
sensors

Article

Fully Parallel Implementation of Otsu Automatic Image
Thresholding Algorithm on FPGA

Wysterlânya K. P. Barros 1 , Leonardo A. Dias 2 and Marcelo A. C. Fernandes 1,3,*

����������
�������

Citation: Barros, W.; Dias, L.;

Fernandes, M. Fully Parallel

Implementation of Otsu Automatic

Image Thresholding Algorithm on

FPGA. Sensors 2021, 21, 4151.

https://doi.org/10.3390/s21124151

Academic Editor: Marcin

Ciecholewski

Received: 16 May 2021

Accepted: 11 June 2021

Published: 17 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Laboratory of Machine Learning and Intelligent Instrumentation, nPITI/IMD, Federal University of Rio
Grande do Norte, Natal 59078-970, Brazil; kyurybarros@gmail.com

2 Centre for Cyber Security and Privacy, School of Computer Science, University of Birmingham,
Birmingham B15 2TT, UK; l.a.dias@bham.ac.uk

3 Department of Computer and Automation Engineering, Federal University of Rio Grande do Norte,
Natal 59078-970, Brazil

* Correspondence: mfernandes@dca.ufrn.br

Abstract: This work proposes a high-throughput implementation of the Otsu automatic image
thresholding algorithm on Field Programmable Gate Array (FPGA), aiming to process high-resolution
images in real-time. The Otsu method is a widely used global thresholding algorithm to define an
optimal threshold between two classes. However, this technique has a high computational cost,
making it difficult to use in real-time applications. Thus, this paper proposes a hardware design
exploiting parallelization to optimize the system’s processing time. The implementation details
and an analysis of the synthesis results concerning the hardware area occupation, throughput, and
dynamic power consumption, are presented. Results have shown that the proposed hardware
achieved a high speedup compared to similar works in the literature.

Keywords: FPGA; image segmentation; thresholding algorithm; Otsu’s method

1. Introduction

In recent years, there has been an increase in computational solutions employing
Digital Image Processing (DIP) techniques, such as facial recognition, medical image
enhancement, signature authentication, traffic control, autonomous cars, and product
quality analysis [1–5]. These applications usually require real-time processing. However,
meeting their processing time requirements can be complex due to the large volume of
data to be processed, which is proportional to the image resolution, color depth, and, in
the case of video applications, the frame rate employed. Therefore, obtaining results in
real-time has become a challenge [6].

Some of the mentioned applications use segmentation algorithms to identify the im-
age’s region of interest and classify its pixels as background or object. Thresholding is
one of the main image segmentation techniques in which pixels are classified based on
their intensity values [7]. The Otsu algorithm, proposed in [8], is a widely used global
thresholding technique, which proposes the definition of an optimal threshold by maximiz-
ing the between-class variance. However, the Otsu algorithm has a high computational
cost due to the complex arithmetic operations performed interactively, hindering its use in
real-time applications.

Many works in the literature proposed the Otsu algorithm developed in hardware,
such as Field-Programmable Gate Arrays (FPGA), to overcome the processing time con-
straints. This therefore allows applications to achieve real-time or near real-time processing.
The FPGA allows the exploitation of the algorithm parallelization and the development of
dedicated hardware to obtain performance improvement [9–15]. However, FPGA imple-
mentations found in the literature are often developed with sequential processing schemes
in some stages of the Otsu algorithm, limiting the hardware’s processing speed [16–21].

Sensors 2021, 21, 4151. https://doi.org/10.3390/s21124151 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8498-3571
https://orcid.org/0000-0002-8442-3291
https://orcid.org/0000-0001-7536-2506
https://doi.org/10.3390/s21124151
https://doi.org/10.3390/s21124151
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21124151
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21124151?type=check_update&version=1

Sensors 2021, 21, 4151 2 of 17

Therefore, this work proposes a fully parallel FPGA implementation of the Otsu algo-
rithm. Unlike most approaches proposed in the literature, a full-parallel implementation
reduces the bottleneck for processing speed compared to sequential systems or hybrid
hardware architectures, that is, architectures implemented with sequential and parallel
schemes. Besides, given the continuous increase in the volume of data present in the DIP
applications, a full-parallel strategy is less likely to become obsolete quickly.

The remainder of this paper is organized as follows: Section 2 presents the related
works in the literature; Section 3 addresses the theoretical foundation of the Otsu method;
Section 4 shows a detailed description of the architecture proposed in this paper; while
Section 5 presents and analyzes the synthesis results obtained from the described im-
plementation, including a comparison to other works. Finally, Section 7 presents the
final considerations.

2. Related Works

Many proposals can be found in the literature for real-time applications of the Otsu
algorithm deployed in FPGAs. In [22], an adaptive lane departure detection and alert
system is presented, while in [23], a lane departure and frontal collision warning system.
Meanwhile, in [24], a vision system is presented to detect obstacles and locate a robot
that navigates indoors; in [25], a system for detecting moving objects is presented; [26],
presents a system to assist in the diagnosis of glaucoma; and, in [27], a system for im-
proving thermograms is presented. However, these articles provide few details about the
hardware implementation.

Among the first FPGA implementations of the Ostu algorithm is the proposal of [16],
synthesized for an Altera Cyclone II FPGA. The design improved the algorithm’s perfor-
mance through a hybrid hardware architecture and Altera MegaCores, eliminating complex
divisions and multiplications of the algorithm. The architecture developed was used for the
segmentation of an image with a resolution of 320× 240 and pixel represented by 10 bits.
Through visual segmentation results, they evaluated the implementation performance as
satisfactory.

Other works have proposed a hardware implementation using logarithmic functions
to eliminate the division and multiplication circuits. In [17,19], the authors implemented
two versions of the Otsu algorithm, in which one version uses the logarithmic functions,
to compare the results achieved between them. The architectures developed by [17] were
synthesized for a Xilinx Virtex XCV800 HQ240-4 FPGA. The implementation without
the logarithmic functions occupied a hardware area of 622 slices and 103 Input/Output
Blocks (IOBs), obtaining a clock latency of 362.4ns. Meanwhile, the logarithmic function
implementation occupied 109 slices and 49 IOBs, obtaining a clock latency of 132ns.

The architectures presented by [19] were developed on the Altera Cyclone IV EP4CE115F29C6N
FPGA. The synthesis results obtained for the algorithm implemented without the loga-
rithmic functions occupied 6525 logic elements, 4920 registers, 18,266 bits of memory,
and 79 multipliers of 9 bits. Regarding the processing time, considering an image with a
resolution of 1280× 1024, the system achieved a maximum frequency of 130.89 MHz and
latency of 589 clock cycles. In contrast, the implementation with the logarithmic function
used 2440 logic elements, 1026 registers, 10,943 bits of memory, and 79 multipliers of 9 bits.
Moreover, it achieved a maximum frequency of 114.62 MHz and a latency of 536 clock
cycles. Therefore, the results presented in [17,19] indicate that the algorithm designed with
logarithmic function reduced the FPGA area occupation and latency.

