
sensors

Article

Rock Particle Motion Information Detection Based on Video
Instance Segmentation

Man Chen 1,2, Maojun Li 1,* , Yiwei Li 1 and Wukun Yi 2

����������
�������

Citation: Chen, M.; Li, M.; Li, Y.; Yi,

W. Rock Particle Motion Information

Detection Based on Video Instance

Segmentation. Sensors 2021, 21, 4108.

https://doi.org/10.3390/s21124108

Academic Editors: Pang-jo Chun and

Yun Mook Lim

Received: 19 April 2021

Accepted: 8 June 2021

Published: 15 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Electrical and Information Engineering, Changsha University of Science and Technology,
Changsha 410114, China; 19205060770@stu.csust.edu.cn (M.C.); lywlyw@stu.csust.edu.cn (Y.L.)

2 Xiaoxiang Research Institute of Big Data, Changsha 410199, China; ywk@xxribd.org.cn
* Correspondence: limj@csust.edu.cn; Tel.: +86-136-3709-3329

Abstract: The detection of rock particle motion information is the basis for revealing particle motion
laws and quantitative analysis. Such a task is crucial in guiding engineering construction, preventing
geological disasters, and verifying numerical models of particles. We propose a machine vision
method based on video instance segmentation (VIS) to address the motion information detection
problem in rock particles under a vibration load. First, we designed a classification loss function
based on Arcface loss to improve the Mask R-CNN. This loss function introduces an angular distance
based on SoftMax loss that distinguishes the objects and backgrounds with higher similarity. Second,
this method combines the abovementioned Mask R-CNN and Deep Simple Online and Real-time
Tracking (Deep SORT) to perform rock particle detection, segmentation, and tracking. Third, we
utilized the equivalent ellipse characterization method for segmented particles, integrating with the
proportional calibration algorithm to test the translation and detecting the rotation by calculating
the change in the angle of the ellipse’s major axis. The experimental results show that the improved
Mask R-CNN obtains an accuracy of 93.36% on a self-created dataset and also has some advantages
on public datasets. Combining the improved Mask R-CNN and Deep SORT could fulfill the VIS
with a low ID switching rate while successfully detecting movement information. The average
detection errors of translation and rotation are 5.10% and 14.49%, respectively. This study provides
an intelligent scheme for detecting movement information of rock particles.

Keywords: rock particles; machine vision; video instance segmentation; motion information detection

1. Introduction

Rock particles are common in geological disasters and are a type of material that is
widely adopted in construction and transportation. The development of a general theory
of the motion of granular materials is one of the 125 scientific frontier issues of Science.
Revealing the movement laws and quantitatively analyzing rock particles in a moving state
can provide reasonable guidance for the construction process and to improve construction
efficiency [1]. It can also offer meso-analysis related to the occurrence of geological disasters,
which can assist in their prevention [2,3]. In addition, with the research and application of
numerical simulation methods (e.g., finite element method and discrete element method)
in geotechnical engineering, the lack of effective verification data is a principal reason for
restricting their development [4–6]. The motion information detection of rock particles
not only is the basis of revealing their motion laws and quantitative analysis, but also can
provide reliable data for particle numerical models, which is of great value in engineering
and scientific research [7].

The detection of particle motion information is done using video instance segmenta-
tion (VIS). This means detecting, segmenting, and tracking instances simultaneously [8]. It
is more challenging than image instance segmentation in that it not only requires instance
segmentation on individual frames, but also the tracking of instances across frames.
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In this study, we focused on detecting the motion information of rock particles under a
vibration load and proposed a VIS-based method. This method combines the current main-
stream instance segmentation and object tracking algorithms. Experimental equipment
was established to verify the proposed method, and the effectiveness of our technique was
demonstrated through experiments. We summarize them as follows:

1. Because the objects and backgrounds have a high degree of similarity, we improved
the Mask R-CNN to develop the feature recognition ability and the instance seg-
mentation effect of particles by designing a classification loss function based on
Arcface loss.

2. The multiparticle VIS with a low ID switching rate was achieved by combining the
improved Mask R-CNN and SORT.

3. We utilized the equivalent ellipse characterization method to process the segmented
particles, combining characterization results with the proportional calibration algo-
rithm to detect its translation and detecting the rotation by calculating the change in
the angle of the major axis of the ellipse.

4. We verified the effectiveness of the method through segmentation experiments, VIS,
and motion information detection. The experimental results showed that the im-
proved Mask R-CNN had a better detection and segmentation effect. The ID switch-
ing rate of the VIS was low. This method can successfully detect the movement
information of rock particles. The average detection errors of translation and rotation
are 5.10% and 14.49%, respectively.

2. Related Work

Few studies on particle VIS have been conducted. However, particle segmentation as
the basis of VIS has been extensively researched with the development of machine vision.
In addition, there is substantial work on image-based deformation and stress measurement.

