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Abstract: Most UAVs rely on GPS for localization in an outdoor environment. However, in GPS-
denied environment, other sources of localization are required for UAVs to conduct feedback control
and navigation. LiDAR has been used for indoor localization, but the sampling rate is usually too
low for feedback control of UAVs. To compensate this drawback, IMU sensors are usually fused
to generate high-frequency odometry, with only few extra computation resources. To achieve this
goal, a real-time LiDAR inertial odometer system (RTLIO) is developed in this work to generate high-
precision and high-frequency odometry for the feedback control of UAVs in an indoor environment,
and this is achieved by solving cost functions that consist of the LiDAR and IMU residuals. Compared
to the traditional LIO approach, the initialization process of the developed RTLIO can be achieved,
even when the device is stationary. To further reduce the accumulated pose errors, loop closure and
pose-graph optimization are also developed in RTLIO. To demonstrate the efficacy of the developed
RTLIO, experiments with long-range trajectory are conducted, and the results indicate that the RTLIO
can outperform LIO with a smaller drift. Experiments with odometry benchmark dataset (i.e., KITTI)
are also conducted to compare the performance with other methods, and the results show that the
RTLIO can outperform ALOAM and LOAM in terms of exhibiting a smaller time delay and greater
position accuracy.

Keywords: LiDAR-inertial odometry; state estimation; sensor fusion; SLAM

1. Introduction
1.1. Background

Precise ego-motion estimation and active perception play important roles when per-
forming navigation tasks or exploring unknown environments in robotics applications,
and the potential of small unmanned airborne (S-UAS) platforms applied to collect remote
sensing data have been analyzed [1]. Unmanned aerial vehicles (UAVs) running simultane-
ous localization and mapping (SLAM) algorithms can also be used to perform numerous
tasks, including surveillance, rescue, and transportation in extreme environments [2–4]. In
the field of SLAM, the performance of state estimation is highly reliant on sensors, such as
cameras, LiDAR, and inertial measurement units (IMUs). However, there are limitations
associated with each type of sensor, such as minimum illumination requirements and the
presence of noise. To overcome these shortcomings of stand-alone sensors, multiple sensors
have been used to increase the reliability of estimation [5–9]. The methods utilizing multiple
sensors for state estimation are categorized into two types: loosely coupled (cf. [5,6]) and
tightly coupled (cf. [7–9]). The tightly coupled approach directly fuses LiDAR and inertial
measurements through a joint optimization that minimizes some residuals, whereas the
loosely coupled approach deals with the multiple sensors separately. The tightly coupled
method is less computationally efficient and more difficult to implement than the loosely
coupled approach, but it is more robust in its approach to noise and more accurate [8].
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Accurate and real-time localization is crucial to the feedback control of UAVs in
practical applications. Acquiring accurate localization information by solving the tightly
coupled problem requires a considerable amount of computation, which decreases the
frequency at which state estimation can be performed for providing real-time feedback.
Moreover, the requirements of robust, precise, and fast localization increase the difficulty of
designing algorithms. The visual inertial odometry (VIO) method [7] proposes achieving
precise and real-time results based on tightly coupled VIO that fuses camera and IMU
measurements for state estimation. However, its performance can be impaired by poor
lighting conditions. Since 3D LiDAR sensors are less influenced by lighting conditions
and can also provide range measurements of the surrounding environment, they have
been successfully used for ego-motion estimation [8–11]. Most LiDAR systems update at a
lower frequency than cameras (usually 10 Hz), which means that the point cloud can be
distorted when the LiDAR moves aggressively. In contrast to LiDAR, an IMU is capable of
extremely high update rates, and so combining LiDAR and IMU allows their individual
deficiencies to be compensated, and the state estimation for UAVs can be solved by tightly
coupled optimization.

In [11], the feature points were extracted from the LiDAR point cloud, and the cor-
responding features from the last LiDAR measurement were matched to estimate the
ego-motion. To refine the odometry, feature points were matched and registered to the
feature maps. In [9], it was shown that using tightly coupled LiDAR inertial odometry
(LIO) with multiple window frames to local map is too time-consuming, while the accuracy
is significantly degraded if there are too few windows. The approach taken in [7] cannot
be used, either in a dark or highly dynamic illumination environment. Therefore, there is
always a trade-off between high accuracy and computation efficiency, and the localization
performance using other sensors (e.g., cameras) to reduce the computation loading can be
affected by environmental factors.

