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Abstract: Technology has been promoting a great transformation in farming. The introduction of
robotics; the use of sensors in the field; and the advances in computer vision; allow new systems to
be developed to assist processes, such as phenotyping, of crop’s life cycle monitoring. This work
presents, which we believe to be the first time, a system capable of generating 3D models of non-rigid
corn plants, which can be used as a tool in the phenotyping process. The system is composed by
two modules: an terrestrial acquisition module and a processing module. The terrestrial acquisition
module is composed by a robot, equipped with an RGB-D camera and three sets of temperature,
humidity, and luminosity sensors, that collects data in the field. The processing module conducts
the non-rigid 3D plants reconstruction and merges the sensor data into these models. The work
presented here also shows a novel technique for background removal in depth images, as well as
efficient techniques for processing these images and the sensor data. Experiments have shown that
from the models generated and the data collected, plant structural measurements can be performed
accurately and the plant’s environment can be mapped, allowing the plant’s health to be evaluated
and providing greater crop efficiency.

Keywords: 3D reconstruction; computer vision; sensor data fusion; robotics; agriculture

1. Introduction

The increased demand for agricultural products, whether to feed the world’s popula-
tion, to supply inputs to the industry or even to trade these products on the commodities
market, has encouraged producers to invest in technologies to improve production effi-
ciency. Seeding and harvesting machines are examples of technologies responsible for the
agricultural production substantial growth. The most recent figures from the Food and
Agriculture Organization of the United Nations, going back to 2019, shows that about
12 billion tons of products from the field are produced annually [1]. This scenario is favor-
able for research and development of technologies that help the producer; not only at the
beginning and ending stages of cultivation, but also at its intermediate phases, helping to
identify problems earlier so decisions can be made faster and more accurate [1,2].

The plant growth monitoring is essential to improve crop efficiency and minimize
losses. One of the processes that helps this monitoring is phenotyping. The analysis of
the plant phenotype, that is, its morphological and physiological characteristics coming
from the species genetics and the environmental influence, can be used to evaluate the
individual and collective health of plants. Some phenotypic characteristics are: the plant
size; the leaves width; the leaves and fruits density; and the angulation between the stems
and the leaves; among others. This process and other technologies, such as smart irrigation
systems and real-time monitoring, allow us to follow the plant’s life cycle, identifying
health problems early on; to identify holes in the plantation, due to non-birth or poor
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formation; and to use fertilizers, pesticides, and water in a rational way. This monitoring
aims to increase the efficiency of production, and therefore its volume, and to reduce labor
and farm input costs [2–5].

With the research advances in the three-dimensional (3D) reconstruction area, some
work has been proposed to use 3D reconstruction of plants in phenotyping processes. Most
of these works are limited to controlled environments, avoiding natural factors such as
wind and rain that cause movements in plants. Other works, which use field data, make use
of static images only. These restrictions are due to the difficulty of generating 3D models of
objects with dynamic characteristics, limiting the results seen so far to rigid reconstructions.
However, non-rigid reconstruction is important to acquire more information about the
objects in the scene, as it allows the accumulation of data from different frames. Moreover,
non-rigid reconstruction of plants can be a first step towards modeling the plantation in a
complete and continuous way, allowing its global visualization [2,3,6–8].

This work is inserted in this context. Not to perform phenotyping or plant growth
analysis, but to provide inputs for these processes. Collecting data in the field and pro-
cessing them manually is often unfeasible, since the producer would have to travel a great
distance, depending on the size of the plantation, at various stages of the plant’s life [2,8,9].
Therefore, the objective of this work is to present a system for field data collection and
processing to generate accurate 3D models of non-rigid corn plants in an uncontrolled
environment, which, we believe, is the first system to do this; and merge this model
with sensor data. Specifically, the system was composed of two modules: the acquisition
module and the processing module. The acquisition module has aerial and terrestrial
subsystems; both subsystems collect data from the field for post-processing; this work
will present the development and characteristics of the terrestrial subsystem, called the
terrestrial acquisition module from now on. This module is composed of a robot equipped
with three sets of temperature, humidity, and luminosity sensors and an RGB-D (Red, Blue,
Green and Depth) camera, and is responsible for navigating inside the plantation and
collecting the data. In turn, the processing module is responsible for performing non-rigid
3D reconstruction of the plants generating a 3D model with precise measurements, as well
as merging the sensors data into these models. The proposed system macro view can be
seen in Figure 1. Besides these important contributions, the present work implements
a novel technique for background removal in depth images, based on the logarithmic
function. Several 3D reconstruction techniques were analyzed, and those that proved to
be efficient were selected to be part of the system, such as point cloud treatment, surface
reconstruction, and model deformation. The system was developed to work with corn
crops, but can be adjusted in the future to meet the needs of other crops.

Model and sensors
data fusion

Non-rigid 3D
reconstruction

Processing
module 

Terrestrial
acquisition

module

Figure 1. Proposed system macro view. The terrestrial acquisition module collects temperature,
humidity, and luminosity data and RGB-D videos; the processing module performs a non-rigid
3D reconstruction of the plants and merge the sensors data into these models. With these modules,
the system is able to generate inputs for phenotyping processes.
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To present the system developed and the results achieved, this work was organized as
follows: Section 2 presents the related works, focusing on 3D reconstruction and similar
works that perform 3D reconstruction of plants; Section 3 presents the materials, methods,
and techniques used to build the modules that compose the system; Section 4 presents the
results, by showing the outputs provided by some tests; Section 5 presents the discussion
of the results and proposals for future improvements to the system; Section 6 presents the
conclusions.

2. Related Works
2.1. Robotics in Agriculture

The introduction of large machinery in agriculture, mainly to perform the seeding
and harvesting of crops, has contributed significantly to consolidating today’s high agri-
cultural production rates. Nowadays, agriculture is beginning to experience the phase of
robotization [10–12]. Robotics in agriculture enables and facilitates the functionalities of
precision agriculture, characterized by the application of techniques aimed to improve the
efficiency of agricultural cultivation and better use and allocation of resources, such as soil,
pesticides, and water [13]. In this sense, tasks in agriculture tend to be increasingly more
precise with the participation of robots, as well as more sustainable.