2.1. Traditional Particle Segmentation Method

The main traditional methods have relied on regional information and then combined
with related traditional algorithms to accomplish particle segmentation. With the operation
of edge connection, Yen et al. [9] used the Canny edge detection algorithm to detect particle
images so that the edge gaps were changed to multiple closed regions. Zhang et al. [10]
combined the bi-windows and maximum between-class variance (OSTU) to obtain binary
images. Then, the distance transformation principle was employed to obtain the best seed
area with a higher gray value, and a Watershed algorithm based on markers was applied to
segment the particles. Amankwah et al. [11] proposed a method for segmenting particles,
which utilized the mean shift algorithm to identify pixel clusters of particular modes from
the probability density function of the image data. The pixel clusters were then used to
generate markers for the watershed transform and shadow areas in images. However, the
particle images often have characteristics of density. The abovementioned methods cannot
accurately extract particle features, and the segmentation over-relies on manual selection
of features.

2.2. Particle Segmentation Method Based on Deep Learning

Deep learning [12] has several advantages in image processing and, therefore, has been
used in particle segmentation tasks. Yuan et al. [13] focused on solving the inaccuracy prob-
lem caused by mutual adhesion and shadows in the ore images using advanced ore image
segmentation method based on the holistically-nested edge detection method. Compared
with the traditional algorithm, their proposed method was more robust. Duan et al. [14]
designed a lightweight U-net deep learning network to automatically detect particles from
images and to obtain the probability maps of particle contours. This method could be ap-
plied to particle product quality monitoring. Liu et al. [15] proposed an image segmentation
method based on the U-net and Res-Unet networks. The proposed method preprocessed
the original images captured from an open-pit mine to reduce noise and extract the object
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region with grayscale, median filter, and adaptive histogram using equalization techniques.
The abovementioned deep learning methods are mainly used for the semantic segmen-
tation of particles that can automatically realize particle feature extraction with higher
accuracy. These methods have become the main research direction for particle segmenta-
tion. However, because semantic segmentation can only acquire the complete information
of all particles, it is difficult to analyze the meso-mechanism on a single-particle scale.

2.3. The Image-Based Measurement of Deformation and Stresses

Over the years, many visual sensors have been used in the monitoring and prediction
of natural disasters (e.g., landslides, slope failure, and rockfalls) because of their low
cost compared to expensive terrestrial laser scanner (TLS) or Interferometric Synthetic
Aperture Radar (InSAR) [16,17]. Concurrently, image-based measurement of deformation
and stresses were also being studied extensively. The most widely known method is
particle image velocimetry (PIV) [18]. The PIV can combine a range of advances in image
analysis algorithms (e.g., image intensity interpolation [19] and deformation parameter
optimization [20]) that are best suited to geotechnical applications, which would be faster
and more precise than the standard PIV approach [21]. However, these image-based
methods could not analyze challenging scenes, such as images with insufficient lighting
and fast-moving objects [22]. However, many related complementary methods have
been studied and applied. Gance et al. [23] proposed a target detection and tracking
(TDT) method that was based on simple binary image processing for the analyses of
long time series. This method can be used as a complement to image correlation and
other displacement observation methods for rapid assessments. In terms of moving-object
tracking methods, feature tracking, color feature tracking, and outline tracking have proven
to be effective tracking methods [24]. However, 3D reconstruction technology has some
advantages compared to feature tracking because it also approximates the 3D shape of an
object using a 3D mesh. Guccione et al. [25] used four high-speed cameras and two tilted
mirrors for 3D reconstruction to track the objects. Then, the 3D rotational velocities were
estimated accurately using a new postprocessing algorithm. The abovementioned devices
and methods have made important contributions to meso-analysis and have helped in
preventing geological disasters.

3. Motion Information Detection of Rock Particles Based on VIS
3.1. Method Framework

Because of the complexity of detecting the motion information of rock particles, it is
necessary to segment the video instance first. For resiliency in environments in which the
objects and backgrounds are highly similar, we designed a new classification loss function
for Mask R-CNN based on Arcface loss to improve the feature recognition ability and
ameliorate the instance segmentation effect of particles. The combination of the improved
Mask R-CNN and Deep SORT can further accomplish the VIS of rock particles. The use
of the equivalent ellipse characterization method can extract the center position of each
particle frame by frame, and the pixel translation can be obtained by subtracting the center
position of the previous frame. Then, the proportional calibration algorithm can calibrate
the pixel translation and actual translation. On the other hand, the rotation can be detected
by calculating the change in the angle of the ellipse’s major axis. The overall algorithm
framework is illustrated in Figure 1.
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Figure 1. Method framework.

3.2. Particle Segmentation
3.2.1. Mask R-CNN

Mask R-CNN [26] adds a mask prediction branch based on Faster R-CNN [27] and
achieves pixel-level segmentation of images by combining the advantages of object detec-
tion and semantic segmentation networks. It has been used in fields such as agriculture,
engineering, and daily life [28–30]. The region of interest alignment (RoI Align) is exploited
to replace the region of interest pooling (RoI pooling) in Mask R-CNN, which solves the
region mismatch problem. The overall network structure of Mask R-CNN is shown in
Figure 2. It is composed mainly of four parts: backbone, region proposal network (RPN),
RoI Align, and classifier.
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The backbone is a series of convolutional layers that can extract the feature maps. In
this study, we chose ResNet-101 as the backbone. ResNet-101 had five convolutional layers.
The samples were convolved, regularized, and activated in each layer to obtain feature
maps of different sizes. Then, the use of feature pyramid networks (FPNs) [31] could fuse
multilayered semantic features and acquire feature maps after fusion of various sizes.