1.2. Related Works

In [11], IMUs play an important role by providing an initial guess before performing
estimation. However, this approach mainly relies on LiDAR information to estimate the
motion, by matching feature points extracted from the local surface to the corresponding
feature, estimating the relative transform, and constructing a global map. In [7], the gyro-
scope bias, scale, and direction of gravity can be corrected through the initialization step.
In [12], the estimator combines IMU data and plane features obtained from LiDAR for
joint optimization. Notably, feature planes are compressed into the closest point in each
frame, so that the estimator is able to run in real time. In [9], tightly coupled 3D LIO for
graph optimization was demonstrated in both indoor and outdoor environments, but the
estimation process still took too long. In [13], a feature extraction algorithm for LiDAR
systems was proposed with small fields of view, and feature points were used to estimate
odometry and mapping. Moreover, linear interpolation was used to suppress the effect of
motion blur associated with LiDAR movement, with each point in the same frame being
compensated for this movement.

Loop closure is an approach that corrects the drift that occurs during long-term opera-
tion. The method starts by identifying previously visited places, and the iterative closest
point (ICP) is the most common approach that involves searching the matches between
the current laser scan and the existing map. Another method computes feature descriptors
from laser scans, and then verifies loop closure based on certain conditions. In [10], features
were segmented into many clusters, which enables the method to perform real-time pose
estimation, even in a large-scale environment. In the back-end, the k-dimensional (KD)-
tree method was used to search for the closest keyframe when performing loop closure,
with loop closure established once the residual from ICP is sufficiently small. In [14],
a real-time mapping approach was proposed that involved inserting laser scans into a
probability grid. In that method, a branch-and-bound search runs in the back-end for
loop closure, and if a sufficient match is found in the search window, the loop closure
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constraint is added to the optimization problem. Overall, this system achieves a moderate
capability and pixel-level accuracy using 2D LiDAR, but it is still too time-consuming
for applying to 3D LiDAR data. The approach in [15] classified laser scans into segments
with feature descriptors, and the transformation was obtained by matching these segments
with the map. This method saves time compared to matching the entire laser scan, but its
performance may be highly dependent on the accuracy of the classifier.

A tightly coupled LIO is developed in this work to obtain high-accuracy and high-
frequency localization output for the feedback control of UAVs. Although tightly coupled
methods normally require more computation loading, the developed approach can generate
more-accurate and more-frequent localization information. The frame-to-map estimation
process is robust and stable, and loop closure is applied to further correct the accumulated
error when a loop is detected. Here, the performance of this new method is compared
with other approaches in the literature using the publicly available KITTI (http://www.
cvlibs.net/datasets/kitti/eval_odometry.php, accesed on 5 April 2021) dataset [16,17].
KITTI dataset was chosen, since it is the first dataset that provides accurate ground truth.
The data were collected using a Velodyne HDL-64E laser scanner that produces more
than one million 3D points per second and a state-of-the-art OXTS RT 3003 localization
system which combines GPS, GLONASS, an IMU and RTK correction signals. Additionally,
a fair comparison is possible using KITTI dataset due to its large scale nature as well as
the proposed novel metrics, which capture different sources of error by evaluating error
statistics over all sub-sequences of a given trajectory length or driving speed [16]. Many
works (e.g., [10,11]) also used KITTI as benchmarks to evaluate the localization accuracy.
The results demonstrate that the algorithm applied in this work can outperform other
approaches in terms of both accuracy and frequency. The main contributions of this study
are summarized as follows:

1. IMU excitation is not required for initialization, in contrast to [7].
2. Online relocalization combined with loop closure and pose-graph optimization meth-

ods have been developed for odometry and mapping that are more accurate than
in [9].

3. In contrast to the odometry and mapping algorithm [11], the developed RTLIO
can provide a high-frequency of odometry for the UAV and constructing maps syn-
chronously.

1.3. Overview

The architecture of RTLIO is shown in Figure 1. The system starts with measurement
preprocessing (Sect. IV), in which point clouds from the LiDAR measurement are classified
into corner points and plane points. The distorted clouds are corrected by the integration
of IMU measurements between two consecutive LiDAR frames. In the front-end (Sect.
V, VI), the initialization processing provides the bias of the gyroscope, direction of grav-
ity, and initial velocity for bootstrapping the subsequent nonlinear optimization-based
RTLIO. In the sliding window optimization, the cost function is constructed to include
the marginalization, LiDAR, and IMUs information for solving the UAV pose. In the
back-end (Sect. VII), the loop closure is used to detect whether the current position has
been revisited, and the pose graph optimization module is used to reduce the accumulated
drift to increase positioning accuracy. Finally, RTLIO provides two frequency poses. One
is the LiDAR-rate pose after preprocessing and optimization at 10 Hz; the other is the
IMU-rate pose generated by the IMU propagation in RTLIO at 400 Hz.

http://www.cvlibs.net/datasets/kitti/eval_odometry.php
http://www.cvlibs.net/datasets/kitti/eval_odometry.php
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Figure 1. Architecture of the developed RTLIO.