From mapping agricultural activities, it can be observed that most of them, espe-
cially in the academic context, can already be performed by robots. Traction [14,15],
seeding [16–19], detection and mapping [8,9], monitoring and phenotyping [2,20–23], pest
control [24–28] and harvesting [29–32] are some activities that have already been addressed
in proposing robotic systems for agriculture in different crops [33]. Among these activities,
detection and mapping; monitoring and phenotyping; and pest control play a prominent
role. These activities are performed in the intermediate phase of the plant’s life cycle to
follow its growth.

The detection and mapping of plants is an essential activity, as it enables the other
activities to be carried out. This task can be performed by robots equipped with geolocation
sensors (Global Positioning System—GPS), three-dimensional sensors (Light Detection
Furthermore, Ranging (LiDAR) and RGB-D cameras) and Simultaneous Localization and
Mapping (SLAM) techniques, as the system proposed by Weiss and Biber (2011) [9] or
the system proposed by Potena et al. (2019) [8], which use data coming from a robot and
a drone for crop mapping. While detection and mapping can be performed only once
during the plant’s life cycle, monitoring, phenotyping and pest control activities, which
are strongly related, happen periodically and must be performed by flexible systems from
the standpoint of locomotion and data collection. Shafiekhani et al. (2017) [2], for example,
proposes the Vinobot, a robot capable of collecting individualized plant data through a
rod with temperature, humidity, and luminosity sensors and a robotic arm with an RGB-D
camera for capturing depth images. The rod and the robotic arm allow data collection at
different times in the plant’s life in a flexible way, adapting to the size of the plants. The
works by Mueller-Sim et al. (2017) [21] and Bao et al. (2019) [22] also present robots with
similar configurations, but with distinct sensor and flexibility for data collection. After
collecting data in the field, in these works, post-processing takes place to organize and
make the data available. In the case of systems that collect depth images, point clouds
or 3D models can be used for structural analysis processes. The analysis of works and
techniques on 3D reconstruction of plants, therefore, are important to print to the models
generated the highest possible accuracy, ensuring reliability to the system.

2.2. 3D Plants Reconstruction

With the development and cost reduction of 3D sensors, 3D reconstruction research
has come under the attention of researchers. Engineering [34–36], architecture [37,38]
and medicine [39] are some areas benefited by this technology. The basic process of 3D
reconstruction can be described in the following steps: data acquisition; point cloud pre-
processing; point cloud fusion, when sequential depth images or images from different
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sources are used; object model generation or update; and surface reconstruction [40].
Three-dimensional reconstruction can be classified in two ways: rigid and non-rigid 3D
reconstruction. Both are optimization problems, where one seeks to minimize the error
during the merging of the point clouds. However, in rigid 3D reconstruction, the objects
in the scene are static, while in non-rigid 3D reconstruction, these objects are dynamic
and have some level of movement [40–42]. The Iterative Closest Point (ICP) algorithm,
proposed by Besl and McKay (1992) [41], is already well established for rigid 3D recon-
structions, and several other works have augmented and improved it [43–45]. As for non-
rigid 3D reconstruction, there is still no single strongly consolidated technique, but some
works [46–52], such as DynamicFusion [46] and Fusion4D [48], have proposed techniques
for model deformation that are shown to be very efficient.

The 3D reconstruction systems for agriculture, especially those aimed at creating
3D models of plants, can be classified into those for indoor environments (controlled)
and those for open environments, using images from the field. Naturally, indoor systems
have higher accuracy and quality compared to outdoor systems, since the images can be
collected in a standardized way and without the influence of external elements such as rain
and wind. In these systems, the processing flow of the depth images follows the traditional
and some techniques seem to be trending. To perform point cloud fusion, when the case,
ICP [53] and Coherent Point Drift (CPD) [7] techniques were used; for the reconstruction of
the model surface, triangulated mesh generation techniques [3,6,7,54] and Non-uniform
Rational B-Spline (NURBS) representation were mostly used [53,55]. Open environment
oriented systems, on the other hand, are recent and are in early stages [2,22,56]. They
basically use single depth images to reconstruct the 3D models of the plants, only treating
the point clouds, and aim to generate accurate models for taking structural measurements.
However, these systems share the double difficulty of proposing a data collection system
and a data processing system for future use. Both indoor and outdoor systems share two
characteristics: they aim to provide inputs for phenotyping processes; and they perform
rigid 3D reconstruction of plants. From the analysis of these works, it was identified the
absence of non-rigid 3D reconstruction in agricultural systems, an important process to
allow natural characteristics, such as wind, to be considered in the 3D reconstruction; this
type of reconstruction is explored in this work.

3. Proposed System: Materials and Methods

Considering the objective of this work: to use images and field data to perform a
non-rigid 3D reconstruction of the plants and provide inputs for the phenotyping process,
the proposed system was structured to collect the data and then process them. Therefore, its
development was divided into two modules, specifically designed for these activities. The
terrestrial acquisition module focuses mainly on the hardware components of the system,
such as the robot, the sensors, and the RGB-D camera. The processing module is composed
of the software responsible for generating the 3D model of the plant and merging this
model with the sensor data. The integration between these modules happens through bag
files [57]. The terrestrial acquisition module stores the data collected by the sensors in a
bag file and the RGB-D videos captured in another bag file; the processing module, in turn,
reads these files and performs the necessary processing in order to generate the 3D model
of the plant and represent the sensor data in this model through its colorization. Next, the
components of each of the modules, the development architectures, and the details of the
techniques involved in the depth images processing will be presented.

3.1. Robotic System for Terrestrial Data Acquisition

Integrating and managing various components of a robotic system is a complex task.
The Robot Operating System (ROS) offers an architecture and features that facilitate the
integration and control of the components of a robot. Thus, the terrestrial acquisition
module was developed having as base architecture the ROS architecture [57,58]. From
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this definition, the module’s equipment and the nodes that compose the system could be
defined and developed.