The RPN is a network that can extract region proposals through classification and
regression. The inputs of the RPN are the outputs of the last layer of the FPN. First, a
certain number of anchors are generated for each pixel of the feature maps. The likelihood
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that these anchors are the foreground or background and the offset between these anchors
and their corresponding ground truth is calculated. Then, the loss of classification and
regression could be assessed according to the loss function of the RPN.

RoI Align utilizes bilinear interpolation to replace the quantization rounding operation
of RoI pooling. It can convert the region proposals into fixed-size feature maps without
losing spatial information so that each pixel can maintain accurate coordinates.

The classifier had three parallel branches. Two of these are categories and coordinates
that can obtain a precisely positioned bounding box. The other branch utilizes a fully
convolutional network (FCN) [32] to predict the mask and map the feature size to the
image size.

3.2.2. Classification Loss Function Based on Arcface Loss

The rock particles were densely distributed and are in close contact with each other
in the experimental environment. Considering the task of extracting the translation and
rotation of particles in this study, we attributed the coarse particles that were heavily
obscured as the background for reducing the interference of such coarse particles on the
accuracy of motion information. The characteristics of such particles in the background
were similar to those of the objects. In addition, many small particles in the background
were similar to the objects. The diameters of the coarse and small particles were 20–30 mm
and 2.5–7.5 mm, respectively, and the diameter ratio of coarse particles to small particles
was about 2.7–12. These two types of particles (coarse particles that are heavily occluded
and small particles) in the background were highly similar to the object particles.

SoftMax [33] loss is usually used to calculate the possibility and ensure the separability
of objects as a common classification loss function in an object detection model. As
many particles are heavily obscured and small in the experimental environment, it is
difficult to distinguish features when using the traditional SoftMax loss. The A-SoftMax
loss [34], which is based on the traditional SoftMax loss, was used to improve the feature
discrimination ability of the model. It adds the angular distance based on SoftMax loss,
which can distinguish the objects and backgrounds with higher similarity. The A-SoftMax
loss can be expressed as follows:

Lcls =
1
N

N

∑
i=1

log(
e‖xi‖ϕ(θyi ,i)

e‖xi‖ϕ(θyi ,i) + ∑j 6=yi
e‖xi‖ϕ(θj ,i)

) (1)

ϕ(θyi , i) = (−1)k cos(mθyi , i)− 2k (2)

where N is the number of training samples, xi is the quantitative data of object features,
θyi is the angle between the object feature vector and Xi weight Wyi , θyi ∈ [ kπ

m , (k+1)π
m ],

k ∈ [0, m− 1], and m is the angular magnification.
The above loss function can narrow the within-class distance of the network model

and enlarge the between-class distance, which can improve the feature classification ability
of the model. However, the angle amplification mechanism also makes it difficult for the
model to converge. Therefore, we used a classification loss function based on Arcface
loss [35] by integrating the features of SoftMax loss, which can be expressed as follows:

Lcls = −
1
N

N

∑
i=1

log(
es(cos(θyi+n))

es(cos(θyi+n)) + ∑j 6=yi
es cos(θj)

), (3)

where s is the fixed scale factor and n is the angle margin.
The theory of Arcface loss is shown in Figure 3. Xi is feature and W is the ground

truth weight. Based on Xi and W normalization, we could get cos θj. The inverse cosine
function can calculate the angle between Xi and Wyi . The cosine distance can be obtained
by adding n the object angle. Then, it outputs to the SoftMax layer after multiplying with s.
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Compared with A-SoftMax loss, Arcface loss utilizes angular distance and abandons the
angle magnification mechanism to make the network converge more easily.

Sensors 2021, 21, x FOR PEER REVIEW 6 of 19 
 

 

The theory of Arcface loss is shown in Figure 3. iX  is feature and W  is the ground 
truth weight. Based on iX  and W  normalization, we could get cos jθ . The inverse co-
sine function can calculate the angle between iX  and 

iy
W . The cosine distance can be 

obtained by adding n  the object angle. Then, it outputs to the SoftMax layer after multi-
plying with s . Compared with A-SoftMax loss, Arcface loss utilizes angular distance and 
abandons the angle magnification mechanism to make the network converge more easily. 

  
Figure 3. Arcface loss theory. ∗  indicates multiplication. 