Let body frame bk be defined on the IMU, where k denotes the frame when the kth

LiDAR measurement is acquired. The world frame w is defined on the initial body frame,
and the direction of the gravity is aligned with the z axis of the world frame. The LiDAR
frame l be defined on the LiDAR. The rotation from frame A to frame B is denoted as qB

A
or RB

A, and the translation transforming from frame A to frame B is denoted, as pA
B . ⊗

represents the Hamilton product between two quaternions. All other variables are listed in
Table 1.

Table 1. Notation.

Index Note

p ∈ R3 position
v ∈ R3 velocity

q quaternion
θ ∈ R3 Euler angle

R ∈ SO(3) rotation matrix
T ∈ R44 transformation matrix
ω ∈ R3 angular velocity
a ∈ R3 linear acceleration
g ∈ R3 gravity

ba, bω ∈ R3 acceleration and gyroscope bias
na, nω ∈ R3 acceleration and gyroscope noise

P point cloud
P̄ ∈ R3 a point in P

b body frame
w world frame
l LiDAR frame

(·)i state representation in ith frame
(·)t state at time t

ˆ(·) nominal state
| · | cardinality of the denoted argument

m ∈ R number of frames in sliding window

2. Methodology
2.1. Measurement Preprocessing
2.1.1. Time Alignment

The time stamps of the measurements from the LiDAR and camera are illustrated in
Figure 2, where the sliding window includes the latest m LiDAR frames and each frame
contains a set of IMU measurements, since the sensing rate of the IMU is much higher (e.g.,
200 Hz).
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Figure 2. Time alignment between LiDAR point cloud Pk and the set of the IMU measurements Bk.

2.1.2. IMU Preintegration

IMU preintegration and the covariance matrix derivation with the continuous-time
IMU dynamics of an error-state Kalman filter were proposed in [7,9,18,19]. Based on [20],
the IMU states can be divided into true states X, nominal states X̂, and error states δX,
whose compositions are defined as

X = X̂ � δX

X = [ α, θ, β, ba, bω ]T, (1)

where α, θ, and β are the position, orientation, and velocity, respectively, and ba and bω

are defined in Table 1. The operation � for a state v in the vector space is simply the
Euclidean addition, i.e., v = v̂ + δv, and for quaternion, it implies the multiplication of the
quaternions, i.e., ⊗.

Measurements ât and ω̂t at time t ∈ (tk, tk+1] are defined as

ât = at + bat + Rt
wgw + na

ω̂t = ωt + bωt + nω (2)

na ∼ N (0, σ2
a )

nω ∼ N (0, σ2
ω),

where na and nω are defined as random variables with normal distribution (i.e, N ) with
zero mean and variances σ2

a and σ2
ω.

The position, velocity, and orientation states between two body frames bk and bk+1
can be propagated by integrating IMU measurements ât and ω̂t during t ∈ (tk, tk+1] in the
world frame as

pw
bk+1

= pw
bk
+ vw

bk
∆tk

+
∫ ∫

t∈[tk , tk+1]
(Rw

t (ât − bat − na)− gw)dt2

vw
bk+1

= vw
bk
+
∫

t∈[tk , tk+1]
(Rw

t (ât − bat − na)− gw)dt

qw
bk+1

= qw
bk
⊗
∫

t∈[tk , tk+1]

[
0

1
2 Ω(ω̂t − bωt − nω)

]
γbk

t dt, (3)
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where Ω is the same as defined in (3) of [7]. Transforming (3) from the world frame to
frame bk yields

Rbk
w pw

bk+1
= Rbk

w (pw
bk
+ vw

bk
∆tk −

1
2

gw∆t2
k) + α

bk
bk+1

Rbk
w vw

bk+1
= Rbk

w (vw
bk
− gw∆tk) + β

bk
bk+1

γ
bk
bk+1

=
[
qw

bk

]−1
⊗ qw

bk+1
, (4)

where α
bk
bk+1

, β
bk
bk+1

, and γ
bk
bk+1

are the true states of the IMU integration and γ
bk
bk+1

is the

quaternion form of θ
bk
bk+1

defined as

α
bk
bk+1

=
∫ ∫

t∈[tk , tk+1]
R(γbk

t )(ât − bat − na)dt2

β
bk
bk+1

=
∫

t∈[tk , tk+1]
R(γbk

t )(ât − bat − na)dt

γ
bk
bk+1

=
∫

t∈[tk , tk+1]