The main component of the module is the Jackal robot (unmanned ground vehicle),
developed by Clearpath Robotics [59]. This robot has actuators for navigation, an on-board
computer, GPS, LiDAR, Inertial Measurement Unit (IMU), and a 32-bit microcontroller
for motor control, all integrated into a ROS. The ROS master runs on the robot’s on-board
computer, which has a collection of native nodes and topics to read data and control its
equipment. Through the ROS architecture, it is possible to integrate custom equipment
into the robot; either by creating external nodes and establishing communication with the
native nodes or by connecting equipment to the on-board computer’s Universal Serial Bus
(USB) ports and creating internal nodes to control this equipment.

Carefully analyzing the problem of monitoring a corn plantation, some variables
that are important to follow its growth were defined; as the size of the plant varies over
time, these variables should be followed at different heights. Thus, a 1.5 m aluminum
rod was installed in the robot, with supports for installing the sensors. The supports can
be positioned at different heights, allowing more flexibility for data collection according
to the life moment of the plantation. The variables chosen to monitor the plants were:
temperature, humidity, and luminosity. Through these variables, it is possible to evaluate
the environmental conditions in which the plantation is inserted, allowing the phenotyping
process to define actions to solve problems in plant growth. Besides the sensor supports,
the rod also allows the installation of an RGB-D camera, at different heights. Through the
depth images, it is possible to reconstruct 3D models of the plants. Figure 2 shows the
robot with the rod, the RGB-D camera installed and the sensor support in detail.

Figure 2. Proposed terrestrial acquisition module. (a) Overview; (b) RGB-D camera; and (c) sensor
support.

The choice of sensors and RGB-D camera took into account the accuracy of data
collection, the equipment size and the price. The RGB-D camera chosen was a stereo depth
camera, the Intel RealSense D435i [60]; this camera has sensors capable of capturing depth
images in low light environments, being ideal for captures in closed plantation [60,61].
The camera was connected directly to the robot’s on-board computer via USB. For the
temperature and humidity acquisition, the HDC1080 [62] sensor was used; this sensor has
a resolution of 14 bits, providing accuracy of ±2% for relative humidity and ±0.2 ◦C for
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temperature and has measurement time of approximately 6.50 ms for relative humidity
and 6.35 ms for temperature. For luminosity acquisition, the BH1750FVI [63] sensor was
used, with 16 bit resolution, maximum precision of ±20% (lux) and measurement time
of approximately 120 ms. The data collected by the sensors are read, using the Inter-
Integrated Circuit (I2C) communication protocol, and processed by an Arduino MEGA
2560 [64]; and, then, transmitted to the requesting nodes via ROS service. Data can be
collected by synchronizing the sensors measurement times with the desired video time,
allowing numerous collection configurations. The proposed system was set up to collect
two seconds of video and only one measurement from each sensor for each plant. Three
sets of sensors were installed on the rod and all cabling for sensor data transmission was
mounted with Unshielded Twisted Pair (UTP) cables. The Arduino is powered by and
communicates serially (rosserial) with the robot’s on-board computer also via the USB port.
The collected data is stored in bag files that are read by the processing module to generate
the 3D model of the plant and merge this model with the sensors data.

3.2. Non-Rigid 3D Plant Reconstruction System

The terrestrial acquisition module, described previously, generates data that serves
as input to the processing module. The goal of this processing is to perform the 3D
reconstruction of the object present in the depth video, by means of techniques capable of
processing non-rigid elements in the scene. The processing flow resembles that presented
by Newcombe, Fox, and Seitz (2015) [46] and others that follow the same processing line.
The system was developed in C++ with libraries for 3D object processing, among them:
Intel RealSense SDK 2.0 [65], Point Cloud Library (PCL) [66], Computational Geometry
Algorithms Library (CGAL) [67] and cpu tsdf Library [68].

The first operation of the system is to read the bag files generated by the terrestrial
acquisition module. From these files, the frames of the depth videos and the data recorded
by the sensors are extracted. Then, from those depth images, the input point cloud is
generated. This procedure involves the removal of the background, using a novel technique
based on the logarithmic function; standardization of the point cloud, using the octree data
structure; removal of outliers using the average distance between points; and smoothing the
points position using the Bilateral Smoothing technique. With the point cloud presenting
as few problems as possible the input surface is reconstructed using the Advancing Front
technique, based on the Delaunay triangulation. The first processed frame generates the
first model, which is deformed at each iteration with a new input frame. For each iteration,
the model surface is deformed to align with the input surface, also accumulating data. This
operation involves describing the objects keypoints with the Signature of Histograms of
Orientations (SHOT) technique; matching the keypoints (kd-tree search); deforming the
model, using the Smoothed Rotation Enhanced As-Rigid-As Possible (SR-ARAP) technique;
merging the surfaces, by merging the volumes described by the Truncated Signed Distance
Function (TSDF); and further processing the model, removing new outliers, smoothing
the points, and reconstructing the surface isotropically. After processing all the frames
(key frames), the system merges this model with the data collected by the sensors through
colorization. The colorized 3D model is then exported as a Polygon File Format (PLY)
file [69], which can be effectively used as input for the phenotyping process. Figure 3 shows
the flow described in graphical form. Further details of the operations mentioned will be
presented next.
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Figure 3. Proposed system processing flow.

3.2.1. Background Removal

The point clouds generated from the depth frames carry a very large volume of data;
for the standard resolution of the camera used (640 × 480 pixels) the generated point cloud
has 307,200 points that mostly represent the scene background. The objective of removing
these points is to reduce the volume of data processed by the other operations of the system
and improve the model accuracy.

The images collected in the field have characteristics that make it difficult to segment,
and therefore to remove the background, using only RGB (Red, Green and Blue) images;
the main ones are the similarity of colors and shapes of the plants, even though they are at
different distances. For this reason, only the collected depth data were used. To perform the
background removal operation, a new technique was proposed, based on the logarithmic
function, which proved to be more efficient than the linear background removal. This new
technique uses a percentage cutoff factor to define the maximum depth value that will be
kept in the point cloud. However, this value is found by relating this percentage and the
minimum dmin and maximum dmax depth distances captured by the camera to the behavior
of the logarithmic function.