The other two parts of loss function are the regression loss function regL  and mask 
loss function maskL . regL  obtains the bounding-box regression loss by the smooth func-
tion and maskL  is the binary cross entropy loss function. Therefore, the overall loss func-
tion can be expressed as follows: 

cls reg maskL L L L= + +  (4) 

where regL  and maskL  are shown in the equations below: 

'

'
'

0.5 , 1
( )

0.5,
i i

reg i i

i i

x if t t
L smooth t t

t t otherwise

 − <= + = 
− −

, (5) 

' 'log( ) (1 )(1 )mask i i i ii
L p p p p= − + − − , (6) 

where it  is the vector with four-coordinate data of the bounding box and '
it  is the vector 

with the data of the ground truth. ip  is the binary classification probability and '
ip  is 

the i th−  output. 

3.3. Particle Tracking 
As an improvement of SORT [36], Deep SORT [37] adds appearance information to 

matching problems, which can reduce the switching of object IDs. It is divided mainly 
into three aspects: state estimation, trajectory processing, and matching problems. The 
main tracking framework is shown in Figure 4. 

Figure 3. Arcface loss theory. * indicates multiplication.

The other two parts of loss function are the regression loss function Lreg and mask loss
function Lmask. Lreg obtains the bounding-box regression loss by the smooth function and
Lmask is the binary cross entropy loss function. Therefore, the overall loss function can be
expressed as follows:

L = Lcls + Lreg + Lmask (4)

where Lreg and Lmask are shown in the equations below:

Lreg = smooth(ti + t′i) =
{

0.5x, i f
∣∣ti − t′i

∣∣ < 1∣∣ti − t′i
∣∣− 0.5, otherwise

, (5)

Lmask = −∑
i

pi log(p′i) + (1− pi)(1− p′i), (6)

where ti is the vector with four-coordinate data of the bounding box and t′i is the vector
with the data of the ground truth. pi is the binary classification probability and p′i is the
i-th output.

3.3. Particle Tracking

As an improvement of SORT [36], Deep SORT [37] adds appearance information to
matching problems, which can reduce the switching of object IDs. It is divided mainly into
three aspects: state estimation, trajectory processing, and matching problems. The main
tracking framework is shown in Figure 4.

The state of the trajectory at a certain moment is represented by an eight-dimensional

space of (u, v, r, h,
·
u,
·
v,
·
r,
·
h), where (u, v) is the center position of the bounding box, r is

the ratio of length to width, h is the height, and the other four variables represent the
speed information in the image coordinates. A standard Kalman filter [38] based on a
constant-velocity model and a linear observation model can predict the motion state. The
predicted result was (u, v, r, h).

Trajectory processing consists of two parts: new detection result processing and tracker
processing. If the detection result cannot be associated with the existing trajectory, it is
regarded as a new detection result, and a new trajectory hypothesis is applied. If the new
trajectory can be successfully associated in the first three frames, it is determined as a new
object tracking. Otherwise, the trajectory was deleted. On the other hand, we set up a
tracker that increases progressively during Kalman filter prediction and sets it to 0. If the
tracker exceeds the predefined maximum threshold Amax, we consider that object tracking
is over.
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The Deep SORT considers the association of motion information and appearance in-
formation simultaneously and combines them to calculate the degree of matching between
the detection results and trajectories.

Deep SORT takes advantage of the Mahalanobis distance to describe the degree of
motion information association. The Mahalanobis distance reflects the uncertainty of the
state measurement by calculating the standard deviation between the detected position
and the average tracking position. This can be expressed as follows:

d(1)(i, j) = (dj − yi)
TS−1

i (dj − yi), (7)

where dj represents the position of the detected bounding box j-th, yi represents the
predicted position of the object by the tracker, and Si is the covariance matrix between
the detection position and average tracking position. In addition, Deep SORT excludes
impossible associations by Mahalanobis distance thresholding within the 95% confidence
interval calculated from the inverse distribution χ2. This can be expressed as follows:

b(1)i,j = 1[d(1)(i, j) ≤ t(1)] (8)

where t(1) = 9.4877. If the Mahalanobis distance is less than the specified threshold t(1),
the motion state will be successfully associated.

In terms of the appearance information association of objects, Deep SORT obtains
the 128-dimensional feature vector of rj the bounding box through dj the CNN network.
The restriction condition was ‖ri‖ = 1. For each trajectory k, a library of Rk appearance
descriptors is applied to store the feature vector of the last 100 frames. Finally, the minimum
cosine distance between the trajectory i-th and trajectory j-th can be calculated [39]. This
process can be expressed as follows:

d(2)(i, j) = min
{

1− rT
j r(i)k

∣∣∣r(i)k ∈ R
}

(9)
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Similarly, Deep SORT sets a threshold t(2) for this information association, which can
be expressed as follows:

b(2)i,j = 1[d(2)(i, j) ≤ t(2)] (10)

The linear weights of the two association methods are utilized to reflect the final
degree of association, which can be expressed as follows:

ci,j = λd(1)(i, j) + (1− λ)d(2)(i, j) (11)

where λ is the associated weight of the motion information.

3.4. Motion Information Detection

Translation and rotation are the most representative motion information parameters in
engineering and scientific research. It is necessary to characterize the particles to detect the
translation and rotation of rock particles under a vibration load. Common characterization
methods include the smallest circumscribed circle, the smallest circumscribed rectangle,
and the equivalent ellipse [40]. We chose the equivalent ellipse as the characterization
method for the detection of the translation and rotation of particles on account of the
appearance characteristics of the rock particles.

