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Abstract: Salient regions provide important cues for scene understanding to the human vision system.
However, whether the detected salient regions are helpful in image blur estimation is unknown. In
this study, a salient region guided blind image sharpness assessment (BISA) framework is proposed,
and the effect of the detected salient regions on the BISA performance is investigated. Specifically,
three salient region detection (SRD) methods and ten BISA models are jointly explored, during
which the output saliency maps from SRD methods are re-organized as the input of BISA models.
Consequently, the change in BISA metric values can be quantified and then directly related to the
difference in BISA model inputs. Finally, experiments are conducted on three Gaussian blurring
image databases, and the BISA prediction performance is evaluated. The comparison results indicate
that salient region input can help achieve a close and sometimes superior performance to a BISA
model over the whole image input. When using the center region input as the baseline, the detected
salient regions from the saliency optimization from robust background detection (SORBD) method
lead to consistently better score prediction, regardless of the BISA model. Based on the proposed
hybrid framework, this study reveals that saliency detection benefits image blur estimation, while
how to properly incorporate SRD methods and BISA models to improve the score prediction will be
explored in our future work.

Keywords: saliency detection; image sharpness; image quality; Gaussian blurring; human
vision system

1. Introduction

Human vision system (HVS) is verified as sensitive to the most conspicuous regions
in a visual scene, and selective attention is paid to those regions of interest [1,2]. At
each moment, the human brain needs to tackle massive messages. Since the amount of
information sensed is too high to be completely processed, the brain prioritizes salient
regions as the most important cues for follow-up analysis [1]. Emperical and computational
studies have reported evidence of a saliency map formed in cortical brain areas or before
the primary visual cortex [3–5], and this map is used to guide human visual attention to the
most relevant regions. This finding inspires increasing applications in object segmentation
and pattern analysis for scene understanding [6–8].

To identify the most informative and useful regions or objects in an image, salient
region detection (SRD) is becoming an increasingly hot topic in the field of computer vision,
and many SRD methods have been proposed in the last two decades [9–11]. According to
the backbone techniques, these SRD methods could be grouped into classic methods and
deep-learning-based methods [11], and the former can be further divided into intrinsic-
and extrinsic-cue-based methods in terms of the exploited attributes. Regarding the
intrinsic cues, an input image is explored to highlight the potential target regions through
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different aggregation or optimization algorithms in multi-scale or hierarchical analysis.
To enhance the feasibility and suppress distractors, various hypotheses are additionally
integrated, such as center prior, color prior, objectness prior, global contrast, local contrast
and center-surround contrast [12–14]. For instance, the most influential method comes
from the biologically inspired “center-surround difference” operation, which estimates
saliency maps via multi-scale analysis of image color, intensity and orientation [15]. Using a
similar framework, a “center-surround divergence” method is designed in an information-
theoretic way, and two distributions of visual feature occurrence, derived from a center
region and its surrounding region, are compared and finally fused into a single saliency
map [16]. In accordance with the understanding of HVS behavior, a center–surround
interaction is developed by combining early visual feature extraction, contrast sensitivity
analysis, perception decomposition and visual masking, followed by perceptual grouping
to bind visual features into a meaningful and high-level structure for saliency detection [17].
However, intrinsic cues might be insufficient, and the resultant performance unsatisfactory,
and, thus, extrinsic cues are incorporated, such as ground truth annotation, 3D depth maps
and saliency co-occurrence, to overcome the challenges in saliency map estimation [18–20].
In [21], the normalized depth prior and the global-context surface orientation prior are
proposed, and both priors are integrated with several intrinsic cues for the RGB-D data
analysis. In [22], saliency cues are extracted from color images and corresponding depth
maps, and, in particular, the feature contrast is derived from color contrast and depth
contrast, and the spatial bias is extended from the center bias, both of which are combined
for saliency localization and segmentation.

It is unsurpising that deep learning has updated the state-of-the-art in many fields, in-
cluding, but not limited to, computer vision, precision medicine, and remote sensing [10,23–27].
Since 2015, deep-learning-based methods have also been applied in SRD and achieved
promising results [9–11]. As one of the most popular tools, deep learning has revolutionized
image representation through multi-level and multi-scale abstraction. The deep-learning-
based SRD methods can be further categorized from various perspectives, such as backbone
network archhitectures, the level of supervision, and learning paradigm [10]. Li and Yu
propose a hybrid framework that integrates handcrafted and deep features for saliency
detection, and the backbone network is a multi-scale convolutional network, followed by a
conditional random field to fuse multiple saliency maps [28]. Based on the maximization
of a posteriori principle, Zhang et al. design a novel subset optimization framework to
generate a compact set of detection windows of noisy saliency maps, and the proposal of
noisy maps is generated by a convolutional neural network (CNN) [29]. For the streamless
approximation of saliency maps, fully convolutional networks (FCNs) are used, which
perform end-to-end salient object detection. Hu et al. developed a network architecture to
learn a level set function to refine the boundaries of the saliency map, and an additional
superpixel-guided filter is extended for a more compact saliency output [30]. Besides CNN
and FCN, other deep learning architectures, such as an autoencoder, are applied [31,32].