The logarithmic function presents a behavior that can be efficiently used in positioning
problems. Given the logarithmic function f (x) = logb x and considering f (x) represented
in the ordinates axis and x represented in the abscissa axis; if a comparison with the linear
function is done, it can be noticed that the logarithmic function curve presents a smooth
transition from its values in the abscissa axis to a large portion of the ordinates axis values.
This behavior changes, at a certain point of the ordinate values, becoming more aggressive
in the abscissa values. This relationship between ordinates and abscissa varies according
to the base b of the function. For the logarithmic function curve behavior to be used in
background removal, it is necessary to relate the desired cutoff factor and depth distance
references to the properties of this function. Two properties of the logarithmic function
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are important to establish this relationship: the first is that logb 1 = 0; the second is that
logb b = 1. These properties can be used to convert percentages [0, 1] to values ranging from
[1, b], since [logb 1, logb b] corresponds to the values [0, 1]. Thus, a background cutoff factor
fbg can be found by the equation fbg = logb xb, where xb represents the cutoff distance in the
logarithmic domain, found by linear conversion between [1, b] and [dmin, dmax]. Therefore,
to find a depth value given a cutoff factor, it is sufficient to perform the reverse path, i.e.,
the cutoff factor fbg must be converted by means of the exponential function to the interval
[1, b] and linearly relate it to the interval [dmin, dmax]. For this case, the equation xb = b fbg

is sufficient to convert the cutoff factor fbg to the interval [1, b]; and the linear conversion
between the intervals [1, b] and [dmin, dmax] can be done with the equation

b− xb
b− 1

=
dmax − dbg

dmax − dmin
. (1)

Developing this equation and considering xb = b fbg , the absolute depth distance value dbg,
which corresponds to the point cloud background, is found with the equation

dbg = −
(

b− b fbg

b− 1

)
· ∆d + dmax ; (2)

where ∆d = dmax − dmin. Any depth value greater than dbg is removed from the input
point cloud.

In practice, the proposed technique is a pass-through filter; however, the value that
defines what is background or not is found using the logarithmic function. By the charac-
teristic of this function, objects close to the camera can be prioritized, since it is possible
to control the curve of the function by the logarithmic base. Furthermore, the proposed
technique is less sensitive to the variation of minimum and maximum camera depths than
the linear form, and remains effective for many scenarios of this variation. To aid the
understanding of the proposed technique the Figures 4 and 5 illustrate the theoretical re-
moval of the background and a practical example of this removal. In Figure 4, it is possible
to observe the smoother variation of the proposed technique; the linear removal using a
cutoff factor of 50%, always cuts the background in the middle between the minimum
and maximum distances captured by the camera, whereas the proposed technique varies
closer to the minimum distance. This is the desired behavior, since it was considered that
the main object of the scene is closest to the camera. In Figure 5, it is possible to see the
variation of the background removal using different logarithmic bases. After the initial
adjustment of the cutoff factor, the proposed technique is able to remove the background
dynamically and efficiently.
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Figure 4. Examples of background removal for two logarithmic bases (10 and 100) of the proposed
technique at different distances, compared to the linear form (lin). (a) Considering a cutoff factor of
0.4 and (b) considering a cutoff factor of 0.5.
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Figure 5. Example of background removal in a point cloud considering a cutoff factor of 0.2. (a) Input
point cloud (dmin = 0.29 m and dmax = 22.9 m); (b) linear cutting (at 4.81 m); (c) cutting by the
proposed technique with base 10 (at 1.76 m); (d) cutting by the proposed technique with base 100
(at 0.63 m).

3.2.2. Point Cloud Standardization

The point cloud standardization process was also implemented to enable the control
of the cloud data volume. This standardization allows adjusting the cloud resolution in
a structured way, allowing to modify its accuracy according to the desired object in the
scene. For the database studied, objects with large proportions can be described with
a lower resolution than objects with smaller proportions without loss in model quality;
i.e., at the beginning of the plant’s life cycle, the point clouds should present a higher
resolution for model generation, whereas for adult plants this resolution can be lower.

To perform this operation, the octree data structure was used to adaptively group sets
of cloud points into voxels, according to a predefined resolution. For each of the voxels
created, a single point describes the group [66]. This data consolidation can happen in four
different ways: centroid of the points belonging to the voxel; centroid of the voxel position;
first point inserted into the voxel; and last point inserted into the voxel. The first two ways
are well known, but the last two are new and can be used to prioritize points in a cloud,
in operations involving data from different sources, such as multiple cameras. In the tests,
the proposed system used the centroid of the points belonging to the voxel to describe it.
Figure 6 presents two examples of standardization, with 3 mm and 5 mm of resolution.

Figure 6. Point cloud standardization. (a) Input point cloud; (b) point cloud with 3 mm resolution
and (c) point cloud with 5 mm resolution.
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3.2.3. Outliers Removal

Removing the background and standardizing the point cloud are operations that allow
the control of data volume to process. However, either due to noise or the presence of
unwanted elements in the scene, such as small pieces of leaves from other plants, scattered
points may be present in the depth data. These points are undesirable, since their presence
can compromise the accuracy of the model surface reconstruction and negatively influence
the fusion operation of the input and model surfaces. For this reason, the outlier removal
operation was implemented in the system.

This operation aims to remove points that have a distance among their neighbors
outside the cloud pattern. To find these points, the average distance between points in
the cloud must be calculated. Given a point cloud with M points and setting N neighbors,
the average distance among points in the cloud dm can be calculated [70] by the equation

dm =
1
M

M

∑
i=1

(
1
N

N

∑
j=1

√(
xi − xj

)2
+
(
yi − yj

)2
+
(
zi − zj

)2
)

. (3)

Then, for each point in the cloud, the distance between this point and its neighbors dlocal
is calculated and compared to the average distance dm of the points in the cloud times
a factor fout (parameter), for example, twice the average distance ( fout = 2). If dlocal >
dm · fout the analyzed point is considered an outlier and removed from the point cloud.
Figure 7 presets an example of outliers removal for fout = 2, where circles indicate regions
of outliers.

Figure 7. Outliers removal. (a) Input point cloud, the red circles indicate regions of outliers and
(b) point cloud after the outliers removal operation ( fout = 2).