In [18,20], similar architectures of the Otsu algorithm in the Virtex-5 xc5vfx70t ffg1136-
1 FPGA were deployed, available on the Xilinx ML-507 development platform. Both
proposals were developed in VHDL, using fixed-point representation, operating at a clock
frequency of 25.175MHz. The proposal described in [18] occupied 168 slices and 33 IOBs,
while in [20], the implementation reached an area occupation of 161 slices, 21 IOBs, 72 Look-
Up Tables (LUTs), 591 registers, 4 blocks of RAM (BRAMs), and 5 DSP48Es. In addition,
Reference [20] presented results related to the processing time for a 640× 480 image, with

Sensors 2021, 21, 4151 3 of 17

pixels represented by 8 bits. This work reached a latency of 5 clock cycles and throughput
of 40.28 megabits processed per second (Mbps).

Meanwhile, it was presented in [21] an implementation for binarization and thinning
of fingerprint images, using the Otsu method, on a Spartan 6 LX45 FPGA. Concerning the
area occupation, 1898 registers, 1859 LUTs, 735 slices, 10 IOBs and 44 BRAMs were used.
Regarding processing time, a maximum clock frequency of 100MHz was achieved, with
the execution time of 1489 ms for processing a 280× 265 image and latency of 531 clock
cycles or 5310 ns. Besides, a comparison with the same technique implemented in Matlab
was also presented, showing that the FPGA was ≈10× faster than the Matlab version.

Thus, this work proposes an FPGA implementation of the Otsu algorithm to improve
its performance. Unlike the works presented in the literature, the architecture proposed
here uses a fully parallel scheme. The hardware implementation was developed in Register-
Transfer Level (RTL), using fixed-point representation, in an Arria 10 GX 1150 FPGA. The
results concerning the hardware area occupation and throughput are also presented.

3. Otsu’s Algorithm

The Otsu is one of the most popular thresholding algorithms, used to find an optimal
threshold that separates an image into two classes: the background and object. These
classes are represented by C0 and C1, respectively. This method has the advantage of
performing all its calculations based only on the histogram of the image [7,8].

Initially, the algorithm starts by calculating the normalized histogram of an image, A,
in grayscale, which is described as

A(m) =



a0,0(n) · · · a0,j(n) · · · a0,M−1(n)
...

. . .
...

. . .
...

ai,0(n) · · · ai,j(n) · · · ai,M−1(n)
...

. . .
...

. . .
...

aN−1,0(n) · · · aN−1,j(n) · · · aN−1,M−1(n)

 (1)

where ai,j is one pixel of b bits and M× N is the image dimension. The pixels can assume L
distinct integer intensity levels, represented by k and characterized as a value in a range of
0 to L− 1, where L = 2b. Each n-th pixel is processed in an instant ts, which represents the
sampling time. Thus, one complete image can be processed at every m-th moment, where

m = M× N × ts. (2)

This equation must be changed if more than one pixel is processed per sample time.
The histogram of each m-th image, A(m), is calculated and stored in the vector

p(m) = [p0(m), . . . , pk(m), . . . , pL−1(m)] (3)

where each k-th component, pk(m), is defined as

pk(m) =
nk(m)

M× N
, (4)

in which nk(m) denotes the number of pixels with intensity k of the m-th image, described as

nk(m) =
N−1

∑
i=0

M−1

∑
j=0

ci,j(n), (5)

with ci,j(n) expressed as

ci,j(n) =
{

1 if ai,j(n) = k
0 otherwise

. (6)

Sensors 2021, 21, 4151 4 of 17

Subsequently, after obtaining the normalized histogram, stored in the vector p, the
Otsu algorithm calculates an optimal threshold between the two classes, i.e., C0 and C1.
The optimal threshold called here as k∗(m) can be characterized as

k∗(m) = arg max
0≤k≤L−1

σ2
k (m). (7)

where σ2
k (m) is the k-th between-class variance of the m-th image, defined as

σ2
k (m) =

(µL−1(m)×ωk(m)− µk(m))2

ωk(m)(1−ωk(m))
, (8)

where ωk(m) and µk(m) are the probability of class occurrence given a k threshold and the
mean intensity value of the pixels up to the k threshold of the m-th image, respectively,
meanwhile, µL−1(m) is the average intensity of the entire m-th image, called the global
mean, with a value equal to µk(m) when k = L− 1.

The variables ωk(m) and µk(m) can be expressed as

ωk(m) =
k

∑
i=0

pi(m) (9)

and

µk(m) =
k

∑
i=0

i · pi(m). (10)

After finding the optimal threshold value, k∗(m), the pixels of the input image, A(m),
can be classified as a background or object (C0 and C1), generating a mask for the input image.

4. Hardware Proposal

This work proposes a fully parallel architecture of the Otsu method capable of pro-
cessing images of any dimension, focused on obtaining high-speed processing. The details
of the hardware implementation are described in the following subsections.

4.1. General Architecture

The general hardware architecture implemented for the Otsu algorithm is presented
through a block diagram, shown in Figure 1. As can be observed, the architecture was
developed based on the description presented in Section 3. Therefore, it consists of five
main modules: Normalized Histogram Module (NHM), Probability of Class Occurrence
Module (PCOM), Mean Intensity Module (MIM), Between-Class Variance Module (BCVM),
and Optimal Threshold Module (OTM).

(m)σ2
L−1

NHM

(n)a0
ij

(m)p0
(m)ωk

(m)μk

(m)μL−1

(m)σ2
0

(m)σ2
k∗

PCOM

MIM

(m)pk

(m)pL−1

...
...

...
...

...

BCVM
(m)μ0

(m)ωL−1

(m)ω0

OTM
(m)σ2

k

(m)k∗

...
...

...
...

...
...

...

(n)aG
ij

...

t1

t2 t3

t4

Figure 1. General architecture of the proposed Otsu Algorithm implementation.

Sensors 2021, 21, 4151 5 of 17

Initially, the NHM module receives the parallel input of G image pixels, where G
is the number of submodules internal to the NHM that simultaneously calculate the
normalized histogram, according to Equations (3) and (4). Subsequently, the PCOM
module uses the histogram components to calculate the class occurrence probabilities,
according to Equation (9), while the MIM module calculates the average intensities, based
on Equation (10). The PCOM and MIM modules perform their calculations simultaneously.
Afterward, these two modules’ outputs are supplied to BCVM, in which the values of the
between-class variance are computed, according to Equation (8). Finally, the calculated
between-class variances are compared in the OTM to select the optimal threshold value, as
described in Equation (7).