We detected and segmented the masks of particles using the improved Mask R-CNN
and tracked these masks with Deep SORT. Then, these masks were processed by the
equivalent ellipse characterization method, which contributed to converting them into a
numerical value with practical meaning, as shown in Figure 5.
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Figure 5. Equivalent ellipse characterization method.

The centers of the ellipses could replace the centers of mass of the particles. We
extracted the center position of the ellipse frame by frame and obtained the translation by
subtracting the center position of the previous frame. The units of the results measured
by the above method are pixels. To acquire the actual translation of the rock particles,
calculating the physical size of a single pixel is necessary, which is the calibration of image
pixels [41]. We calibrated the images using a proportional calibration algorithm, which can
be expressed as follows:

k =
L
N

(12)

where k is the actual size of pixels, L is the actual size, and N is the number of pixels. The
rotation can be acquired by calculating the change in the major axis angles of the ellipses
frame by frame.

4. Experiment and Analysis
4.1. Experimental Equipment and Parameter Settings

We developed experimental equipment to collect videos, including the experiment
box, vibration motor, load plate, reinforcement ring, CCD camera, transparent panel, coarse
particles, and small particles. In this experiment, the vibration motor acted on the load
plate and provided a vibration load for the particles; the reinforcement ring was used to fix
the experiment box; the transparent panel could block particles; the CCD camera captured
videos of the experimental environment. The SHL-500W CCD camera had a resolution of
1600 × 1200 pixels and a frame rate of 30 fps. The lens model used was LT-C0516-5MP with
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a focal length of 5 mm. The horizontal distance between the experiment box and the CCD
camera was 143 cm, and the bottom width of the experiment box was 840 mm. The particles
selected for this experiment were pebbles with irregular shapes and smooth surfaces. An
image of the experimental environment captured by the visual sensor is shown in Figure 6.
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The training and testing experiments of the model were conducted on Ubuntu 18.04.
The processor was an Intel Core i7-8700K CPU @3.7 GHz (Intel, Mountain View, CA,
USA), and the GPU was an NVIDIA GeForce RTX2080Ti (NVIDIA, Santa Clara, CA, USA).
The framework of the deep learning framework was TensorFlow. The official weight
was utilized as the pretraining weight, and the stochastic gradient descent was used
during network training to accelerate the convergence speed of the Mask R-CNN. We set
80 epochs and performed 100 iterations per epoch; therefore, a total of 8 × 103 iterations
were performed. The activation function was ReLU, and the batch size was 2. The other
key training parameters are listed in Table 1.

Table 1. Key training parameters.

Parameter Type Parameter Value

Global Parameter

Number of categories 2
Initial weight 1
Learning rate 10−3

Attenuation coefficient of learning rate 10−4

Attenuation step length 100
Momentum Factor 0.9

RPN Mesh Parameter

Anchor size 16, 32, 64, 128, 256
Anchor shape ratio 0.5, 1, 2
Anchor step length 1

Maximum number of Anchors per image 256
Non-Maximum Suppression (NMS) threshold for anchor 0.7

The number of anchors after NMS 2000

Header Network Parameter
Confidence threshold 0.7

Maximum number of instances 100
NMS threshold 0.3

In the process of object tracking by Deep SORT, the particle movement speed of
particles was relatively slow, and the motion uncertainty was low. Therefore, the association
of motion information was regarded as the main matching index. λ and Amax took the
values 0.8 and 30, respectively.
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4.2. Dataset

A binary mixture of coarse and small particles often assumes multiple spatial distribu-
tion states. The degree of mixing is an index used to evaluate the distribution uniformity
of the number of binary particles in the mixing process. Zero indicates that the coarse
and small particles are completely separated, and 100 indicates that the coarse and small
particles are evenly distributed. The collected images, with mixing degrees of 0, 20, 40,
60, 80, and 100, were divided into three categories according to the proportion of particles
(i.e., coarse particles account for 25%, 50%, and 75%). There were 18 categories in total,
each of which contained 10 images in different compaction states. We then obtained a total
of 180 images of particles, and each image of particles was cropped to make the effective
data in the image more obvious. Because of insufficient data, we used image enhancement
technology (e.g., translation, rotation, and affine transformation) so that each image could
increase the other four additional images. Finally, 900 images were utilized for subsequent
training and analysis. Specifically, we used the LabelMe image annotation tool to generate
a file in .json format and then divided the dataset into a training set, validation set, and test
set at a ratio of 8:1:1.

4.3. Algorithm Evaluation Index

To evaluate the effects of Mask R-CNN comprehensively and objectively, we utilized
the accuracy, precision, recall, and F1 score as algorithm evaluation indicators.