Automatic localization of the most visually relevant areas is useful in many applica-
tions, while it is unknown whether salient regions could improve blind image sharpness
assessment (BISA). BISA is a distortion-specific task for image quality scoring and requires
no reference images [33]. Among the various kinds of distortion, image blurring is more
common in daily life. It might be derived from out-of-focus imaging and relative target
motion, which degrades image quality and causes difficulties in scene understanding. Since
image blur is frequently accompanied by changes in the edges in the spatial domain, and
the according high-frequency attenuation, studies are looking into analysis of the edges,
contours and image structures. Marziliano et al. compute the spread of edges in the spatial
domain and measure the mean edge width (MEW) as a sharpness estimator [34]. Karam
et al. first propose the concept of just-noticeable blur via the measure of local contrast in
an image, then the concept is incorporated into a probability summation model to score
the blurness of the image [35], and later into the cumulative probability of blur detection
(CPBD) [36]. Chandler et al. quantify the attenuation of high-frequency messages in the
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spectral domain via the magnitude spectrum slop and the impact of the contrast component
in the spatial domain via the total variation, and propose the spectral and spatial sharpness
(S3) indicator [37]. Later, they weight the log-energies of the wavelet sub-band after discrete
wavelet transform and design the fast image sharpness (FISH) estimator [38]. Sang et al.
estimate the image blurring through the shape of the singular value curve (SVC), since
singular values are decreased due to the extent of image blurring [39]. It is also observed
that image blur disrupts the structue of local phase coherence (LPC), and then Hassen et
al. implement LPC as a sharpness index [40]. Bahrami and Kot consider the maximum
local variation (MLV) of each pixel in a small image patch for image blur measure [41].
Gu et al. advance a novel autoregressive-based image sharpness metric by analyzing the
autoregressive parameter space of images [42]. Based on an over-complete dictionary of
edge patterns, trained with high-quality natural images, Li and his colleagues propose a
sparse representation based image sharpness (SPARISH) metric [43]. They also represent
a noticeable blur with the magnitudes of discrete orthogonal moments, and design the
blind image blur evaluation (BIBLE) model [44]. Furthermore, they collect a total of eleven
sharpness-aware features in multi-scale spatial and spectral domains, and the robust image
sharpness evaluation (RISE) model is formulated [45]. Sun et al. simulate the impact of
viewing distance on blur distortion, and calculate the distribution characteristics of the
local maximum gradient of multi-resolution images in the spatial domain [46]. Cai et al.
design an interesting procedure that reblurs the orignial blurred image [47], and the global
sharpness is estimated through inter-resolution self-similarities, since the discrepancy
between an image and its reblurred version indicates the extent of blur in the image. CNN
has also been used for BISA tasks. Limited by a small number of training samples, Yu et
al. propose a hybrid framework to incorporate a shallow CNN for representation learning
of image sharpness, and the prediction performance is further boosted by different kinds
of numerical regressors [25,48]. Their further kernel visualization indicates that image
sharpness is related to image edges and structures [25]. Li et al. design semantic feature
aggregation for blur-dominated distortions, which alleviates the impact of image content
variation, and the results suggest that deep semantic features might address image content
variation in image-quality assessment [49]. In addition, Hosseini et al. synthesize the HVS
response as a linear combination of finite impulse response derivative filters, and the falloff
of high band frequency magnitudes is stimulated in natural imaging paradigm [50].

Several studies have used saliency detection for image quality estimation. In [51],
the visual saliency map is set as a weighting function with the purpose of improving the
existing image quality metrics. In [52], an image is divided into regions of interest and
background regions, and computational metrics from these regions are pooled to score the
image quality. In [53], visual saliency is usede to compute the local quality map and then as
a weighting function to reflect the importance of a local region for final quality assessment.
In [54], visual saliency information is introduced into image quality metrics, and the
correlation performance can be further boosted between the predicted scores and the
subjective scores. In [55], image quality degradation is modelled as saliency deviation, and
both the saliency map and quality information are embedded into the proposed metric. In
these studies [51–55], saliency maps are used as a weighting function, quantitative features,
or degradation results in an implicit manner to improve the prediction of image quality.

However, the effect of salient regions on image quality assessment is still unknown. To
better analyze this effect, this study concerns a specific distortion of Gaussian blurring, and
it excludes the effect of other kinds of distortion variations. A hybrid salient-region-guided
BISA framework is designed. This reorganizes the output of an SRD method as the input
of a BISA model and, thus, the change in the BISA metric value can be directly related to
the change in the BISA input. In summary, the contributions of this study are as follows:

1. A salient region guided BISA framework is designed. It aims to observe the effect of
salient region input on image blur estimation;
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2. Based on the proposed framework, the effect of SRD results on the BISA prediction is
investigated. Specifically, this involves three SRD methods combined with 10 BISA
models, and the experiment is conducted on three Gaussian blurring image datasets;

3. Experimental results reveal that salient regions can help a BISA model achieve a
comparable performance to one using whole-image input. In particular, the saliency
optimization from robust background detection (SORBD) method is suggested.

The remainder of this paper is organized as follows. The details of the involved
datasets, SRD methods, BISA models, and experiment design are presented in Section 2.
Experimental results are reported in Section 3. The findings and limitations of this study
are summarized in Section 5. Finally, the conclusions are included in Section 5.

2. Materials and Methods
2.1. Data Collection

Synthesized Gaussian blurring images are collected from three widely used datasets.
CSIQ [56] and LIVE [57] contain 30 and 29 pristine images, respectively. In these datasets,
images are distorted by five different levels of blurring, and image quality is reported using
differential mean opinion scores. The third dataset TID13 [58] has 25 reference images.
Each image in the database is degraded by four different levels of Gaussian blurring, and
image quality is reported using mean opinion scores.

The pristine images are from a set of source images and reflect adequate diversity in
terms of image content, including pictures of faces, people, animals, close-up shots, wide-
angle shots, nature scenes, man-made objects, images with distinct foreground/background
configurations, and images without any specific object of interest. Figure 1 demonstrates
several representative images in these datasets. Interestingly, it was found that the refernce
images in CSIQ are distinctive from those in the other two databases, while more than ten
images have the same or similar content as that shared in LIVE and TID13; for instance, the
lighthouse, as shown in Figure 1.

Figure 1. Several representative pristine images in the three datasets.