All variables and constants shown in Figure 1 were implemented in fixed point to
reduce the bit-width compared to floating-point implementations, the bits number used
can be adjusted to adapt the precision of the results obtained to the desired application.
Therefore, each pixel, ag

ij(n), of the input image were configured with 8 bits in the integer

part (without sign), then L = 28 = 256 is defined. For the histogram components, pk(m),
and the probabilities of class occurrence, ωk(m), which has a positive value less than 1, only
24 bits are used in the decimal part. For the average intensity elements, µk(m), 8 bits are
used in the integer part (without sign) and 24 bits in the decimal part. For the between-class
variances, σ2

k (m), 27 bits are used in the integer part (one bit for sign) and 24 bits in the
decimal part. Finally, for the optimal threshold, k∗(m), only 8 bits are used in the integer
part (without sign).

The modules of this architecture are pipelined, and the system operates on the same
sample time, ts. Nonetheless, each module has a different execution time, characterized
here as t1, t2, t3 and t4. To minimize control, due to the lack of synchronism between the
modules, the hardware proposed here defines t1 = t2 = t3 = t4 = tI , where tI is the time
to process a complete image, being equal to the m-th moment that an image is processed.
The time tI is defined by the NHM block, since t1 has the longest execution time. Thus, the
system has an initial latency expressed as

D = 4× tI (11)

and a throughput characterized as
th = 1/tI . (12)

4.2. Normalized Histogram Module (NHM)

The NHM is responsible for generating the normalized histogram of the input image,
by performing the Equations (3) and (4). Usually, this step of the algorithm costs more
clock cycles to complete than other steps, as the entire image needs to be scanned to obtain
the histogram components. We propose the parallelization of this step by calculating the
components’ partial values in a parallel way to optimize this process. Afterward, these
values are summed to obtain their final values. The architecture of this module is shown in
Figure 2.

As can be observed, the NHM module is constituted of G identical submodules, called
Partial Normalized Histogram (PNH), responsible for computing the partial values of
the histogram components. Each g-th input pixel, ag

ij(n), is processed by the g-th PNHg.
Likewise, the PNH modules are internally constituted of L submodules, called Partial
Component of the Normalized Histogram (PCNH), as shown in Figure 3. Thus, each
k-th partial component of the histogram calculated by the g-th PNH, pg

k (n), is computed
in parallel by a PCNHg

k submodule. Figure 4 shows the internal circuit of each PCNH
module, consisting of a comparator (COMPg

k), an adder (SUMg
k), two registers (R) and two

constants (C1 and C2).

Sensors 2021, 21, 4151 6 of 17

(n)a0
ij

...

(n)aG
ij

PNH0

PNH1

PNHG

(n)a1
ij

SU
M

...

(n)p0
0

(n)p0
L−1

...

(n)p1
0

(n)p1
L−1

...

...
(n)pG

0

(n)pG
L−1

...

(m)p1

...

...

PNH2(n)a2
ij

(n)p2
0

(n)p2
L−1

...
SU

M
SU

M

...

SU
M

SU
M

...

(n)p3
0

(n)p3
L−1

SU
M

SU
M

...
(n)pG−1

0

(n)pG−1
L−1

SU
M

SU
M

...

SU
M

SU
M

...
...

SU
M (m)pL−1

SU
M (m)p0

...

...

R
R

R
R

R
R

R
R

R

R

R

R

R

R

R

Figure 2. Architecture of the NHM.

PCNH
g
0

PCNHg
k

PCNH
g

L−1

...

(n)a
g

i,j

PNHg

...

(n)p
g

k...
...

(n)p
g

0

(n)pg

L−1

Figure 3. Architecture of the PNHg.

SUM
g

k

COMP
g

k

(n)a
g

i,j

(n)p
g

kR

R

C2

C1

en

Figure 4. Architecture of the PCNHg
k .

Initially, in each k-th comparator of the g-th PCNHg
k , COMPg

k , it is checked whether
the input pixel, ag

ij(n), has value equal to C1, according to Equation (6). The constant C1 has

a different value of k in each PCNHg
k submodule. Following, the COMPg

k output, ci,j(n),
which is a Boolean value, enables the adder, SUMg

k , when equal to 1. Therefore, when
SUMg

k is enabled, the constant C2 is summed with its previous value, thus operating as
an accumulator. The constant C2 is defined as 1

M×N , so it determines the value of pk(m)
when summed nk times, according to Equation (4). After entering all the image pixels, each
PCNHg

k outputs the k-th partial component of the normalized histogram computed in the
g-th PNH, pg

k (n).
After that, the final value of each k-th component of the m-th image, pk(m), is obtained

by summing all the k-th partial values provided as an output of each g-th PNH, pg
k (n). This

sum is performed for each k-th component through an adder tree (SUM), as represented in
Figure 2. This tree has a depth equal to log2 G. At the end, the value of the components of
the normalized histogram, pk(m), is obtained, according to Equation (3).

Instead of processing 1 pixel per sample time in the histogram, the proposed archi-
tecture allows processing G pixels in parallel. Consequently, the amount of clock cycles

Sensors 2021, 21, 4151 7 of 17

required in this step is reduced and, thus, the processing time of a complete image, tI .
Consequently, the latency is also reduced, and throughput increased. With this scheme, the
value of tI can be defined by

tI =

(
M× N

G
+ dlog2(G)e

)
× ts. (13)

Through this equation, it is possible to observe that the higher the value of G, the
better the performance obtained.

In each PCNH submodule, the constant C1 assumes a grayscale value between 0 and
L− 1 and is represented with only 8 bits in the integer part (without sign). The constant C2,
which has a positive value less than 1, uses only 24 bits in the decimal part. This bit-width is
also used for all the adders of the NHM module, as the normalized histogram components
also assume positive values less than 1. All the k-th components of the histogram, pk(m),
are transmitted in parallel to PCOM and MIM.

4.3. Mean Intensity Module (MIM)

The MIM calculates the average intensity value of the pixels up to level k, according to
Equation (10). Each k-th average intensity, µk(m), is calculated in parallel. The architecture
of this module, shown in Figure 5, consists of L gains submodules (Gk), L

2 × log2 L adders
(SUM) and one register (R) after each component.

SUM R

R

(m)μ0

(m)μ1

(m)μ2

(m)μ3

(m)μL−4

(m)μL−3

(m)μL−2

(m)μL−1

......

...

... ...
(m)p3 G3 R

R(m)p2

(m)p1 G1 R

R(m)p0 G0

G2

SUM

SUM

R SUM R

SUM R

R

(m)pL−1 GL-1 R

R(m)pL−2

(m)pL−3 GL-3 R

R(m)pL−4 GL-4

GL-2

SUM

SUM

R SUM R SUM

SUM

SUM

SUM R

R

R

R SUM

SUM

SUM

SUM R

R

R

R

...

...

...

...

Figure 5. Architecture of the MIM.