[
0

1
2 (ω̂t − bωt − nω)

]
R

γ
bk
t dt. (5)

The noises in (5) are unknown, and so the nominal states can be expressed as

α̂
bk
bk+1

=
∫ ∫

t∈[tk , tk+1]
R(γ̂bk

t )(ât − b̂a)dt2

β̂
bk
bk+1

=
∫

t∈[tk , tk+1]
R(γ̂bk

t )(ât − b̂a)dt

γ̂
bk
bk+1

=
∫

t∈[tk , tk+1]

[
0

1
2 (ω̂t − b̂ω)

]
R

γ̂bk
t dt, (6)

where b̂a and b̂ω are the biases in the accelerometer and gyroscope.
The difference between the nominal states and the true states is minimized by correct-

ing the nominal states, as described in Section 2.1.3.

2.1.3. Correction of Preintegration

Based on (1), the error state can be rewritten as

δX = X � X̂, (7)

where the operation � for a state v in the vector space is simply the Euclidean addition,
i.e., v = v̂ − δv, and for quaternion, it implies the multiplication of the inverse of the
quaternion.

Taking the time derivatives of (5)–(7) yields

˙δXi = FiδXi + Vin
δ̇αi
δ̇θi
˙δβi

δ̇bai

δ̇bωi

 = Fi


δαi
δθi
δβi
δbai

δbωi

+ Vi



na0
nω0
na1
nω1
nba

nbω

 (8)

nba ∼ N (0, σ2
ba
)

nbω
∼ N (0, σ2

bω
),
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where Fi and Vi are error state dynamics matrices, na0 and na1 are the acceleration noises,
nω0 and nω1 are the angular velocity noises, nba and nbω

are modeled as random walks
applied to the biases, and σ2

ba
and σ2

bω
are variances of nba and nbω

, respectively.
Based on (8), the relation between error states δXi and δXi+1 can be discretized as

δXi+1 = δXi + ˙δXiδt

= δXi + (FiδXi + Vin)δt

= (I + Fiδt)δXi + (Viδt)n, (9)

which describes the relation of two error states at ti and ti+1, which can be extended to the
two error states at tk+1 and tk by

δXbk+1
= F′δXbk

+ V′n (10)

F′ =
1

∏
i=|Bk+1|−1

(I + Fiδt)

V′ = (VN−1δt)n

+ (
1

∑
i=|Bk+1|−2

(
i+1

∏
j=|Bk+1|−1

(I + Fjδt))Viδt)n.

According to [18], covariance matrix Qbk
bk+1

of δXbk+1
can be computed recursively

using the first-order discrete-time covariance updated with the initial value Qbk
bk
= 0:

Qbk
i+1 = (I + Fiδt)Qbk

i (I + Fiδt)T + (Viδt)O(Viδt)T, (11)

where O contains the diagonal covariance matrices σ2
a0

, σ2
ω0

, σ2
a1

, σ2
ω1

, σ2
ba

, and σ2
bω

. Based

on (1), (6), and (10), the corrected preintegrations denoted as ᾱ
bk
bk+1

, β̄
bk
bk+1

, and γ̄
bk
bk+1

are
defined as

ᾱ
bk
bk+1

= α̂
bk
bk+1

+ Jα
ba

δbak + Jα
bω

δbωk

β̄
bk
bk+1

= β̂
bk
bk+1

+ Jβ
ba

δbak + Jβ
bω

δbωk

γ̄
bk
bk+1

= γ̂
bk
bk+1
⊗
[

1
1
2 Jγ

bω
δbωk

]
, (12)

where δbak and δbωk are obtained from (7), with bak and bωk discussed in Section 2.3, and Jα
ba

is the submatrix in F′, whose location corresponds to
δα

bk
bk+1

δbak
. Jα

bω
, Jβ

ba
, Jβ

bω
, and Jγ

bω
also follow

the same notation.