3.2.4. Point Cloud Smoothing

Similarly to the outlier removal operation, the smoothing of the cloud points position
was implemented to improve the surface reconstruction quality. When collecting depth
data, the camera may add small ripples to the description of originally flat regions, a factor
caused by inaccuracies in the depth data capture. This feature contributes to a decrease
in the surface reconstruction quality and description of keypoints in the surface fusion
operation. The smoothing of the cloud points corrects these imperfections, providing
greater accuracy in subsequent operations and in the generated model. To perform this
operation the Bilateral Smoothing technique was used, composed of two parts: smoothing
normals; and points repositioning based on the adjusted normals.

The Bilateral Smoothing technique needs the normal vectors to the implicit surface of
the cloud points and its neighbors. These vectors are fitted, minimizing the distance to their
neighbors, to describe smooth surfaces. The points are then positioned to fit the normals,
so that they also form smooth surfaces. The estimation of the normal vector for each point
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is performed using the Principal Component Analysis (PCA) technique, which uses the
eigenvalues and eigenvectors of the point covariance matrix. The smallest eigenvectors
correspond to the best normal vectors with respect to the plane defined by the neighboring
points, and the vector of this group with the smallest eigenvalue has the smallest direction
variation and is perpendicular to the directions of greatest variation, corresponding to the
normal vector to the surface [66].

The normals are iteratively adjusted, taking as a parameter the difference in distance
from neighboring normals. The goal is to minimize these distances so that the disconti-
nuities remain in separate groups, making continuous surfaces uniform and keeping the
edges of the object [71]. After updating the normals, the cloud points are repositioned using
the Locally Optimal Projector (LOP) technique proposed by Lipman et al. (2007) [72] and
modified by Huang et al. (2013) [71] for the context of the Bilateral Smoothing technique.
LOP redistributes a set of points in a way that adheres to the implicit shape described by
those points. The smoothing operation can be done iteratively, allowing the control of the
smoothing level. Figure 8 presents three examples of point cloud smoothing with different
iteration numbers.

Figure 8. Point cloud smoothing. The orange point cloud indicates the smoothed point cloud, with
(a) one iteration; (b) two iterations and (c) three iterations.

3.2.5. Advancing Front Surface Reconstruction

There are two forms of surface description of the objects processed by the proposed
system: triangulated mesh (explicit representation), used to generate the deformation
graph and the model; and TSDF volume (implicit representation), used to perform the
fusion between the input surface and the model. The technique used to reconstruct
the triangulated mesh was the Advancing Front [73,74]. This technique is based on the
Delaunay triangulation, but has higher performance in terms of accuracy and quality, since
the best triangles are formed sequentially. Another advantage of this technique is the ability
to fill holes without having to perform this operation as preprocessing.

In the Advancing Front algorithm the initial triangle for mesh processing is defined
by the size of the radius of the Delaunay triangles, defined by the circle passing over the
three vertices of the triangle; the triangle with the smallest radius serves as the starting
point of the algorithm. Then, the algorithm creates and maintains a list of candidate
triangles to integrate the reconstructed surface. The list update happens every time a new
triangle is incorporated into the partial surface, since new edges are made available for
the reconstruction to move forward. For this list formation, there are four possibilities for
a triangle to be a candidate to compose the surface: by extension; hole filling; ear filling;
and glueing [73,74].

From the list of candidates, the triangle that has the highest plausibility degree is
incorporated into the partial surface. The algorithm performs the update and definition of
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new triangles until all edges are verified. If a discontinuity occurs, the system performs
the radius verification of the Delaunay triangles again, starting from the triangle with the
smallest radius [73,74]. Figure 9 presents an example of surface reconstruction using the
Advancing Front technique.

Figure 9. Advancing Front surface reconstruction. (a) Input point cloud and (b) surface reconstructed
with the Advancing Front technique.

3.2.6. Keypoints Definition, Description and Correspondence

The model deformation operation, for the model and input surfaces fusion, needs the
new position data for the vertices considered key, or keypoints. For this, implementations
were necessary to define these vertices, describe them and find the pairs of similar vertices
between the surfaces. This whole process, involving the keypoints, happens by means
of a deformation graph. The generation of this graph happens by refining the object’s
surface, defining a new triangulated structure of lower resolution, but which faithfully
describes the original surface. In the proposed system, the Incremental Triangle-based
Isotropic Remeshing Algorithm [75] was implemented to generate the deformation graph.
This algorithm performs simple operations incrementally on the surface edges and vertices;
based on a predefined edge size, splitting, collapsing, inversion, as well as Laplacian
smoothing (tangential projection) operations are performed. The operations are performed
to describe a graph with triangles close to equilateral triangles; the Laplacian smoothing
operation, in turn, seeks to adjust the triangles so the surface of the deformation graph is
as close as possible to the original surface.

All vertices of the deformation graph mesh are considered keypoints. This process
is performed for the input and model surfaces; and a mapping process is performed to
maintain a relationship between the keypoints of the deformation graphs and the vertices of
the source surface. With the keypoints defined the system is able to process the description
and correspondence between these vertices.

In order for the model deformation operation to take place properly, the system must
define the target position of the keypoints of the model deformation graph as best as
possible. This definition is possible by matching the features of the model’s keypoints and
the input keypoints. Features such as position, topology, and neighborhood can be used
to quantitatively describe a vertex of a triangulated mesh. Subsequently, these features
can be compared, establishing a relationship of closeness and correspondence. By finding
these correspondences, the target position of the model’s deformation graph keypoints
can be defined as the positions of their pairs in the input surface deformation graph.
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The description of the keypoints was implemented using the Signature of Histograms of
Orientations (SHOT) technique [76].

Traditional 3D descriptors can be divided into two groups: descriptors by signature
and descriptors by histograms. The first ones describe vertices by analyzing their neighbor-
hood (support), defining an invariant reference frame, and encoding geometric measures
of this support. The second ones describe the support by accumulating local geometric and
topological measures, such as triangles areas and vertex counts in histograms. The SHOT
descriptor brings these two forms of description together to create a stronger descriptor.
With an isotropic spherical grid as the support structure, first-order entity histograms,
such as the normals of the vertices in the support, and geometric information, such as the
position of vertices, are extracted [76]. This support is sectioned along the radial, azimuth,
and elevation axes; for each spatial division, a local histogram is computed. The construc-
tion of each local histogram takes into account the number of vertices and the value of the
function that relates the angle between the normal of each vertex of the division and the
normal of the keypoint.