Based on the Equation (10), each k-th pk(m) component of the normalized histogram is
first multiplied by a gain with the value of k. These gains are represented in the architecture
block diagram by G0, ..., GL−1, and the index indicates the value of the applied gains.
Thereafter, each k-th average intensity, µk(m), is obtained by summing the outputs of
all gains with an index from 0 to k. The sum of these values is carried out in parallel
based on the adder proposed by [28], with a maximum of log2 L cascading adders using
this technique.

Sensors 2021, 21, 4151 8 of 17

All k-th gains of this module, Gk, have their output represented with 8 bit in the integer
part (without sign) and 24 bits in the decimal part. Similarly, this bit resolution is also
used for the adders, SUM, as the average intensity values of the pixels are at most equal to
L = 256, for input images with pixels represented by 8 bits. All k-th average intensities,
µk(m), are provided to BCVM in parallel.

4.4. Probability of Class Occurrence Module (PCOM)

The probability of class occurrence for a given threshold k, ωk(m), is performed in
PCOM based on Equation (9). This module has an architecture similar to MIM, but it does
not have the gain submodule to weight the input. Therefore, the inputs are directly linked
to the adders (SUM). Thus, this architecture is composed only of adders and registers, as
shown in Figure 5.

According to Equation (9), the ωk(m) values are obtained by adding all the compo-
nents of the histogram from index 0 to k. Thus, using the parallel adder proposed by [28],
all ωk(m) values are computed simultaneously through the sum of the k-th entries pk(m).

The adders in this module were implemented for the same bit resolution of the inputs,
pk(m), since the probability of class occurrence also assumes positive values less than 1.
All k-th probabilities ωk(m) calculated are propagated to the BCVM in parallel.

4.5. Between-Class Variance Module (BCVM)

The k-th between-class variance of the m-th image, σ2
k (m), are calculated by BCVM

based on the Equation (8). The BCVM module is internally composed of L equal sub-
modules, named Between-Class Variance of k (BCVk), with the same architecture shown
in Figure 6. Each k-th σ2

k (m) is computed in parallel by the k-th submodule BCVk. This
submodule consists of four multipliers (MULTi,k), two subtractors (SUBi,k), a point shift
(BPCK), a Look-Up Table (LUTk) and eleven registers (R).

MULT1,k R
SUB1,k

SUB2,k
MULT3,k

MULT2,k

BPCk LUTk

MULT4,k

(m)μL−1

(m)ωk

(m)μk

1

(m)σ2
k

R

R R

R

R R

R

R

R

R

Figure 6. Architecture of the BCVk submodule.

Equation (8) is performed in parallel in this architecture. Therefore, the numerator
and denominator are performed simultaneously. Concerning the numerator, it is obtained
by first multiplying the k-th probability, ωk(m), by the global mean, µL−1(m), on MULT1,k.
Subsequently, the k-th SUB1,k submodule performs the subtraction between µk(m) and
the MULT1,k output. Finally, the result of this subtraction is multiplied by itself in the
k-th MULT2,k. Regarding the denominator, it is calculated by initially subtracting the k-th
probability, ωk(m), from the value 1 in the k-th SUB2,K. Lastly, the result is multiplied by
the same ωk(m) in the k-th MULT3,k.

The division arithmetic operation is highly costly to the hardware in terms of process-
ing speed, being the architecture’s bottleneck due to the highest critical time. One way to
avoid using the division is to multiply the numerator by the reciprocal of the denominator.
By definition, the reciprocal of a number is its inverse. Thereupon, the denominator’s
reciprocal can be approximated for a range of predefined values and stored in a LUT. Thus,
the division can be performed using only one LUT and a multiplier, LUTk and MULT4,k,
consequently increasing the throughput of the implementation.

Thus, each k-th value in the output of MULT3,k has a reciprocal approximated value in
the k-th LUTk. This LUT was configured with a depth of L, storing words of 33 bits, where

Sensors 2021, 21, 4151 9 of 17

9 bits represent the integer part (one bit for sign) and 24 bits the fractional. The mapping of
the output value of each k-th MULT3,k to an address of the LUTk is performed by shifting
the binary point eight bits to the right by the k-th BPCk. The approximate value of the
reciprocal shown at the output of each k-th LUTk is multiplied by the calculated value
of the numerator in MULT4,k. The result of this multiplication is the k-th between-class
variance of the m-th image, σ2

k (m).
The subtractor SUB1,k was configured with 9 bits in the integer part (one bit for sign)

and 24 bits in the decimal part, while SUB2,k, uses only 24 bits in the decimal part. The
multiplier MULT1,k uses 8 bits in the integer part (without sign) and 24 bits in the decimal
part, while MULT2,k uses 18 bits in the integer part (one bit for sign) and 24 bits in the
decimal part. Meanwhile, MULT3,k was configured with only 24 bits in the decimal part,
and MULT4,k uses 27 bits in the integer part (one bit for sign) and 24 bits in the decimal
part. Each k-th between-class variance calculated is propagated in parallel to the OTM.

4.6. Optimal Threshold Module (OTM)

The OTM module performs the last step of the Otsu algorithm, responsible for compar-
ing all k-th values of the between-class variance, σ2

k (m), to determine the optimal threshold
of the m-th image, k∗(m), based on Equation (7). The architecture of this module is shown
in Figure 7. As can be observed, it consists of L− 1 comparators (COMPk), 2× (L− 1)
multiplexers (MUX) and a register (R) after each component.

...

...

...

kL−3
kL−2

COMPL/2
(m)σ2

L−2

(m)σ2
L−1

R
RL − 2 kL/2

σ2
k

L/2M
U
X

R

M
U
X

L − 1

COMP1
(m)σ2

0

(m)σ2
1

R
R0

1
k1

σ2
k1M

U
X

R

M
U
X

COMPL-1
σ2

kL−3

σ2
kL−2

R
R

M
U
X

R

M
U
X

(m)k
∗

(m)σ2
k

∗

Figure 7. Architecture of the OTM.

According to Equation (7), the optimal threshold of the m-th image, k∗(m), is the
threshold value for which the highest value of between-class variance is obtained. For this
purpose, the between-class variances of the m-th image, σ2

k (m), are compared through a
comparator tree. Each k-th COMPk compares whether a given variance σ2

k (m) is greater
than the other, σ2

k+1(m). This comparator is used as a key selector of two multiplexers,
defining on the outputs the largest variance value that was compared and its respective
threshold k. All outputs of the multiplexers are passed to the next branch of the tree until
the last comparator, COMPL−1, in which the optimal threshold value of the m-th image,
k∗(m), should be selected as the output of the multiplexers, as well as its between-class
variance, σ2

k∗(m).
Therefore, the optimal threshold of the m-th input image is determined by the pro-

posed architecture of a fully parallel design. A new value of k∗(m) is computed for every
m-th instant.