In the three databases, Gaussian blurring is synthesized intentionally. To each pristine
image, its R, G, and B channels are filtered using a circular-symmetric 2-D Gaussian kernel
of standard deviation (δ) of Gaussian distribution [57], as shown in Equation (1), where c
is a color channel, δ stands for the standard deviation of the distribution, x and y are the
location indices of pixels. The three color components of an image are blurred using a same
kernel, while, to different images, the values of δ change in different ranges.

Gc
2D(x, y, δ) =

1
2πδ2 exp (− x2 + y2

2δ2 ), (1)



Sensors 2021, 21, 3963 5 of 21

2.2. Evaluated SRD Methods

Three SRD methods are evaluated. One detects salient regions with diffusion process
on a 2-layer sparse graph (DPLSG) [59]. It constructs the diffusion matrix using sparse
graph and obtains the seed vector from the spatial variance of superpixel clusters. DPLSG
computes two coarse saliency maps via the foreground and the background seed vectors,
and the final saliency map is generated using a manifold ranking diffusion method. The
second method, the saliency optimization from robust background detection (SORBD) [60],
designs a robust background measure to compute boundary connectivity, which char-
acterizes the spatial layout of image regions. Moreover, it integrates multiple low-level
cues into the optimization framework with an intuitive geometrical interpretation. The
last method incorporates both salient region localization and image segmentation (SRIS)
into a hybrid framework and aims to overcome image noise and artifacts [61]. It uses an
adaptive level-set evolution protocol and an adaptive weight function is embedded. SRIS
can balance both the internal and the external functions and tackle different kinds of image
distortion, such as inhomogeneity and noise.

The reasons for using the three SRD methods are manifold. Firstly, the three methods
consider saliency detection from various perspectives. DPLSG considers sparse graph
and manifold ranking diffusion [59], SORBD computes the boundary connectivity and
integrates low-level geometric cues for optimization [60], and SRIS designs an adaptive
level-set evolutional protocol and an adaptive weight function to tackle different kinds of
image distortion [61]. Secondly, the SRD methods are able to estimate the saliency maps
of the Gaussian blurring images. Offline experiments were also conducted on two deep-
learning-based SRD methods (BASNet [62] and PiCANet [63]). Since image contextures
or boundaries are important, both methods cause failure cases on highly blurry images.
Last, but not least, the codes of the three SRD methods are avaialable online, and the effort
involved in algorithm implementation is relieved.

2.3. Involved BISA Models

This study involves 10 BISA models, including MEW [34], CPBD [36], S3 [37], FISH [38],
SVC [39], LPC [40], MLV [41], SPARISH [43], BIBLE [44], and RISE [45]. The methods are
mainly implemented with MATLAB. Codes are available online and the methods are tested
without any modifications.

Notably, deep-learning-based BISA models were also explored [25,49]. Deep learning
requires a large number of samples for model training. To tackle this problem, Yu et al. [25]
randomly select hundreds of patches from an image, and the score of each patch is paired
with that of the image. Li et al. [49] represent an image by using multiple overlapping
patches with the purpose of avoiding introducing unwanted geometric deformation and
retaining the model performance. However, the sizes of salient regions are decreased,
and some key parameters in deep learning-based models become meaningless, such as
the patch number [25] and the stride [49]. In other words, the deep-learning-based BISA
models [25,49] cannot be well trained and, consequently, the effect of salient regions on
deep-learning-based BISA performance becomes ambiguous. Therefore, deep-learning-
based BISA models are not considered in this study.

2.4. The Proposed Hybrid Framework

The proposed hybrid framework is shown in Figure 2. It uses SRD methods to
generate saliency maps to guide BISA tasks (the arrows with solid line). An SRD method
computes the saliency map (B) of an input image (A). Then, the saliency map is binarized
into foreground masks, and a minimum outer rectangle is generated accordingly (D). Next,
two kinds of salienct-region-guided BISA experiment are conducted. One takes the image
region in the rectangle as the input (G), and the other uses the binary mask with the largest
area (E) to generate its outer rectangle and to obtain the image region as the input (H). For
fair comparison, two additional experiments are carried out. One uses the source image
as the input (I), and the other takes the center area (C) of the image as the input (F), since
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the center region, as a center prior, assumes salient objects are more likely to be located
at the center of an image [11]. Therefore, to each BISA model, four kinds of experiments
are conducted by using different image inputs (F-I). Finally, by using different kinds of
image input, including center region (CR), salient region (SR), major salient region (mSR)
and whole image (WI), a BISA model predicts the scores as {sCR}, {sSR}, {smSR} and
{sWI}, respectively.

Figure 2. The proposed hybrid framework and experiment design. Under different image input
scenarios, the performance of salient-region-guided image sharpness estimation is compared.

2.5. Performance Evaluation

Two metrics, Pearson linear correlation coefficient (PLCC) and Spearman rank-order
correlation coefficient (SRCC), are used to evaluate the performance of BISA models. The
former measures the prediction accuracy, and the latter assesses the prediction monotonic-
ity. The values of both metrics range between 0 and 1, and a higher value indicates a
better prediction.

Beefore quantifying the prediction performance, a nonlinear fitting is routinely used
to map the predicted scores to the range of corresponding subjective ratings. There are
two fitting methods. Since little difference is found [64], this study uses the five-parameter-
based curve fitting method, shown below,

Q(s) = q1(
1
2
− 1

1 + exp q2(s− q3)
) + q4s + q5, (2)

where s and Q(s) correpond to the input scores (such as {sCR}) and the mapped scores,
and qi (i = 1, 2, . . . , 5) are determined during the score fitting.