To find the correspondence between the vertices of the deformation graphs, the search
was implemented using the k-dimensional tree data structure (kd-tree). This structure is a
specialization of the binary tree and allows for efficient search among nearest neighbors [66].
The k dimension used in the search is the SHOT descriptor of each vertex. The search
process implemented in the proposed system was two-way search, improving the matching
accuracy. In this process, first the vertices of the model deformation graph are compared
with the vertices of the input deformation graph, then the input vertices are compared
with those of the model; the matching pairs of vertices present in the two searches are
defined as matching pairs. Figure 10 presents two examples of regions where keypoints
are related, considering a sequence of depth images; the black lines indicate the match
between vertices.

Figure 10. Keypoints correspondence. (a) Plant’s stem region, comparison of deformation graphs
between frames 30 (green) and 40 (red) and (b) plant’s leaf region, comparison of deformation graphs
between frames 40 (green) and 50 (red).
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3.2.7. Model Deformation

The keypoints definition, description, and matching between deformation graphs
allow the matching points to form pairs of source and target positions for the model
deformation process. Since the surface model is the one to be deformed, a proximity
mapping was implemented between the vertices of this surface and the vertices of its
deformation graph. Thus, the keypoints of the model surface are given target positions,
making the model suitable to be deformed.

The technique implemented to perform the model deformation was the Smoothed
Rotation Enhanced As-Rigid-As Possible (SR-ARAP) technique [77], a specialization of
the As-Rigid-As Possible (ARAP) technique [78]. The deformation algorithm is similar
to the ARAP deformation; however, a vertex rotation evaluation component is added
to the energy function, providing greater transition smoothness in regions with steeper
deformation. This technique is based on the Laplacian warping technique and uses a
weighting scheme between mesh edges to drive the movement of vertices that are not
keypoints.

In the deformation process, the surface keypoints are considered control vertices,
since their movement influences the positioning of the other vertices, which compose the
deformation region of interest. This movement propagation is accomplished by means of
weights for the edges, which define what will be the movement portion of the vertex in
relation to the moved control vertex. For the proposed system, the cotangent weighting
scheme was implemented, which defines the weight by the ratio between the angles
opposite to a given edge. Given the angles θA and θB opposite to an edge ei, the weight of
that edge wei is given by Equation [79]

wei = cot(θA) + cot(θB) . (4)

Minimizing an energy function E(S ′) leads to an optimal deformation; which con-
verges, with small error, the S surface to a deformed S ′ surface, considering the deforma-
tion constraints. The SR-ARAP technique introduces a bend element to the energy function;
the addition of this term allows a control vertex and its neighborhood to obtain an optimal
rotation in the deformation process. Thus, given a surface S with n vertices vii ∈ {1 . . . n}
and k control vertices, the energy function defining the SR-ARAP deformation is given by
Equation [77,79]

E(S ′) = ∑
vi∈S

∑
vj∈N(vi)

wij

∥∥∥(v′i − v′j)− Ri(vi − vj)
∥∥∥2

+ αA
∥∥Ri − Rj

∥∥2
F ; (5)

Ri is the optimal 3× 3 rotation matrix from source vertex position to target position; wij
represents the edge weight; N(vi) represents the set of vertices adjacent to vi in S ; αA is
the scalar weighting, where A represents the surface area to make the energy invariant to
global scaling; F indicates that the difference between the rotation matrices of the vertices
and their neighbors is calculated by the Frobenius matrix norm; and N(v′i) represents the
new position of the vertices N(vi) after deformation. The minimization of this equation
can be simplified to the minimization of the energy of each vertex vi, considering that
there are two unknowns: the new positions of vertices that are not part of the set of control
vertices; and the rotation matrices Ri. This minimization can be performed in two steps
(local/global method) and iteratively, to further improve the deformation result [77–79].
In the proposed system, two stopping parameters were set for the deformation algorithm;
either a pre-defined maximum number of iterations or a minimum value of the energy
function E(S ′). The Figures 11 and 12 present examples of surface deformation in two
different regions of the plant, considering a sequence of depth images; in these figures it
is possible to visualize how the proposed system performs the non-rigid deformations to
align the surfaces for subsequent fusion.
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Figure 11. Model deformation in plant’s stem region. (a) Difference of the plant’s stem position
between the model deformation graph (green) and the input surface deformation graph (red), during
processing between frames 30 and 40; (b) deformation of the model surface and (c) comparison
between deformed model surface (green) and input surface (red).

Figure 12. Model deformation in plant’s leaf region. (a) Difference of the plant’s leaf position
between the model deformation graph (green) and the input surface deformation graph (red), during
processing between frames 40 and 50; (b) deformation of the model surface and (c) comparison
between deformed model surface (green) and input surface (red).

3.2.8. Input and Model Surfaces Fusion

The model deformation operation results in a surface aligned to the input surface of a
given system iteration. However, these two surfaces have different areas; the model surface
describes accumulated regions of the previously processed surfaces, while the input surface
may contain new elements, arising from the object’s movement. Therefore, in order for the
model to describe these new regions it is necessary to update it, accumulating these new
parts of the objects to the existing parts. Another important factor in this surface fusion
is that this process is able to remove small gaps between them, arising from errors in the
deformation process, consolidating the model into a surface free of duplicate regions.

In the proposed system, the fusion of the input and model surfaces happens by
updating the Truncated Signed Distance Function (TSDF) [80] volumetric representation
of the model with respect to the same input representation. This implicit form of surface
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representation defines Signed Distance Function (SDF) values for the voxels of a uniform
grid; where SDF values close to 0 represent the surface of the object. The SDF values can
be truncated at ±t (TSDF), removing values far from the object’s surface and reducing the
amount of data processed and memory usage. Through this representation, it is possible to
perform volume fusion by weighted averaging of TSDF values [80,81].