5. Results

The architecture presented in the previous section was developed on an FPGA Arria
10 GX 1150, and the analysis of the synthesis results was carried out concerning hardware
area occupation, throughput, and power consumption.

Sensors 2021, 21, 4151 10 of 17

5.1. Hardware Area Occupation Analysis

Initially, the hardware area occupation analysis was performed for the architecture
with one PNH module only. The results are shown in Table 1. The first to the third columns
indicate the number of logical cells occupied (nLC), the number of multipliers implemented
using DSP blocks (nMult), and the number of block memory bits (nBitsM), respectively. It
also presents the resources used in percentage.

Table 1. Hardware area occupation for nPNH = 1.

nLC nMult nBitsM

591,946 (69.3%) 1222 (80.5%) 2162 K (3.9%)

As can be observed, only 4% of the block memory bits available have been used,
while 69% of the logic cells were occupied. The most-used resource was the multipliers,
occupying 80% of the total DSPs available. Therefore, the data presented in Table 1
demonstrate the feasibility of implementing the proposed architecture in the target FPGA.
Besides, the Arria-10 FPGA still has resources available that can be used to implement
additional logic, thus allowing an increase in the number of PNH modules.

PNH modules require only logical cells for their implementation since they are not
designed with multipliers and memories. Therefore, the 30% of unused logic cells in the
Arria-10 allow for the increasing of the number of PNH modules. Hence, we also analyzed
the area occupation for the Arria-10 FPGA by increasing the number of PNH modules
(nPNH). The number of occupied logical cells is presented in Table 2, as there is no change
in the use of other resources.

Table 2. Number of logic cells required per PNH module.

nPNH nLC

1 591,946 (69.3%)
2 629,096 (73.6%)
4 680,884 (79.7%)
6 740,368 (86.6%)
8 788,092 (92.2%)

10 848,630 (99.3%)

Figure 8 shows the curve obtained by linear regression using the set of values pre-
sented in Table 2. The equation associated with the regression analysis is expressed by

nLC =
⌈
(2.8× nPNH + 56.9)× 104

⌉
. (14)

This equation can obtain the number of logical cells occupied by the architecture
without the NHM module when defining nPNH = 0.

Sensors 2021, 21, 4151 11 of 17

Number of modules PNH (n
PNH

)

0 2 4 6 8 10

N
u
m

b
er

 o
f

L
o
g
ic

 C
el

ls
 (

n
L

C
)

×10
5

6

6.5

7

7.5

8

8.5
Measured points

Fitted curve (R
2
=0.998)

Figure 8. Linear regression curve for the hardware area occupation (logic cells) per nPNH .

Therefore, Equation (14) allows for the estimation of the maximum number of PNH
modules an FPGA can support. Table 3 presents the maximum number of PNH modules
supported on different commercial FPGAs [29,30]. The first and second columns present
the label and FPGA, respectively, while the third and fourth columns present the number
of logical cells available (nmax

LC) and the maximum number of PNH modules that can be
implemented with these resources (nmax

PNH). Hence, a high degree of parallelism can be
achieved through our proposed architecture, limited only by the FPGA resources available.

Table 3. Estimated number of PNH modules, nmax
PNH , for some commercial FPGAs.

Label FPGA nmax
LC nmax

PNH

FPGA1 Arria 10 GX 1150 854,400 10
FPGA2 Agilex AGF 027 1,825,600 44
FPGA3 Stratix 10 GX 10M 6,932,160 227

5.2. Time Processing Analysis

The data related to the system’s processing time was obtained considering a clock
cycle of 13.3ns, which is defined by its critical path. Moreover, as the circuit operates with
the same clock, the sampling time is also defined as ts = 13.3 ns.

The system’s processing time, for different amounts of nPNH , is presented in Table 4.
The first column indicates the number of nPNH . Meanwhile, from the second to fourth
columns are shown, respectively, the image processing time, tI , defined according to
Equation (13), the initial system latency, D, according to Equation (11) and the throughput,
th, which in this work consists of the number of images processed per second (IPS),
determined through Equation (12). According to Equation (13), the processing time of an
image depends on its size. Thus, the data presented in Table 4 concern the processing of a
3840× 2160 image with 4K resolution.

Table 4. System’s processing time.

nPNH tI (ms) D (ms) th (IPS)

1 110.32 441.28 9
2 55.16 220.64 18
4 27.58 110.32 36
6 18.39 73.56 54
8 13.79 55.16 72
10 11.03 44.12 90

As can be observed in Table 4, the value of nPNH is directly proportional to th and
inversely proportional to tI and D. Thus, the more PNH modules employed in the imple-
mentation, the better the system performance. Figure 9 shows the curve obtained by linear

Sensors 2021, 21, 4151 12 of 17

regression that relates the values of nPNH and th. The equation associated with this curve
is expressed by

th = th(nPNH = 1)× nPNH . (15)

According to (12), and (13), Equation (15) can be rewritten as

th =
1(

M×N
1 + dlog2(1)e

)
× ts

× nPNH =
nPNH

M× N × ts
. (16)

Number of modules PNH (n
PNH

)

0 2 4 6 8 10

T
h
ro

u
g
h
p
u
t

in
 I

P
S

 (
th

)

0

20

40

60

80
Measured points

Fitted curve (R
2
=1)

Figure 9. Throughput in IPS, th, per nPNH .

Equation (16), allows one to define tI values as

tI =
1
th

=
M× N × ts

nPNH
. (17)

When comparing this equation to Equation (13), it is observed that the only difference
between them is the absence of the sum of the logarithm. The reason for that is

dlog2(nPNH)e �
M× N
nPNH

. (18)

Thus, this component can be disregarded in the calculation of tI .
Afterward, the proposed architecture’s processing time was analyzed for other com-

mercial FPGAs, previously presented in Table 3, adopting for each FPGA an nPNH = nmax
PNH .

For this purpose, the values tI and th were defined according to Equations (16) and (17),
respectively, and different image resolutions were considered. The results are shown in
Table 5.

Table 5. Values of tI and th for some commercial FPGAs for different image sizes.

Image Size
FPGA1 FPGA2 FPGA3

tI (ms) th (IPS) tI (ms) th (IPS) tI (ms) th (IPS)

4 K (3840× 2160) 11.03 90 2.51 398 0.49 2057
8 K (7680× 4320) 44.13 22 10.03 99 1.94 514

10 K (10,240×4320) 58.80 16 13.40 74 2.60 385
16 K (15,360×8640) 176.50 5 40.11 24 7.78 128

All FPGA models analyzed achieved a high throughput in processing images with
4 K resolution, allowing real-time processing of 4 K videos in all models. For images with
8 K and 10 K resolutions, real-time processing proved to be more viable in the FPGA2
and FPGA3. Finally, a high throughput was also achieved by the FPGA3 in processing
16 K images, allowing real-time processing of videos with this resolution. Therefore, the

Sensors 2021, 21, 4151 13 of 17

FPGA3 offers better performance due to the high number of PNH modules that can be
implemented, i.e., the increased architecture’s parallelism.