2.6. Experiment Design

The experiment design is described below:

1. Experiments are conducted on different combinations of SRD methods and BISA
models, and the prediction performance is illustrated;

2. On each dataset, the BISA model with the largest score drop between the WI input
and the CR input is investigated. The procedure consists of three steps. First, compute
the difference in PLCC values derived from the WI and the CR input, and the BISA
model with the largest score drop is determined. Then, to the BISA model, absolute
difference of prediction scores between the WI input and the CR input is shown, and
the images causing the three largest score drop are determined. In the end, the WI,
the CR, the SR, and the mSR are also demonstrated;
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3. The results from the CR input are set as the baseline, and the difference obtained by
subtracting the value (PLCC and SRCC) of the CR input from that of the corresponding
SR and mSR input is shown;

4. The size of salient regions (SR and mSR) is analyzed and illustrated to verify the
effectiveness of SRD methods;

5. The average running time of SRD methods and BISA models is reported separately.

2.7. Software and Platform

Software runs on a Windows system. The system is embedded with Intel(R) Core(TM)
i7-8700 CPU (3.20 GHz), 16 GB RAM and one GPU card (Nvidia GeForce GTX 1070, Nvidia,
Santa Clara, California, United States). The SORBD method is implemented by Python 3.6,
and other codes of SRD methods and BISA models are implemented by Matlab R2018a.
It is worth noting that some codes need executable files to run. For a fair comparison,
these algorithm codes are accessible on GitHub (https://github.com/NicoYuCN/srgBISA
(accessed on 5 June 2021)).

3. Results

Based on the proposed framework, the effect of salient region inputs on the BISA
performance is investigated. A total of three SRD methods combined with ten BISA models
are explored, and three datasets (CSIQ, LIVE, and TID13) are involved in the quality
assessment of Gaussian blurring images. The prediction performance is quantified with
PLCC and SRCC values. To each dataset, the results are demonstrated from three parts:

1. The metric values are shown in Figures 3, 5 and 7. To differentiate the inputs, WI (red
star ∗), CR (blue triangle4), SR (pink square �); and mSR (black dot ·) are denoted
with different combinations of colors and markers.

2. The BISA model with the largest score drop between the WI and its CR input is shown
in Figures 4, 6 and 8. The reasons why the BISA model causes the lowest PLCC value
are also provided. Note that SORBD is used as the default SRD method;

3. Setting the performance of the CR input as the baseline, the difference obtained by
subtracting the baseline from that of using SR and mSR inputs is shown in Tables 1–3.
Accordingly, if the BISA metric value of a salient region input is smaller than the
baseline performance, its sharpness metric value is negative.

Besides the three parts, the distribution of size proportions of SR and mSR input is
shown in Figure 9 and Table 4, and the running time is listed in Tables 5 and 6. In the
end, the SRD method with good balance between computing efficiency and prediction
performance is suggested.

3.1. On the CSIQ Gaussian Blurring Images

Figure 3 shows the BISA results on the CSIQ Gaussian blurring images. The SR input
(�) leads to equal or comparable metric values to the WI input (∗), followed by the mSR
input (·), and the CR input (4) obtains the worst BISA results. In general, SORBD and
SRIS lead to slightly higher prediction scores than DPLSG for the same BISA model (except
the MEW). Based on SORBD or SRIS, several BISA models, such as MEW, CPBD, S3, LPC,
MLV, SPARISH and BIBLE, obtain reliable scores when the WI is replaced by SR or mSR,
but not the CR input. Interestingly, among the BISA models, MEW with salient regions
from DPLSG or SORBD achieves superior PLCC values in comparison to that using the
WI input.

https://github.com/NicoYuCN/srgBISA
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Figure 3. Comparison of prediction scores regarding different inputs on the CSIQ Gaussian blurring
images. This indicates that using SR (pink square �) or the mSR (black dot ·) as input could achieve
close results to the corresponding WI input (red star ∗), and their results are better than that using
the CR (blue triangle4) input. (The figure can be enlarged for viewing).

As shown in Figure 3, SVC generally achieves low PLCC scores compared to the BISA
models. Subsequently, based on the SORBD method, followed by the SVC model, the
absolute score difference in each image is shown in Figure 4, and the images are illustrated,
besides the points of the three largest score differences. In the figure, the horizontal axis
shows the image index and the vertical axis shows the score difference. It can be seen
that the three images are highly blurry and the CR covers only a part of the salient region.
In contrast, using the salient regions from SORBD as an input leads to a small score
drop (Figure 3), because the detected salient regions retains most of edge structures and
image content.

Moreover, in comparison with the BISA results, by using the CR input, the perfor-
mance difference is quantified and shown in Table 1. Note that a negative metric value
denoted using the salient region input results in a worse prediction performance than that
using the CR input. Overall, both the SR and the mSR input could enhance the metric
values. Among the SRD methods, SORBD enables the PLCC values of from 0.012 to 0.085
higher, and the SRCC values of from 0.003 to 0.051 higher. Among the BISA models, S3,
MLV, SPARISH and BIBLE obtain a consistently positive performance. For instance, MLV
obtains an increase of PLCC values in the range between 0.026 and 0.063 and SRCC values
in the range between 0.026 and 0.054.
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Figure 4. Absolute difference in predicted scores on CSIQ images based on the SORBD method
combined with the SVC model. The images causing the three largest score drops are illustrated next
to the points. (The figure can be enlarged for viewing).

Table 1. Center region (CR) input as the baseline for BISA comparison on the CSIQ.