Accuracy is the percentage of correct prediction results in the total samples, and it is
calculated using Equation (13):

Accuracy =
TP + TN

TP + FP + TN + FN
(13)

where TP is the number of pixels that actually belong to particles and are predicted to be
particles by the model, FP is the number of pixels that actually belong to the background but
are predicted to be particles by the model, TN is the number of pixels that actually belong
to the background and are predicted to be background by the model, and FN is the number
of pixels that actually belong to particles but are predicted to be background by the model.
Therefore, TP + TN is the number of pixels correctly predicted by the model, and FP + FN
is the number of pixels incorrectly predicted by the model, where TP + FP + TN + FN is the
total number of pixels.

Precision is the ratio of the number of samples that are correctly identified as a certain
class to the actual number of this class. Recall is the ratio of the number of samples that are
correctly identified as a certain class to the predicted total number of this class. These are
shown in the following equations:

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

where TP is the number of samples that are actually positive and divided into positive
classes by the classifier, FP is the number of samples that are actually negative and divided
into positive classes by the classifier, and FN is the number of samples that are actually
positive and divided into negative classes by the classifier.

The F1 score is the harmonic mean of accuracy and recall, and the calculation formula
is as follows:

F1 = 2× Precision× Recall
Precision + Recall

. (16)

If the objects switched frequently in the process of tracking the movement of rock
particles using Deep SORT, the tracking effect would be worse. Therefore, we operated the
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ID switching rate (IDswitch) of the objects as the evaluation index of the tracking effect of
the rock particles. IDswitch can be expressed as follows:

IDswitch =
Iswitch

Iall
. (17)

where Iswitch is the number of IDs switching during the tracking, and Iall is the total number
of detected objects in the video stream.

We utilized the detection errors δT and δR to indicate the accuracy of translation and
rotation in a video. These calculation methods are shown in Equations (18) and (19):

δT =
1

PF ∑P
p=1 ∑F

f=1

∣∣∣T f
p − t f

p

∣∣∣
t f

p
, (18)

δR =
1

PF ∑P
p=1 ∑F

f=1

∣∣∣R f
p − r f

p

∣∣∣
r f

p
, (19)

where P is the number of particles selected to calculate the detection errors, which is set to
10 in this experiment. F is the number of images selected to calculate the detection errors
in the video. Moreover, we selected an image every 5 s (150 frames) in this experiment. T f

p

and R f
p respectively represent the translation and rotation detected by the visual method

of the p-th particle in the f -th image, with t f
p and r f

p respectively being the true translation
and rotation of the p-th particle in the f -th image.

4.4. Instance Segmentation Experiment

To verify the effectiveness of the improved Mask R-CNN for the detection and seg-
mentation of rock particles, we compared it with the standard Mask R-CNN and other
state-of-the-art methods. Firstly, we calculated detection and segmentation performance
evaluation indicators on the self-created dataset and recorded them in Table 2. Secondly,
we reported instance segmentation results on COCO using the standard metrics in Table 3.
All models were trained on the train2017 and tested on the val2017. Final results were on
test-dev. Finally, we also compared the improved results of the classification loss with some
enhancement results of Mask R-CNN on COCO minival (Table 4).

Table 2. Experimental results of instance segmentation on the self-created dataset.

Method Accuracy% Precision% Recall% F1%

FCIS [42] 71.97 76.26 59.68 66.96
RetinaMask [43] 86.34 85.71 69.53 76.78

YOLACT [44] 73.28 74.45 60.11 66.52
Standard Mask R-CNN 89.16 89.72 72.17 79.99
Improved Mask R-CNN 93.36 91.41 78.16 84.27

Table 3. The instance segmentation results on COCO.

Method APm APm
50 APm

75

FCIS [42] 29.5 51.5 30.2
RetinaMask [43] 34.7 55.4 36.9

YOLACT [44] 29.8 48.5 31.2
Standard Mask R-CNN 35.7 58.5 37.8
Improved Mask R-CNN 36.0 58.9 38.3
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Table 4. Comparison of the improved results of the classification loss with some enhancement results
of Mask R-CNN on COCO minival. All the results use ResNet-101 as the backbone. Each row adds an
extra component to the above row. The Mask R-CNN results are from Table 8 in the Appendix of
Mask R-CNN [26] (Copyright Year: 2017. Copyright Owner’s Name: Kaiming He).

Method APm APm
50 APm

75 APbb APbb
50 APbb

75

Standard Mask R-CNN 36.7 59.5 38.9 39.6 61.5 43.2
+ update baseline 37.0 59.7 39.0 40.5 63.0 43.7

+ c2c training 37.6 60.4 39.9 41.7 64.1 45.2
+ ImageNet–5k 38.6 61.7 40.9 42.7 65.1 46.6

+ train-time augmentation 39.2 62.5 41.6 43.5 65.9 47.2
+ loss function (ours) 39.6 63.1 42.3 44.0 66.5 47.7