6. Comparison with State-of-the-Art Works

Comparisons with the state-of-the-art works were performed for the three commercial
FPGAs previously mentioned. The architectures were implemented using the maximum
number of PNH modules, presented in Table 3. The results were compared only with
works that presented data about hardware area occupation and processing time.

6.1. Hardware Occupation Comparison

Table 6 presents the comparison of the hardware area occupation. The first column
indicates the reference analyzed. The second to fifth columns show the FPGA, the number
of logical cells, multipliers, and the number of bits of memory blocks, respectively, of the
reference. Meanwhile, the last four columns present the commercial FPGA to be compared
and the ratio between the hardware components used in our proposed implementation,
nwork, and those used in the literature, nre f . The ratio of the hardware occupation can be
expressed as

Roccupation =
nwork
nre f

, (19)

where nwork and nre f can be replaced by nLC, nMULT , or nBitsM. This ratio was calculated
using the hardware occupancy data presented in Tables 1 and 3.

Table 6. Hardware occupation comparison with other works.

Ref. FPGAref nLC nMult nBitsM FPGAwork
Roccupation

nLC nMult nBitsM

[21] Spartan 6 2975 - 792 K
FPGA1 ≈287.19× - ≈2.73×
FPGA2 ≈613.65× - ≈2.73×
FPGA3 ≈2330.13× - ≈2.73×

[19] Cyclone IV 2440 46 10.94 K
FPGA1 ≈350.16× ≈26.56× ≈197.62×
FPGA2 ≈748.20× ≈26.56× ≈197.62×
FPGA3 ≈2841.05× ≈26.56× ≈197.62×

[20] Virtex 5 1031 5 144 K
FPGA1 ≈828.71× ≈244.40× ≈15.01×
FPGA2 ≈1770.71× ≈244.40× ≈15.01×
FPGA3 ≈6723.72× ≈244.40× ≈15.01×

The proposal presented by [21] was deployed on a Spartan-6 LX45 FPGA and occupied
an area of 1859 LUTs and 44 RAM blocks. This FPGA uses about 1.6 logic cells (LC) per
LUT, having used about 2, 975 LC, and each block of RAM has 18 Kbits, so 792 Kbits of
memory is used [31]. The number of multipliers used was not available.

In [19], results were presented for two different implementations of the Otsu method,
deployed on the Altera Cyclone IV EP4CE115F29C6N FPGA. The comparison with this
work was performed considering the best results presented by its authors, i.e., the method
using logarithmic functions. The implemented hardware used 2440 LC, 10.94 Kbits of
memory and 46 multipliers.

The proposal presented in [20] uses the Virtex-5 xc5vfx70tffg1-136-1 FPGA and occu-
pied a total of 161 slices, 4 BRAMs and 5 multipliers. Each slice of this FPGA has 4 LUTs of
6-input, hence, 6.4 LC per slice was used, and each memory block has 36 Kbits [32]. Thus,
about 1030 LC and 144 Kbits of memory were used.

Through Table 6, we found that in all comparisons performed our design presented a
more significant hardware area occupation, due to the high degree of parallelism adopted
in our proposed implementation, which results in more hardware resources.

Sensors 2021, 21, 4151 14 of 17

6.2. Time Processing Comparison

Table 7 presents a throughput comparison. The analysis was carried out for all the
commercial FPGAs previously presented. As can be seen, the first column presents the
analyzed reference, while the second to fourth columns show the image resolution (IR),
the clock (Clk), and the throughput achieved (thre f), respectively, by the reference. The
last three columns indicate, respectively, the FPGAs analyzed, the throughput (thwork),
and speedup reached with our architecture. The values of thwork are calculated according
to Equation (16), employing the same clock and image size adopted by the compared
reference. The speedup calculation is defined as

Speedup =
thwork
thre f

. (20)

Table 7. Throughput comparison with other works.

Ref. RI Clk (ns) thre f (IPS) FPGA thwork
(IPS) Speedup

[21] 280× 265 10.00 671.59
FPGA1 13,469.83 ≈20.06×
FPGA2 59,088.95 ≈87.98×
FPGA3 298,621.34 ≈444.65×

[19] 1280× 1024 8.72 43.72
FPGA1 874.90 ≈20.01×
FPGA2 3848.92 ≈88.03×
FPGA3 19,833.44 ≈453.65×

[20] 640× 480 39.72 16.39
FPGA1 819.43 ≈49.99×
FPGA2 3602.87 ≈219.82×
FPGA3 18,494.20 ≈1128.38×

In [21], the runtime results are presented using a clock of 10 ns and a 280× 265 input
image, with pixels represented by 8 bits. The processing time is 1.489 ms, achieving a
throughput of 671.59 IPS.

In [19], time and latency data were presented considering a clock of 8.72 ns and
the processing of a 1280× 1024 image, also with pixel representation for 8 bits. As the
processing time of an image was not presented by the authors, it was estimated as the clock
value times the number of cycles required to enter an image and obtain its respective output.
The processed image’s input and output are performed serially, requiring 1280× 1024
clocks cycles to scan the entire image. The latency indicated for the implementation of the
Otsu method using logarithmic optimization is equal to 536. Thus, the calculated time
for processing an image is equal to (1280× 1024× 2 + 536)× 8.72× 10−9 ≈ 22.87 ms per
image. Hence, achieving a throughput of 43.72 IPS.

The proposal presented by [20] displays results from throughput for processing a
640× 480 image, with pixels represented by 8 bits, and adopting a clock of 39.72 ns. The
throughput shown indicates the number of megabits processed per second (Mbps), which
in turn is 40.28 Mbps. As each pixel has 8 bits, the number of images processed per second
can be obtained by 40.28 × 106

8 × 640 × 480 ≈ 16.39 IPS.
According to the results presented in Table 7, our proposed architecture obtained

better throughput values than other works in the literature in all comparisons performed.
High speedup values were obtained, varying between 20× and 1128×. The performance
achieved by the developed architecture is mainly due to the high degree of parallelism
explored in this proposal, with a focus on parallelizing the calculation of the histogram. In
contrast, works in the literature present implementations with a low degree of parallelism
and are focused on optimizing the calculation of between-class variance.