MEW CPBD S3 FISH SVC LPC MLV SPARISH BIBLE RISE

SR
in

pu
t

DPLSG PLCC 0.027 −0.023 0.024 0.024 0.000 −0.004 0.030 0.041 0.048 −0.003
SRCC −0.021 −0.049 0.033 0.005 −0.095 0.003 0.026 0.021 0.029 0.007

SORBD PLCC 0.028 0.012 0.029 0.035 0.085 0.016 0.062 0.042 0.048 0.014
SRCC 0.003 0.021 0.034 0.012 0.032 0.029 0.051 0.025 0.031 0.019

SRIS
PLCC 0.007 0.015 0.031 0.046 0.072 0.015 0.063 0.046 0.057 0.009
SRCC 0.007 0.022 0.033 0.027 0.035 0.025 0.054 0.024 0.038 0.016

m
SR

in
pu

t DPLSG
PLCC 0.008 −0.039 0.016 −0.004 0.012 −0.016 0.026 0.037 0.042 −0.002
SRCC −0.017 −0.057 0.025 −0.024 −0.113 −0.013 0.023 0.020 0.026 0.012

SORBD
PLCC 0.027 0.012 0.029 0.035 0.085 0.016 0.062 0.042 0.047 0.016
SRCC 0.003 0.021 0.035 0.013 0.033 0.029 0.051 0.025 0.030 0.020

SRIS
PLCC 0.002 0.007 0.025 0.044 0.074 0.015 0.061 0.041 0.057 0.006
SRCC 0.002 0.021 0.033 0.024 0.018 0.022 0.054 0.022 0.039 0.010

3.2. On the LIVE Gaussian Blurring Images

As shown in Figure 5, the performance of BISA models combined with SRD methods
is evaluated on the LIVE Gaussian blurring images. This shows that the SR input (�)
obtains competitive metric values compared with the WI input (∗), followed by the mSR (·)
and the CR input (4). Among the SRD methods, when using the SR and mSR input, the
DPLSG, when combined with MEW, CPBD, FISH, SVC or MLV models, causes an obvious
metric decrease, and SORBD and SRIS lead to a slightly inferior performance for each BISA
model. Notably, using SORBD or SRIS, most BISA models, including CPBD, S3, FISH, SVC,
LPC, MLV, SPARISH, BIBLE and RISE, maintain the prediction scores well. In addition, the
salient region detected by SORBD and then combined with MEW or SVC can improve the
PLCC values, more than the WI input for image blur estimation.
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Figure 5. Comparison of BSIA results with different inputs from SRD methods on the LIVE Gaussian
blurring images. This shows that the SR (�) or the mSR (·) input could achieve comparable results to
the WI input (∗), and the CR (4) input leads to the worst prediction performance. (The figure can be
enlarged for viewing).

As shown in Figure 5, the MEW model obtains the lowest PLCC score when using the
CR input. Based on the SORBD method combined with the MEW model, the absolute score
difference in each image is shown in Figure 6, where the horizontal axis shows the image
index, and the vertical axis shows the score difference. In addition, images leading to the
three largest score drops are illustrated. The figure shows that the images are blurry, and
the center regions cover relatively few edge structures in comparison to the whole images,
both of which are important to the MEW model in image blur estimation. In contrast, when
using salient regions as input, the score drop is relatively small, because the regions retain
most edge structures and scene content.

Moreover, Table 2 shows the BISA difference between the CR input and the salient
region input. Note that a negative metric value denotes that the salient region input had
a worse prediction performance than the CR input. In general, both the SR and the mSR
input enhance the metric values. On the LIVE Gaussian blurring images, 6 out of 10 BISA
models consistently improve the values of evaluation metrics. Notably, the MEW model
increases the PLCC value and the SRCC value up to 0.159 and 0.130 higher, respectively.
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Figure 6. Absolute score difference in each image in LIVE based on the SORBD method and the MEW
model. Beside the points of the three largest score drops, the corresponding images are illustrated.
(The figure can be enlarged for viewing).

Table 2. Center region (CR) input as the baseline for BISA comparison on the LIVE.

MEW CPBD S3 FISH SVC LPC MLV SPARISH BIBLE RISE

SR
in

pu
t

DPLSG
PLCC 0.113 −0.078 0.014 0.052 −0.219 −0.004 0.109 0.024 0.021 0.005
SRCC 0.088 −0.130 −0.024 0.052 −0.239 0.035 0.106 0.022 0.026 0.011

SORBD
PLCC 0.156 0.019 0.013 0.082 0.019 0.036 0.119 0.031 0.047 0.014
SRCC 0.113 0.013 −0.014 0.078 0.007 0.064 0.120 0.024 0.044 0.016

SRIS
PLCC 0.155 0.029 0.015 0.083 0.013 0.036 0.118 0.032 0.045 0.017
SRCC 0.130 0.021 0.005 0.080 -0.004 0.063 0.118 0.025 0.043 0.019

m
SR

in
pu

t DPLSG
PLCC 0.125 −0.151 0.005 0.017 −0.256 −0.006 0.076 0.009 0.009 0.006
SRCC 0.086 −0.237 −0.016 0.006 −0.305 0.014 0.074 0.008 0.016 0.011

SORBD
PLCC 0.159 0.019 0.014 0.082 0.019 0.036 0.119 0.031 0.047 0.014
SRCC 0.119 0.014 −0.010 0.077 0.006 0.063 0.119 0.024 0.043 0.017

SRIS
PLCC 0.133 0.027 0.019 0.083 −0.066 0.040 0.120 0.016 0.028 0.008
SRCC 0.126 0.020 0.007 0.079 −0.117 0.062 0.120 0.010 0.024 0.013

3.3. On the TID13 Gaussian Blurring Images

The metric values obtained using BISA models combined with SRD methods are
shown in Figure 7. Compared to the WI input (∗), the SR (�) maintains the BISA perfor-
mance well, followed by the mSR input (·), both of which outperform the CR input (4).
Notably, SORBD combined with BISA models (except the CPBD model), and SRIS with
CPBD, S3, FISH or MLV, achieve competitive BISA results compared to the correspond-
ing WI input, while DPLSG leads to an observable decrease in BISA scores. In addition,
based on the salient regions detected by SORBD, the BISA models, such as MEW and SVC,
achieve even higher metric values than the WI input.
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Figure 7. Comparison of BSIA performance on the TID13 Gaussian blurring images. The metric
values using salient region inputs are slightly inferior to those obtained from the WI input (∗), while
the values are much better than those obtained using the CR input (4). (The figure can be enlarged
for view).