For the surface fusion to be performed by means of TSDF volumes (implicit rep-
resentation) it was necessary to implement conversion techniques between this form of
representation and explicit representations (triangulated meshes). The conversion from
explicit to implicit representation was performed by an adaptive grid using the octree
data structure [68], where for each voxel, a TSDF value and a weight (uncertainty) were
associated. To perform the conversion from the implicit representation to the explicit
representation, the marching cubes technique was used [66,82].

The surfaces fusion always happens at the end of each input frame processing.
Figure 13 presents an example of surfaces fusion; in this figure, it is possible to see the
consolidation of the surfaces and the disappearance of small spaces between them. In an
iterative way, this process allows the creation of a precise model with data accumulation
over time. After processing the last frame, the model vertices are smoothed, new out-
liers are removed, and a new isometric surface is regenerated, thus standardizing the
generated model.

Figure 13. Input and model surfaces fusion. (a) Overlap of the deformed model surface (green) and
the input surface (red) and (b) new model after surfaces fusion.

3.2.9. Model and Sensors Data Fusion

After processing all the input frames and generating the plant model, the system
performs the fusion of the data collected by the sensors with the model. This fusion
happens through the colorization of the model regions, according to the sensor values of
the heights where they were installed; in the case of the proposed system, three heights.
This way of fusion allows a quick visualization of the environmental conditions in which
the plant is inserted. The system implements the data fusion in a separate way; that is,
n copies of the models are created, one for each variable collected. To perform the model
colorization, the linear interpolation of the RGB color space channels was implemented,
relating the sensor heights; the sensor values; and parametric values of limits, of the
variables and their colors. It was considered the linear interpolation Equation [83]

c(x) = cmin +
x− xmin

xmax − xmin
· (cmax − cmin) ; (6)
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where c(x) represents the value of a given channel of the RGB color space, for a reference
value x; cmin and cmax, the limit values of the color channel; xmin and xmax, the limit values
of the reference value x.

Initially, the system defines the RGBi values for each measurement of the si sensors,
by means of Equation (6); taking into account the measurement and color limits for each
variable (parameters). Thus, for each of the heights hi, a RGBi value is defined. The pro-
cessing to define the color of each vertex on the surface model involves the values hi, RGBi
and the vertex position. The pairs (hi−1, hi) and (RGBi−1, RGBi) replace, in Equation (6),
(xmin, xmax) and (cmin, cmax), respectively; and the reference value x is replaced by the y
axis value of the vertex position. As a result, the model surface is gradient colored, with the
sensor heights as stop points. To illustrate this data fusion, Figure 14 presents an example
of model and temperature sensor data fusion. The next section presents some outputs of
the proposed system as results, from model generation to sensor data fusion.

35°C

40°C

Figure 14. Model and temperature sensor data fusion. (a) Model and (b) colorized model with data
from the temperature sensor.

4. Results

During the system development, several minor tests were conducted to verify the
implemented functionalities and evaluate possible adjustments. Although these tests used
images from plants belonging to the target database, new tests were conducted with the
fully processing model for the 3D reconstruction implemented. From these tests, it was
possible to collect data in the field and produce system outputs in a standardized way,
which will be presented next.

First, the terrestrial acquisition module was configured and the camera was calibrated;
then the camera and sensors were positioned on the rod. The camera was positioned at
1 m height from the ground without tilting, while the sensors were positioned at 0.35 m,
1.35 m and 1.70 m. After these procedures, the module was taken to the field, in a corn
plantation, where the depth images and sensor data were collected. Thus, the depth camera
was positioned about 40 cm from the plants and the sensors about 5 cm from the stems.
For each plant, a two seconds video was recorded by the camera and one measurement
from each sensor was collected. Data were collected both from inside and from outside
of the plantation at two periods of the day; one collection sequence in the morning and
one in the afternoon. In the morning the sky was completely cloudy, but in the afternoon
the weather got better and the sky was clear with high incidence of sunlight on the plants.
These weather conditions allowed to verify differences in data collection, especially in
sensor values.

Before proceeding with data processing, a validation was performed on the collected
depth data. Thus, it was possible to verify that the data used to generate the models were
accurate and reliable, since these measurements can be used in phenotyping processes.
Thus, static depth images were collected from 20 plants, so that the whole plant was
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captured (camera at 3 m distance), then plant heights extracted from these images were
compared with the heights measured manually. Figure 15 presents the scatter plot of the
measurements. It can be seen that the scatter was low, resulting in a Root Mean Square Error
(RMSE) of 0.022 m or, if normalized by range (NRMSE), 1.75% error. These performance
metrics indicate that the collected depth images have good accuracy and can be used for
model generation.Model plant height (m) Manual plant height (m)0.23.00.00.40.60.81.01.21.41.61.82.02.22.42.62.8 0.0 3.00.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 y = 1.018x � 0.032Min = 1.00 mMax = 2.26 mR² = 0.996RMSE = 0.022NRMSE = 1.75%
Figure 15. Scatter plot of plant height measurements; comparison between depth-based height and
manual height measurements.

The images and data were then processed. The system was set up to process two
seconds of video, equivalent to 180 frames; the models, however, were generated using the
sequence of frames from frame 30 to frame 150, with a 10 frame interval, totaling 13 frames
processed. This initial frame cutting was necessary due to the camera startup time, which
causes image distortions; the final frame cutting was done to maintain the time symmetry
of the data used. Figure 16 presents some examples of generated models. In this figure,
it is possible to see, besides the final model, the optical image, the depth image and the
main processing steps. It can also be seen that, by means of these models, it is possible
to extract measurements such as leaf width and length, angle between leaves and stems,
measurements of the corn cobs, etc. To show the ability of the system to reconstruct the
model in a non-rigid way and accumulate data over time, Figure 17 presents the models
overlap of the processed frames, as well as the initial model and the final generated model.
In Figure 17a,b, it is possible to visualize the movement of the plant leaves, especially in the
overlapping detail section; even with this movement, the system performs the necessary
deformations in the model to generate a final model without the presence of multiple
leaves or undue deformations. Figure 17c presents a sharp example of data accumulation
over time; in the initial frame the partial model presents thin leaves and even the absence
of leaves, such as the lower right leaf; after the merging sequence, the final model presents
thicker leaves and the presence of the lower right leaf.