The original images of particles are shown in Figure 7a,d. Figure 7b,e show the
detection and segmentation results of the rock particles by the Mask R-CNN. Some rock
particles were not detected. For particles largely obscured and surrounded by small
particles, the missing detection is more serious. This means that it is difficult to classify
coarse particles with a high degree of similarity in the backgrounds, which results in a
poor detection effect. The segmented mask can cover the object, and the edge contour
of the coarse particles does not have obvious undersegmentation or oversegmentation.
Figure 7c,f show the results of the improved Mask R-CNN. After adding the classification
loss function based on Arcface loss, the Mask R-CNN has a certain improvement in the
detection effect of rock particles, which means that it can detect and segment some rock
particles that are partially covered or surrounded by small particles. The segmentation
effect is similar to the previous standard Mask R-CNN algorithm. More particles cannot be
detected as the degree of mixing and the proportion of coarse particles increase.
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Figure 7. Experiment effect images of instance segmentation: (a) shows an image with a mixing
degree of 40, and the proportion of coarse particles is 25; (b) shows the segmentation effect of (a)
with the standard Mask R-CNN; (c) shows the segmentation effect of (a) with the improved Mask
R-CNN; (d) shows an image with a mixing degree of 60, and the proportion of coarse particles is 50;
(e) shows the segmentation effect of (d) with the standard Mask R-CNN; (f) shows the segmentation
effect of (d) with the improved Mask R-CNN.

Table 2 shows that all indicators have been increased through the improved Mask
R-CNN to detect and segment the rock particles. Recall has the largest increase of 5.99%,
which indicates that the algorithm has improved in distinguishing the particles and back-
grounds in pictures, and more objects can be detected. The comprehensive evaluation
indexes accuracy and F1 score increased by 4.20% and 4.28%, respectively. This shows
that the overall detection and segmentation effect of the improved algorithm is better than
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that of the standard algorithm. In addition, the improved Mask R-CNN also shows better
results than other state-of-the-art methods. The improved Mask R-CNN is more suitable for
subsequent VIS, ellipse characterization, and detection of motion information of particles.

As shown in Table 3, the improved Mask R-CNN offers competitive instance segmen-
tation performance. The instance segmentation results of the improved Mask R-CNN on
COCO are slightly better than the standard Mask R-CNN. Table 3 also reports a certain
mask AP improvement compared to FCIS, RetinaMask, and YOLACT. Our improvement
to Mask R-CNN also has some advantages on public datasets.

Table 4 shows that all improvements increase mask AP by 2.9 points (from 36.7 to 39.6)
and box AP by 4.4 points (from 39.6 to 44.0). The addition of the classification loss function
increases both mask AP and box AP. This shows that the new loss function can be used as
a component to improve the detection and segmentation effect of Mask R-CNN.

4.5. VIS Experiment

We also processed four videos to verify the efficacy of the improved Mask R-CNN
and Deep SORT. The fps of the videos was 30, and each video contained a complete com-
paction process. As shown in Figure 8, we selected five frames with obvious changes from
each video as qualitative experimental results to reflect the VIS effect during vibrational
compaction. The tracking evaluation indicators of the particles were measured and are
listed in Table 5.

Figure 8 shows that the combination of the improved Mask R-CNN and Deep SORT
can realize the VIS of rock particles. The improved Mask R-CNN can detect and segment
objects frame by frame, and then we input the bounding box into Deep SORT to achieve
object tracking. This experiment could process the video stream and integrate the detection,
segmentation, and tracking of rock particles to achieve VIS, which provided the basis of
machine vision for motion information detection of particles.
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Figure 8. Experiment effect of VIS: (a) shows the tracking effect of video1 with a mixing degree of 80, and the proportion
of coarse particles is 25; (b) shows the tracking effect of video2 with a mixing degree of 40, and the proportion of coarse
particles is 25; (c) shows the tracking effect of video3 with a mixing degree of 60, and the proportion of coarse particles is 50;
(d) shows the tracking effect of video4 with a mixing degree of 60, and the proportion of coarse particles is 75.
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Table 5. The tracking evaluation indicators of the particles. “SM + D” is the experimental results
of the standard Mask R-CNN and Deep SORT. “IM + D” represents the experimental results of the
improved Mask R-CNN and Deep SORT.

Video Method Iswitch Iall IDswitch%

Video1 SM + D 73 25621 0.28
Video1 IM + D 45 25621 0.18
Video2 SM + D 1059 59549 1.78
Video2 IM + D 638 59549 1.07
Video3 SM + D 3554 191257 1.86
Video3 IM + D 2811 191257 1.47
Video4 SM + D 3977 142534 2.79
Video4 IM + D 2722 142534 1.91

Table 5 lists the information statistics of the video stream. IDswitch is low, which shows
that the switching probability of the particle ID is low, and its tracking effect is significant.
The IDswitch of the improved Mask R-CNN and Deep SORT are lower than that of standard
Mask R-CNN, which indicates that better detection and segmentation benefit the tracking
quality. We also found the IDswitch was improved even more for the videos with higher
degree of mixing and proportion of coarse particles. Videos with more coarse particles are
easier to switch IDs. This means that complex and crowded scenes may cause difficulty in
information correlation in tracking, which negatively influences the tracking effect of the
Deep SORT.