As shown in Figure 7, the MEW model obtains the lowest PLCC score when using the
CR input. Based on the SORBD method combined with the MEW model, the absolute score
difference in each image is shown in Figure 8 where the horizontal axis shows the image
index and the vertical axis shows the score difference. In addition, the images causing the
three largest score drops are illustrated. This indicates the three images have various levels
of blurring distortion. Moreover, the CR input covers limited edge structures, while the
detected salient regions retain most or all of the edge structures.

Based on the TID13 Gaussian blurring images, Table 3 shows the results of a compari-
son between salient region inputs and the CR input from PLCC and SRCC values. By setting
the CR input as the baseline, the quantitative difference indicates that most BISA models
achieve a better performance. Specifically, the MEW model has a 0.128 higher PLCC value
and a 0.069 higher SRCC value, and the MLV model obtains an even better improvement.
Regarding the SRD methods, SORBD and SRIS outperform the DPLSG method.
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Figure 8. Absolute score difference in each image in TID13 using the SORBD method and the MEW
model. The corresponding images are given next to the points of the three largest score drops. The
three images show various levels of blurring distortion. (The figure can be enlarged for view).

Table 3. Center region (CR) input as the baseline for BISA comparison of the TID13.

MEW CPBD S3 FISH SVC LPC MLV SPARISH BIBLE RISE

SR
in

pu
t

DPLSG
PLCC 0.083 −0.052 0.042 0.045 −0.226 −0.057 0.075 0.072 0.076 −0.013
SRCC 0.038 −0.093 0.019 0.037 −0.174 −0.015 0.070 0.060 0.072 −0.003

SORBD
PLCC 0.126 0.060 0.052 0.092 0.082 0.010 0.128 0.070 0.085 0.014
SRCC 0.065 0.053 0.037 0.083 0.082 0.049 0.115 0.058 0.071 0.011

SRIS
PLCC 0.105 0.099 0.056 0.099 0.075 0.009 0.129 0.083 0.095 0.021
SRCC 0.062 0.094 0.038 0.086 0.069 0.052 0.117 0.065 0.084 0.025

m
SR

in
pu

t DPLSG
PLCC 0.068 −0.040 0.046 0.029 −0.194 −0.059 0.081 0.070 0.076 −0.013
SRCC 0.022 −0.083 0.036 0.027 −0.160 −0.018 0.077 0.058 0.068 −0.003

SORBD
PLCC 0.128 0.060 0.052 0.092 0.080 0.009 0.129 0.071 0.087 0.014
SRCC 0.069 0.053 0.041 0.083 0.079 0.049 0.116 0.058 0.071 0.011

SRIS
PLCC 0.019 0.093 0.055 0.095 0.029 0.000 0.128 0.060 0.065 0.007
SRCC 0.019 0.090 0.034 0.090 0.025 0.037 0.121 0.041 0.061 0.011

3.4. Distribution of the Size Proportion of Salient Regions

The distribution of the size proportion of used salient regions over all the images is
shown in Figure 9. The size proportions are divived into five bins with equal intervals,
which are highlighted by different colors. On the CSIQ dataset, the size proportion of mSR
input generated from the DPLSG, the SORBD and the SRIS mainly falls into the range of
(0.0, 0.2], (0.4, 0.6] and (0.8, 1.0], respectively. The similar phenomenon is also observed on
the other two datasets.
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Figure 9. Distribution of the size proportion of used salient regions over the corresponding whole
images. The size proportions are divived into five bins and denoted with different colors. (The figure
can be enlarged for viewing).

In addition, the average size proportion of salient regions (SR and mSR) over the
whole image is summarized in Table 4. This indicates that the DPLSG method generates a
relatively smaller SR and mSR, followed by the SORBD method, while the SRIS method
produces an SR input of approximately the same size as the whole image.
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Table 4. The average size proportion of salient regions over all the images.

DPLSG SORBD SRIS

SR mSR SR mSR SR mSR

CSIQ 0.36 0.30 0.71 0.58 0.96 0.85

LIVE 0.30 0.25 0.87 0.79 0.97 0.75

TID2013 0.30 0.24 0.79 0.68 0.98 0.82

3.5. Time Consumption

The average time consumption per image with regard to different SRD methods is
shown in Table 5. It was found that the DPLSG method requires more than 3.00 s to
compute the saliency map of an image, while SORBD takes less than 1.00 s.

Table 5. Average time cost per image on salient region detection (seconds).

DPLSG SORBD SRIS

CSIQ 3.93 0.77 1.87
LIVE 4.01 0.87 2.72
TID13 3.36 0.66 1.41

Table 6 summarizes the time cost per input, on average, regarding different BISA
models. In general, when using WI input for image blur estimation, S3 and SPARISH
are the most time-consuming models, taking more than 7.00 s, RISE and LPC require less
than 2.00 s, and the time cost of other models is less than 1.00 s. When using CR, SR and
mSR inputs, the time consumption drops, since only a part of the image region is used to
estimate image sharpness.

Table 6. Average time cost per input on image sharpness assessment (seconds).