Figure 18, in turn, exemplifies the fusion of sensor data with the models. This figure
shows four different cases in data collection, so it was possible to observe all possible
variations of the collected data. The models (a) and (b) were generated with data collected
at the same time of day, which presented cloudy skies; it is possible to observe that plant (a)
presents lower temperature, higher humidity, and progressive illumination in comparison
with plant (b). For being inside the row, the plant (a) is inserted in an environment that
varies more; its base, which is in the middle of other plants, receives less illumination and
heat, but retains more humidity, in relation to the top of the plant. This behavior is different
from the plant outside the row, inserted in a more uniform environment. The plats (c) and
(d) present the same relationship as the plants (a) and (b); however, the data collection
took place at a time with greater incidence of sunlight, increasing the temperature and
luminosity and reducing the humidity.
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Figure 16. Examples of models generated by the proposed system.
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Figure 17. Overlapping of the partial models along the processing for the generation of the plant
model. (a–c) Examples of non-rigid deformation and data accumulation in the generated models.
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Figure 18. Generated models and fusion with sensor data. (a) Plant inside the row with low light
incidence (cloudy); (b) plant outside the row with low light incidence; (c) plant inside the row with
high light incidence (sunny); and (d) plant outside the row with high light incidence.

5. Discussion

The results presented in the previous section show that the system is able to accurately
produce 3D models of non-rigid corn plants from images and field data. This feature is
essential for the development of crop inspection techniques, especially when considering
future applications of systems that reconstruct the crop as a whole and not just individual
plants. In applications of this size, inherent characteristics of open environments must
be considered; one of them is the constant movement of the crop, due to wind or rain.
The models generated can be used as inputs for phenotyping processes or structural
measurements, while the fusion of sensor data to the model allows a quick visualization of
the data collected in the field and a quick evaluation of the environment in which the plant
is inserted.

Despite the goal achieved and the contribution of this work in the area, some charac-
teristics of the system can still be further explored and new techniques or improvements in
existing techniques can be studied. Starting with the processing form; the proposed system
was not developed for real-time applications, since its functionalities were developed
to be executed in the Central Process Unit (CPU) using threads. This processing could
be implemented with parallelism in the Graphics Processing Unit (GPU), significantly
increasing the processing speed. The system was design for phenotyping purposes, which
usually uses small plantation areas. With the system developed for GPU processing, a
larger area could be analyzed. From the point of view of the implemented techniques, some
of them could be re-evaluated for performance improvement, and others could be replaced
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by new techniques in future work: analyze other methods for outlier removal, trying
to eliminate the step of calculating the distances between points; analyze other surface
reconstruction methods, with the aim of increasing the accuracy of the model; improve the
correspondence index between the deformation graphs vertices, since this correspondence
directly influences the deformation quality of the model; study the possibility of using a
logarithmic weight scheme between the edges of the model, to increase the performance
of the deformation; add new terms to the energy function, such as a possible logarithmic
term for positioning between vertices; perform tests throughout the plant’s life cycle, not
only in its adult phase; these are some examples of improvements for the proposed system.

Future works, using not only the concepts presented in this work, but consolidating
other concepts from previous works, could be proposed for a broader exploration and
inspection of the plantation: use of drones for data collection; use of mechanical arms for
more dynamic collection of both data and images; fusion of aerial data (and images) and
terrestrial data; new ways to merge data with 3D models, for example merging temperature
and humidity data into the same color scheme; among others. The main motivation for
the development of these future works is the importance that agricultural crops represent,
from a food and goods production point of view. By improving the efficiency of inspection
and monitoring of the plant’s life cycle, production in the field should increase.

6. Conclusions

Considering the current and future needs of agriculture, this work presented a sys-
tem for field data acquisition and, which we believe to be for the first time, a non-rigid
3D reconstruction system for plants, to provide inputs for phenotyping processes. Through
the developed modules, the field data collection and the model generation provide to
the producer more efficiency in the plantation inspection and some inputs for plant
structural evaluation.

The terrestrial acquisition module developed was composed of a robot, to which
sensors and a depth camera were attached; thus, it was possible to collect data in the field
in a more efficient way when compared to manual collection. The processing module was
developed by implementing efficient techniques, evaluated from previous works, as well
as new ones, such as the background removal based on the logarithmic function. With high
depth data collection accuracy (error less than 1.75%), it was possible to generate models
from depth video and merge these models with sensor data. Future improvements were
presented in order to provide the system with higher processing speed, higher accuracy in
the models generation, and alternative ways of data fusion.

The present work and other related works certainly contribute to the introduction of
new technologies in the field, providing greater production volume and cost reduction.
Not only that, they also encourage innovative works that also look at the field, since the
resources produced there are of utmost importance for food and to provide inputs for the
processing industry.
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Abbreviations
The following abbreviations are used in this manuscript:

3D Three-dimensional
ARAP As-Rigid-As-Possible
CGAL Computational Geometry Algorithms Library
CPD Coherent Point Drift
CPU Central Process Unit
GPS Global Positioning System
GPU Graphics Processing Unit
ICP Iterative Closest Point
I2C Inter-Integrated Circuit
IMU Inertial Measurement Unit
LiDAR Light Detection Furthermore, Ranging
LOP Locally Optimal Projector
NRMSE Normalized Root Mean Square Error
NURBS Non-uniform Rational B-Spline
PCA Principal Component Analysis
PCL Point Cloud Library
PLY Polygon File Format
RGB Red, Green and Blue
RGB-D Red, Green, Blue and Depth
RMSE Root Mean Square Error
ROS Robot Operating System
SDF Signed Distance Function
SHOT Signature of Histograms of Orientations
SLAM Simultaneous Localization and Mapping
SR-ARAP Smoothed Rotation Enhanced As-Rigid-As Possible
TSDF Truncated Signed Distance Function
USB Universal Serial Bus
UTP Unshielded Twisted Pair
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