Sensors 2021, 21, 4151 15 of 17

6.3. Power Consumption Comparison

Table 8 presents a comparison of our design’s dynamic power consumption compared
to other proposals in the literature. The dynamic power consumption can be expressed as

Pd ∝ Ng × Fclk ×V2
DD (21)

where Pd is the dynamic power consumption, Ng is the number of hardware components,
Fclk is the frequency and VDD is the supply voltage. The frequency at which a circuit can
operate is proportional to the voltage [12,33]. Thus, the Equation (21) can be rewritten as

Pd ∝ Ng × F3
clk. (22)

For all comparisons, the value of Ng was calculated as

Ng = nLC + nMult. (23)

Based on the Equation (22), the saved dynamic energy, Sd, can be expressed by

Sd =
Nre f

g × (Fre f
clk)

3

Nwork
g × (Fwork

clk)3
(24)

where Nre f
g and Fre f

clk are the number of hardware components and clock of literature works,
respectively, and Nwork

g and Fwork
clk are the number of components and the clock adopted in

this work to obtain the same throughput of the reference to which it is being compared.

Table 8. Dynamic power comparison with other works.

Ref. Nre f
g

Fre f
clk

(MHz)
Nwork

g FPGA Fwork
clk

(MHz)
Sd

[21] 2975 100.00 593,168
FPGA1 4.98 ≈2.82 · 101×
FPGA2 1.13 ≈1.13 · 103×
FPGA3 0.22 ≈4.03 · 104×

[19] 2486 114.62 593,168
FPGA1 5.73 ≈2.33 · 101×
FPGA2 1.30 ≈9.33 · 102×
FPGA3 0.25 ≈3.46 · 104×

[20] 1036 25.175 593,168
FPGA1 0.50 ≈1.55 · 102×
FPGA2 0.11 ≈6.80 · 103×
FPGA3 0.02 ≈9.98 · 105×

Table 8 shows that our implementation presents a significant reduction in energy
consumption. The results presented indicate an energy saving, regarding works in the liter-
ature, between 2.33 · 101 and 9.98 · 105×. This reduction is obtained through the high degree
of parallelism of the technique, which allows one to obtain high throughput with the circuit
operating at a low clock frequency. Therefore, although the circuit uses many hardware
components, the energy consumed is reduced due to the low-frequency operation.

7. Conclusions

This work presented a parallel implementation proposal of the Otsu method in FPGA.
The hardware architecture was developed using RTL design and fixed-point representation.
All the implementation details were presented, and the synthesis results were related to the
hardware area occupation and processing time. The results showed that the proposed archi-
tecture achieved high throughput, enabling real-time processing of high-resolution videos.
Comparisons with state-of-the-art works were also performed regarding the hardware area
occupancy, throughput and dynamic power consumption. Our proposed architecture out-

Sensors 2021, 21, 4151 16 of 17

performed the compared ones in terms of throughput and power consumption, achieving
a speedup from 20× until 103× and reducing the power from 23× until 105×. However,
the amount of hardware resources required is higher than in other architectures due to the
high degree of parallelism adopted in our method. Finally, as future work, a study will be
carried out to analyze the impact on the result’s accuracy by reducing the number of bits
used. Besides, tests will be conducted with the processing of videos in real-time.

Author Contributions: All the authors have contributed in various degrees to ensure the quality of
this work. (e.g., W.K.P.B. and M.A.C.F. conceived the idea and experiments; W.K.P.B. and M.A.C.F.
designed and performed the experiments; W.K.P.B., L.A.D. and M.A.C.F. analyzed the data; W.K.P.B.,
L.A.D. and M.A.C.F. wrote the paper. M.A.C.F. coordinated the project.). All authors have read and
agreed to the published version of the manuscript.

Funding: This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior (CAPES)—Finance Code 001.

Acknowledgments: The authors wish to acknowledge the financial support of the Coordenação de
Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for their financial support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Barros, W.K.; Morais, D.S.; Lopes, F.F.; Torquato, M.F.; Barbosa, R.d.M.; Fernandes, M.A. Proposal of the CAD system for

melanoma detection using reconfigurable computing. Sensors 2020, 20, 3168. [CrossRef] [PubMed]
2. Menaka, R.; Janarthanan, R.; Deeba, K. FPGA implementation of low power and high speed image edge detection algorithm.

Microprocess. Microsystems 2020, 75, 103053. [CrossRef]
3. Younis, D.; Younis, B.M. Low Cost Histogram Implementation for Image Processing using FPGA. In IOP Conference Series:

Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; Volume 745, p. 012044.
4. Sreenivasulu, M.; Meenpal, T. Efficient hardware implementation of 2d convolution on FPGA for image processing application.

In Proceedings of the 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT),
Coimbatore, India, 20–22 Febuary 2019; pp. 1–5.

5. Altuncu, M.A.; Kösten, M.M.; Çavuşlu, M.A.; Şahın, S. FPGA-based implementation of basic image processing applications as
low-cost IP core. In Proceedings of the 2018 26th Signal Processing and Communications Applications Conference (SIU), Izmir,
Turkey, 2–5 May 2018; pp. 1–4.

6. Bailey, D. Design for Embedded Image Processing on FPGAs; Wiley-IEEE, Wiley: Atlanta, GA, USA, 2011.
7. Gonzalez, R.C.; Woods, R.E. Digital Image Processing, 4th ed.; Pearson: New York, NY, USA, 2018.
8. Otsu, N. A Threshold Selection Method from Gray-Level Histograms. IEEE Trans. Syst. Man Cybern. 1979, 9, 62–66. [CrossRef]
9. Gokhale, M.; Graham, P. Reconfigurable Computing: Accelerating Computation with Field-Programmable Gate Arrays; Springer:

Dordrecht, The Netherland, 2005.
10. Vahid, F. Digital Design with RTL Design, Verilog and VHDL, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010.
11. Dias, L.A.; Damasceno, A.M.; Gaura, E.; Fernandes, M.A. A full-parallel implementation of Self-Organizing Maps on hardware.

Neural Netw. 2021. [CrossRef] [PubMed]
12. Silva, S.N.; Lopes, F.F.; Valderrama, C.; Fernandes, M.A. Proposal of Takagi–Sugeno Fuzzy-PI Controller Hardware. Sensors 2020,

20, 1996. [CrossRef] [PubMed]
13. Torquato, M.F.; Fernandes, M.A. High-performance parallel implementation of genetic algorithm on fpga. Circuits Syst. Signal

Process. 2019, 38, 4014–4039. [CrossRef]
14. Da Costa, A.L.; Silva, C.A.; Torquato, M.F.; Fernandes, M.A. Parallel implementation of particle swarm optimization on fpga.