MEW CPBD S3 FISH SVC LPC MLV SPARISH BIBLE RISE

C
SI

Q

WI 0.11 0.15 12.03 0.22 0.23 1.35 0.10 9.42 0.96 1.54
CR 0.02 0.02 1.45 0.02 0.03 0.21 0.01 0.98 0.21 0.25

DPLSG_SR 0.04 0.06 4.44 0.07 0.07 0.56 0.03 3.09 0.40 0.55
DPLSG_mSR 0.03 0.05 3.76 0.06 0.06 0.48 0.03 2.56 0.36 0.50
SORBD_SR 0.08 0.11 8.96 0.16 0.15 1.14 0.08 6.33 0.71 1.04
SORBD_mSR 0.07 0.08 7.28 0.12 0.12 0.94 0.05 5.18 0.60 0.87

SRIS_SR 0.10 0.14 11.68 0.22 0.21 1.33 0.10 9.13 0.93 1.47
SRIS_mSR 0.09 0.13 10.34 0.18 0.18 1.27 0.09 8.08 0.83 1.28

LI
V

E

WI 0.15 0.20 17.10 0.30 0.26 1.88 0.12 13.25 1.27 1.95
CR 0.02 0.03 2.06 0.03 0.03 0.25 0.02 1.41 0.24 0.27

DPLSG_SR 0.05 0.06 5.43 0.09 0.08 0.65 0.04 3.81 0.46 0.62
DPLSG_mSR 0.04 0.05 4.43 0.07 0.07 0.54 0.03 3.14 0.39 0.52
SORBD_SR 0.12 0.16 14.67 0.26 0.21 1.90 0.10 10.69 1.10 1.60
SORBD_mSR 0.11 0.15 13.38 0.23 0.19 1.68 0.10 9.61 1.01 1.43

SRIS_SR 0.14 0.20 16.43 0.29 0.24 1.91 0.13 12.73 1.22 1.83
SRIS_mSR 0.10 0.15 12.64 0.22 0.18 1.51 0.09 9.61 0.96 1.41

TI
D

13

WI 0.07 0.12 9.58 0.15 0.15 1.04 0.08 7.09 0.75 1.12
CR 0.02 0.02 1.16 0.02 0.03 0.15 0.01 0.75 0.19 0.20

DPLSG_SR 0.03 0.04 2.88 0.05 0.05 0.37 0.02 2.10 0.31 0.37
DPLSG_mSR 0.02 0.03 2.38 0.04 0.04 0.31 0.02 1.69 0.27 0.34
SORBD_SR 0.06 0.08 7.48 0.12 0.11 0.96 0.06 5.31 0.61 0.87
SORBD_mSR 0.05 0.07 6.44 0.11 0.10 0.83 0.04 4.55 0.53 0.77

SRIS_SR 0.07 0.12 9.40 0.15 0.15 1.05 0.08 7.08 0.73 1.11
SRIS_mSR 0.06 0.09 7.76 0.12 0.12 0.92 0.06 5.79 0.63 0.94
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4. Discussion

This study proposed a hybrid framework for no-reference image blur estimation.
Based on the framework, the effect of salient region input on BISA tasks was investigated.
It involved three SRD methods and ten BISA models. The procedure was conducted on
three Gaussian blurring image datasets. Specifically, a BISA model’s input comes from
different parts of an image, including WI, CR, SR and mSR.

The BISA performance (PLCC and SRCC) based on salient regions is comparable to
that using the WI input (Figures 3, 5, and 7). For instance, on the LIVE (Figure 5), the
SORBD method enables the BISA models, such as MEW, CPBD, S3, LPC, MLV, SPARISH
and RISE, retain the estimation of image quality well. Moreover, SORBD jointly with MEW,
leads to even higher PLCC values compared to the WI input. A similar phenomenon
is observed on the other two image datasets (Figures 3 and 7). This indicates that the
performance using detected salient regions could approximate that using whole images.

However, quite a bit of variation in the metric values is observed for each BISA model.
This shows that the PLCC value of SVC is generally low in CSIQ (Figure 3), and the PLCC
and SRCC values of MEW are generally low in LIVE (Figure 5) and TID13 (Figure 7). FTo
further understand this, we used the SORBD method for saliency detection to found out
why the SVC model on CSIQ and the MEW model on LIVE and on TID13 lead to inferior
performance. Correspondingly, the absolute score difference on each image and the images
causing the three largest score drops are illustrated in Figures 4, 6 and 8. The reasons
for the variations in metric values are manifold. From the perspective of datasets, the
images in CSIQ are distinct from those in the other two datasets, while more than ten
images have the same or similar content in LIVE and TID13, such as the reference images,
named lighthouse, parrots, bikes, sailing, woman, and statue in the LIVE dataset. Thus,
the discovery of variation in metric values is meaningful. Secondly, from the principle of
the BISA models, SVC focuses on singular value analysis, and MEW estimates the edge
width. As shown in Figure 4, the center region of images is homogeneous because of
limited contrast. Thus, the curve in singular values struggles to reflect the curve in the
whole image, while the mean edge width of the center region might be close to that of
the whole image. On the other hand, as shown in Figures 6 and 8, the center regions are
inhomogeneous. The curve in singular values might be close to the curve in the whole
image, while a gap in edge-width values might exist between the center region and the
salient regions. In addition, the center-region or the salient-region input is quite different
from the whole-image input. Thus, the predicted scores are correspondingly changed,
which might accumulatively affect the score nonlinear fitting and the BISA metric values.