4.6. Particle Motion Information Detection Experiment

Based on the improved Mask R-CNN and Deep SORT, we measured the translation
and rotation of coarse particles. The data collection frequency was high (30 times per
second) because the videos were analyzed frame by frame. We used motor vibrations
to produce translation and rotation so that translation and rotation curves had several
jitters with small amplitudes and high frequencies. Therefore, the Savitzky–Golay filter,
which can filter high-frequency jitter without changing the shape of the curve, was used to
process the curve. The filtered translation and rotation curves of some particles are shown
in Figure 9.
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Figure 9. Motion information of some rock particles.

We developed a method to extract the translation and rotation of particles by manually
marking the long axis to compare the effects of the machine vision method. We selected
a frame every 5 s from the videos and used LabelMe to manually label the long axes
of selected particles. Then, the long axes coordinates were extracted from the .json file
generated by the annotation. The translation and rotation of particles were calculated using
the long axes coordinates. As shown in Figure 9, the translation and rotation extracted by
this method were taken as real values and were used to construct a scatter diagram. To
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further verify the accuracy of the vision method proposed in this study, we used Equations
(18) and (19) to calculated the detection errors δT and δR (Table 6).

Table 6. The detection errors. “SM + D” and “IM + D” are the same as in Table 2. No ID switching
occurs for the 10 selected particles in each video.

Video Method δt% δr%

Video1 SM + D 3.53 11.84
Video1 IM + D 3.47 12.31
Video2 SM + D 5.51 15.43
Video2 IM + D 5.14 13.81
Video3 SM + D 6.27 15.28
Video3 IM + D 6.41 16.06
Video4 SM + D 5.58 18.16
Video4 IM + D 5.36 15.79

Average SM + D 5.22 15.18
Average IM + D 5.10 14.49

As shown in Figure 9, the translation and rotation of rock particles increase with time
under the vibration load. The long axes of the equivalent ellipses are difficult to determine
for particles with shapes close to the standard circle. Therefore, the detection errors for
rotation are greater than those for translation (Table 6). We found that the improvement of
the Mask R-CNN algorithm does not significantly reduce the detection error (only 0.12%
and 0.69%). However, the improvement of Mask R-CNN reduced the ID switching rate,
which is important for the tracking effects of particles. The analysis is presented below.

Figure 10 shows examples of the standard Mask R-CNN and Deep SORT failures.
Figure 10a shows the translation curve of the standard and improved algorithms and
Figure 10b shows the rotation curve. As the particle tracked by the standard Mask R-CNN
and Deep SORT switched ID is in the range of 30–35 s, the translation and rotation of
the particle changed dramatically during this time. In contrast, the tracking curves of
the improved Mask R-CNN and Deep SORT remained stable. The improved Mask R-
CNN could reduce the ID switching rate, although it did not significantly improve the
segmentation effect. Therefore, the improvement in Mask R-CNN was beneficial to the
tracking effect and accuracy of detection because any ID switch would have a significant
impact on the tracking result.
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4.7. Discussion

The motion information of rock particles under a vibration load is related to the vibra-
tion amplitude and frequency as well as the shape, position, and material characteristics of
the particles themselves. This experiment can detect the translation and rotation of many
particles based on VIS.

The thickness of the transparent panel was 10 mm. The particles in the middle are
closer to the lens because the transparent panel near the center is under more pressure,
which might cause the translation of middle particles to be greater than the actual trans-
lation. The deformation of the transparent panel was 3–6 mm by measurement, and the
overall movement range of the particles in this experiment was small, so we think this
error could be ignored. In addition, the deformation of the transparent panel may change
the light path and lens distortion, but the errors of translation and rotation will not be
particularly large because they are calculated by relative position.

The detection of rock particle motion information proposed in this study has the
following three limitations. First, the machine vision method cannot detect the internal and
occluded particles. Second, this method approximately converts a three-dimensional space
to a two-dimensional space, which adversely affects the test results. Finally, this method
causes particle ID switching during the tracking process and this can significantly affect
the tracking process, even though the probability of switching is low.

5. Conclusions and Outlook

We proposed a method for detecting the motion information of rock particles under
a vibration load based on VIS. First, we improved the Mask R-CNN and designed a
classification loss function based on Arcface loss to improve feature discrimination. The
method can adapt to the phenomenon of high similarity between objects and backgrounds
in the experimental environment. The combination of the improved Mask R-CNN and Deep
SORT can achieve multiparticle VIS. Finally, we used the equivalent ellipse characterization
method for segmented particles. Our method can combine with the proportional calibration
algorithm to obtain the translation and rotation of particles by calculating the change in
angle of the long axis of the characterizing ellipse. Experimental results show that the
improved Mask R-CNN is better than the standard algorithm. The improved Mask R-CNN
can perform VIS by combining it with a Deep SORT. The ID switching rate is low, and the
motion information of the rock particles can be detected successfully. This is a foundation
for researching the movement law and quantitative analysis of particles under a vibration
load. In the follow-up, we will continue to research the motion information detection of
small particles and analyze the detection results.
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