IEEE Trans. Circuits Syst. Ii Express Briefs 2019, 66, 1875–1879. [CrossRef]
15. Coutinho, M.G.; Torquato, M.F.; Fernandes, M.A. Deep neural network hardware implementation based on stacked sparse

autoencoder. IEEE Access 2019, 7, 40674–40694. [CrossRef]
16. Jianlai, W.; Chunling, Y.; Min, Z.; Changhui, W. Implementation of Otsu’s thresholding process based on FPGA. In Proceedings of

the 2009 4th IEEE Conference on Industrial Electronics and Applications, Xi’an, China, 25–27 May 2009; pp. 479–483. [CrossRef]
17. Tian, H.; Lam, S.K.; Srikanthan, T. Implementing Otsu’s thresholding process using area-time efficient logarithmic approximation

unit. In Proceedings of the 2003 International Symposium on Circuits and Systems, Bangkok, Thailand, 25–28 May 2003; Volume
4, p. IV. [CrossRef]

18. Pandey, J.G.; Karmakar, A.; Shekhar, C.; Gurunarayanan, S. A Novel Architecture for FPGA Implementation of Otsu’s Global
Automatic Image Thresholding Algorithm. In Proceedings of the 2014 27th International Conference on VLSI Design and 2014
13th International Conference on Embedded Systems, Mumbai, India, 5–9 January 2014; pp. 300–305. [CrossRef]

http://doi.org/10.3390/s20113168
http://www.ncbi.nlm.nih.gov/pubmed/32503149
http://dx.doi.org/10.1016/j.micpro.2020.103053
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1016/j.neunet.2021.05.021
http://www.ncbi.nlm.nih.gov/pubmed/34112575
http://dx.doi.org/10.3390/s20071996
http://www.ncbi.nlm.nih.gov/pubmed/32252481
http://dx.doi.org/10.1007/s00034-019-01037-w
http://dx.doi.org/10.1109/TCSII.2019.2895343
http://dx.doi.org/10.1109/ACCESS.2019.2907261
http://dx.doi.org/10.1109/ICIEA.2009.5138252
http://dx.doi.org/10.1109/ISCAS.2003.1205763
http://dx.doi.org/10.1109/VLSID.2014.58

Sensors 2021, 21, 4151 17 of 17

19. Torres-Monsalve, A.F.; Velasco-Medina, J. Hardware implementation of ISODATA and Otsu thresholding algorithms. In
Proceedings of the 2016 XXI Symposium on Signal Processing, Images and Artificial Vision (STSIVA), Bucaramanga, Colombia,
31 August–2 September 2016; pp. 1–5. [CrossRef]

20. Pandey, J.G.; Karmakar, A. Unsupervised image thresholding: hardware architecture and its usage for FPGA-SoC platform. Int.
J. Electron. 2019, 106, 455–476. [CrossRef]

21. Das, R.K.; De, A.; Pal, C.; Chakrabarti, A. DSP hardware design for fingerprint binarization and thinning on FPGA. In
Proceedings of The 2014 International Conference on Control, Instrumentation, Energy and Communication (CIEC), Calcutta,
India, 31 January–2 February 2014, pp. 544–549. [CrossRef]

22. Wang, W.; Huang, X. An FPGA co-processor for adaptive lane departure warning system. In Proceedings of the 2013 IEEE
International Symposium on Circuits and Systems (ISCAS2013), Beijing, China, 19–23 May 2013; pp. 1380–1383. [CrossRef]

23. Zhao, J.; Bingqian Xie.; Huang, X. Real-time lane departure and front collision warning system on an FPGA. In Proceedings of
the 2014 IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 9–11 September 2014; pp. 1–5.
[CrossRef]

24. Alhamwi, A.; Vandeportaele, B.; Piat, J. Real Time Vision System for Obstacle Detection and Localization on FPGA. In
Computer Vision Systems; Nalpantidis, L., Krüger, V., Eklundh, J.O., Gasteratos, A., Eds.; Springer International Publishing: Cham,
Switzerland, 2015; pp. 80–90.

25. Ren, X.; Wang, Y. Design of a FPGA hardware architecture to detect real-time moving objects using the background subtraction
algorithm. In Proceedings of the 2016 5th International Conference on Computer Science and Network Technology (ICCSNT),
Changchun, China, 10–11 December 2016; pp. 428–433. [CrossRef]

26. Tulasigeri, C.; Irulappan, M. An advanced thresholding algorithm for diagnosis of glaucoma in fundus images. In Proceedings
of the 2016 IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT),
Bangalore, India, 20–21 May 2016; pp. 1676–1680. [CrossRef]

27. Kim, H.S. FPGA-based of thermogram enhancement algorithm for non-destructive thermal characterization. Int. J. Eng. 2018,
31, 1675–1681.

28. Ladner, R.E.; Fischer, M.J. Parallel Prefix Computation. J. ACM 1980, 27, 831–838. [CrossRef]
29. Intel. Intel® Stratix® 10 GX/SX Device Overview. Available online: https://www.intel.com/content/dam/www/

programmable/us/en/pdfs/literature/hb/stratix-10/s10-overview.pdf (accessed on 2 January 2021).
30. Intel. Intel® Agilex™ FPGAs and SoCs Advanced Information Brief (Device Overview). Available online: https://www.intel.

com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/ag-overview.pdf(accessed on 2 January 2021).
31. Xilinx. Spartan-6 FPGA Configurable Logic Block. Available online: https://www.xilinx.com/support/documentation/user_

guides/ug384.pdf (accessed on 13 June 2021).
32. Xilinx. Virtex-5 Special Edition. Available online: https://www.xilinx.com/publications/archives/xcell/Xcell59.pdf (accessed

on 13 June 2021).
33. McCool, M.; Robison, A.D.; Reinders, J. Chapter 2—Background. In Structured Parallel Programming; Morgan Kaufmann: Boston,

MA, USA, 2012; pp. 39–75.

http://dx.doi.org/10.1109/STSIVA.2016.7743329
http://dx.doi.org/10.1080/00207217.2018.1540065
http://dx.doi.org/10.1109/CIEC.2014.6959148
http://dx.doi.org/10.1109/ISCAS.2013.6572112
http://dx.doi.org/10.1109/HPEC.2014.7041003
http://dx.doi.org/10.1109/ICCSNT.2016.8070194
http://dx.doi.org/10.1109/RTEICT.2016.7808118
http://dx.doi.org/10.1145/322217.322232
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/s10-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/s10-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/ag-overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/agilex/ag-overview.pdf
https://www.xilinx.com/support/documentation/user_guides/ug384.pdf
https://www.xilinx.com/support/documentation/user_guides/ug384.pdf
https://www.xilinx.com/publications/archives/xcell/Xcell59.pdf

	Introduction
	Related Works
	Otsu’s Algorithm
	Hardware Proposal
	General Architecture
	Normalized Histogram Module (NHM)
	Mean Intensity Module (MIM)
	Probability of Class Occurrence Module (PCOM)
	Between-Class Variance Module (BCVM)
	Optimal Threshold Module (OTM)

	Results
	Hardware Area Occupation Analysis
	Time Processing Analysis

	Comparison with State-of-the-Art Works
	Hardware Occupation Comparison
	Time Processing Comparison
	Power Consumption Comparison

	Conclusions
	References