In comparison to the CR input, corresponding salient regions (SR and mSR) lead to
better BISA performance. On the LIVE images (Table 2), there are six BISA models that
consistently increase the metric values. The MEW model dramatically enhances the PLCC
and the SRCC up to 0.159 and 0.130 higher, respectively. Similar phenomenon are also
observed on the other two databases (Tables 1 and 3). This suggests that the use of center
regions is insufficient, while using salient regions seems more appropriate in image blur
estimation. Accoding to the review of SRD methods [11], center bias is the most popular
bias, and important objects are composed in the center of an image. This bias is widely
used in SRD, but is rare in image-quality estimation. Layek et al. [66] propose an image
quality metric that uses visual saliency and contrast, and extra attention is paid to the
center by increasing the sensitivity of the similarity maps between the reference image
and the distorted image. In their study, an image is splitted into 3 × 3 blocks, as shown in
Figure 2D, and, to enhance the prediction performance, not only the center region but also
its whole image are quantified from saliency similarity and contrast similiarty. Thus, the
center region is not adequate to represent the whole image in image quality estimation. In
other words, center bias or center-surround priors could help in silency map localization,
while, in image quality estimation, salient regions are more informative and helpful.

The difference in prediction performance is observed among BISA models combined
with SRD methods. In general, the detected salient regions from the SORBD and SRIS
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methods are suitable for the MEW, FISH, LPC, MLV, SPARISH and BIBLE models, and the
regions from the DPLSG method are helpful for the models of SPARISH and BIBLE, in the
utimate goal of image blur estimation. Among the models, MEW quantifies the spread
of edges [34], FISH weights the log-energies of wavelet sub-band [38], LPC analyzes the
coherence of local phases [40], MLV measures the maximum local variation in pixels [41],
SPARISH concerns image edge patterns from an over-complete dictionary [43], and BIBLE
measures the magnitudes of orthogonal moments [44], all of which could benefit from
saliecy detection to avoid unreliable edge detection, energy weighting, coherence analysis,
variation measure, pattern reconstruction, and magnitue computing, respectively. For
saliency detection, DPLSG computes the diffusion matrix and seed vectors are obtained
from the spatial variance in superpixels [59], SORBD integrates spatial layout, low-level
cues and geometric interpretation for robust background measure [60], and SRIS con-
cerns the effect of image inhomogeneity, noise and artificats, and emphasizes level-set
evolution protocol [61]. However, image blur imposes additional difficulties to the dif-
fusion matrix computation [59], and the strategies from both [60,61] might tackle these
challenges, while the generailization capacity of these methods on the three datasets needs
further quantification.

Most importantly, the distribution proportion of the sizes of used salient regions
verifies its practical advantage. That is, saliency detection could decrease the computational
burden (Figure 9 and Table 4) and the time cost in BISA tasks (Table 6). Specifically,
DPLSG requires only from 30% to 36% of the image region and SORBD needs from 71%
to 87% of image region to guide the BISA task. Overall, among the three SRD methods,
SORBD is identified as the best one for tradeoff saliency detection, time consumption
and blur estimation (Table 5). On the other hand, DPLSG shows superiority when used
in combination with several BISA metrics, such as MEW, S3, FISH, and RISE, with a
slight decrease in metric values. To our knowledge, several studies [51–55] have verified
the added value of visual saliency maps in the estimation of image quality. Suprisingly,
Ref. [65] shows that the profit extent seems not to be directly relevant to the performance
of human fixation prediction when using the saliency detection method. This might
suggest that salient regions are different from human fixation regions. The former reveals
the conspicuous regions in a visual scene, while the latter aims to process the scene for
increased image understanding. Thus, the incorporation of BISA models and SRD methods
should be properly designed.

There are several limitations to the current study. First, most SRD methods take
advantage of data biases, prior knowledge and image contrast in the algorithm design [11],
and these methods might not be suitable for Gaussian blurring. The study [54] shows that
blurred images could be divided into pattern and non-pattern groups, and most salient
regions are more influential on pattern images than non-pattern images. Thus, a detailed
study is required to verify the capacity of SRD methods on the general natural image
test. Second, image blur imposes additional challenges for saliency detection. Future
development of saliency-guided BISA models should consider the impact of image blur on
saliency map detection in advance. Third, no deep-learning-based SRD methods or BISA
models are evaluated. Deep learning requires massive training samples with a fixed image
size, while it is difficult for an SRD method to generate salient regions with a consistent
output size from images with different content. Specifically, our offline experiments
figured out the infeasibility of deep learning methods. In addition, this study concerns only
synthesized Gaussian blurring. Other image distortions could be evaluated in the proposed
framework and, in the near future, the effect of detected salient regions on image-quality
estimation can be fully understood.

5. Conclusions

This study proposed a hybrid framework to investigate the effect of detected salient
regions on image blur assessment. This involved three saliency detection methods and
ten blind image sharpness estimators, and experiments were conducted on three Gaussian
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blurring image datasets. Experimental results verified that salient regions benefit from
image blur estimation and, most importantly, salient regions might be used as the surrogate
of whole images for image quality assessment to enhance computing efficiency. The
aim of future work will be to improve the prediction performance, develop accurate and
generalizable saliency detection methods and properly incorporate SRD methods and
BISA models.
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Abbreviations
The following abbreviations are used in this manuscript:

HVS human vision system
SRD salient region detection
CNN convolutional neural network
FCN fully convolutional network
BISA blind image sharpness assessment
MEW mean edge width
CPBD cumulative probability of blur detection
S3 spectral and spatial sharpness
FISH fast image sharpness
SVC singular value curve
LPC local phase coherence
MLV maximum local variation
SPARISH sparse representation based image sharpness
BIBLE blind image blur evaluation
RISE robust image sharpness evaluation
LIVE an image database available online
CSIQ an image database available online
TID13 an image database available online
DPLSG diffusion process on a 2-layer sparse graph
SORBD saliency optimization from robust background detection
SRIS saliency region detection and image segmentation
PLCC Pearson linear correlation coefficient
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SRCC Spearman rank-order correlation coefficient
CR center region
WI whole image
SR salient region
mSR major salient region
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