients, we employed the SVM with
a RBF as the kernel function to train a classification model on the acquired dataset. We
used an invariant scale of 0.22 s when performing wavelet time scattering. Since the
scattering transformation was averaged for all time samples, w set the over sampling
factor to 2, meaning that the number of scattering coefficients on each path increased by
four in relation to the critically down-sampled values. The pre-processing stage truncated
or padded the raw data sample up to a maximum length of 4096 data points. We kept
the model parameters fixed for all the experiments pertaining to each setting; i.e., 6 and
11 classes with a leaf density resolution of 10 and 20, respectively.
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(a) (b)

(c) (d)

Figure 3. Wavelet scattering for feature extraction using the SVM as a classifier. (a) Confusion chart with train set,
5040 samples; validation set, 240 × 6 = 1440 samples; test set, 1080 samples; test accuracy 78.75%; (b) trimmed echo signal
histogram that represents the set of data used in experiments. There were a total of 7200 samples of six classes with
lengths measured in milliseconds; (c) Confusion chart with train set, 9240 samples; validation set, 240 × 11 = 2640 samples;
test set = 1980 samples; test accuracy 74.15%; (d) Trimmed echo signal histogram that represents the set of data used in
experiments. There were a total of 13,200 samples of 11 classes with lengths measured in milliseconds.

To evaluate our proposed approach, we considered a UAV equipped with a biosonar
navigating in a simulated forest environment. The reported results show that the proposed
method achieved promising performance in both settings; i.e., 78.75% and 74.15% accuracy
for 6 and 11 classes, respectively. Precisely, the cases in which our model predicted a smaller
number of leaves than the actual count (ground-truth) corresponded to the clusters where
all the leaves were not fully exposed, instead exhibiting significant overlap. The training
data samples with overlaps also affected the model, causing it to predict a higher number
of leaves in some cases. Nevertheless, the misclassification cases followed a diagonal
pattern that resulted in a fair estimate of the leaf density. From another perspective, such
an estimation capability imitates the natural apprehension of bats, who roughly estimate
the density of leaf patches instead of counting every leaf to gain an understanding in order
to make decisions.
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Figure 4. In dense mode—the recorded echo peaks and time span show the number of leaves in the diverse environment—a
map is created with x,y positions in meters.

4. Conclusions

In this paper, we have discussed an approach for synthesizing an environment from
a bat biosonar sensor by predicting the number of leaves on trees. Two different leaf
density patterns, both sparse and thick, were considered using our approach. To this
end, we employed two different estimation techniques for leaf prediction: one for the
sparse distribution and another for the dense distribution. Since leaf density estimation is
a challenging task due to the irregular exposure of leaves, we employed Machine Learning
techniques to generalize in varying scenarios, which functioned well. The validation of
our approach under a simulation framework showed promising results for application in
real-world scenarios.

We adopted the biosonar simulator developed by [18,20,21] to simulate foliage echos.
It is worthwhile to mention that natural environments can have many reflectors other than
leaves, such as tree trunks, branches, rocks, etc. The relative importance of these different
scatterers will depend on the environment. As discussed by [18,25], in a forest environment,
very little of the echo comes from branches, and most of the returned echo originates from
leaves. Therefore, we believe it is a practically valid assumption that leaves remain the
major source of reflectors under this setup.

In this work, we considered a hovering UAV while receiving the impulse responses.
We intend to extend our approach to the general case of navigating UAVs. As future
work, we also expect to extend our approach to a multi-robot setting. With multi-robot
communication, we envisage a better efficacy of leaf estimation.

The software developed in this paper will be made available as an open source package
on the Github site (https://cfpss.github.io/, accessed on 30 June 2021) upon acceptance of
this manuscript.
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