2.1.4. LiDAR Feature Extraction and Distortion Compensation

LiDAR measurements are not made synchronously due to the rotating mechanism
inside the LiDAR sensor, and therefore the point cloud Pk in the kth frame suffers from
distortion, as shown in Figure 3a. This distortion was compensated for using IMU measure-
ments, as shown in Figure 3b. First, Pk is segmented into N subframes by azimuthal angle φ,
where Pi

k is the ith subframe for i ∈ {1, 2, . . . , N}. Second, the transformation matrix from
ti
k to tN

k is defined as TN
i , and is calculated from the IMU integration as TN

i = T(tN
k )T-1(ti

k).
Third, by performing subframe-wise transformation, the distortion-compensated point
cloud denoted as P′k is obtained as

P′k =
{

TN
1 P1

k , TN
2 P2

k , . . . , TN
i Pi

k

}
, i = 1, 2, ..., N. (13)
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The segmentation and ti
k are depicted in detail in Figure 4. After performing distortion

compensation, the feature points on the planes or the edges in each sweep are extracted
using the feature extraction procedure proposed by [10,11].

Figure 3. Calibrated results: (a) the point cloud suffered from distortion when LiDAR is moving,
and (b) the result obtained after distortion compensation. Different colors indicate subframes in
one sweep.

Figure 4. (a) Each subframe of Pk is defined as Pi
k. (b) The time of the ith subframe is defined as ti

k for
i ∈ {1, ..., N}.

2.1.5. LiDAR Odometry

In Section 2.1.4, the feature points in each sweep are used to find the corresponding
feature points in the last sweep, so that the transformation between each sweep (i.e., P′k
and P′k+1, defined in (13)) can be obtained by minimizing the residual. The procedures are
described in detail in [10,11].

2.2. Estimator Initialization

In the monocular visual-inertial system [7], the metric scale was recovered through the
initialization process. However, the developed LiDAR-inertial system in this work does not
require the initialization process to recover the metric scale thanks to the range measurement
from the LiDAR sensor. To help improve the preintegration accuracy, the gyroscope bias
bω needs to be estimated in Section 2.2.1, and the corrected preintegration can facilitate the
estimation of the gravity vector in the first LiDAR frame gl0 in Section 2.2.2.

2.2.1. Rotational Alignment

Consider two consecutive frames bk and bk+1 in the sliding window, where l0 repre-
sents the first LiDAR frame. Rotations ql0

bk
and ql0

bk+1
are obtained from the given extrinsic
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parameters (pb
l , qb

l ). Rotations ql0
lk

and ql0
lk+1

are from Section 2.1.5. The preintegration

γ̄
bk
bk+1

from (12) is combined to estimate δbω by minimizing the following cost function:

min
δbω

c−1

∑
k=0

∥∥∥∥(ql0
bk+1

)−1
⊗ ql0

bk
⊗ γ̄

bk
bk+1

∥∥∥∥2
, (14)

where c is the number of frames used for the initialization. Once the gyroscope bias is
solved, preintegration terms α̂

bk
bk+1

, β̂
bk
bk+1

, and γ̂
bk
bk+1

will be repropagated using (12).

2.2.2. Linear Alignment

After computing the gyroscope bias, another important element to consider is the
gravity vector. Initialization state χI is defined as

χI =
[
vb0 , vb1 , vb2 , · · · vbc−1 , gl0

]
, (15)

which includes the velocities on the body frame of each moment and the gravity vector,
where the magnitude of gl0 is known.

Remark 1. When the UAV is moving during the initialization process, velocity vbi
defined in (15)

can be calculated from pl0
bi

, pl0
bi+1

, and ql0
bi

.

Given two consecutive frames bk and bk+1 in the window, ql0
bk

, ql0
bk+1

and translations

pl0
bk

, pl0
bk+1

obtained are combined with IMU preintegration terms α̂
bk
bk+1

, β̂
bk
bk+1

to form the
minimization problem

min
χI

c−1

∑
k=0

∥∥∥∥∥∥ẑbk
bk+1
− Hbk

bk+1

 vbk
vbk+1

gl0

∥∥∥∥∥∥
2

, (16)

to solve state χI defined in (15), where

ẑbk
bk+1

=

 α̂
bk
bk+1
− Rbk

l0

(
pl0

bk+1
− pl0

bk

)
β̂

bk
bk+1


= Hbk

bk+1
χI + nbk

bk+1
(17)

Hbk
bk+1

=

[
−I∆tk 0 1

2 Rbk
l0

∆t2
k

−I Rbk
l0

Rl0
bk+1

Rbk
l0

∆tk

]
,

and nbk
bk+1

is the measurement noise. The transformation between each LiDAR measurement,

as well as the registered laser scans, will be transformed to the world frame using gl0 . This
is useful when l0 frame might not be horizontal, where LiDAR-only odometry may result
in a tilted map. After bω and gl0 are estimated, they can be used as the initial conditions for
the tightly coupled LIO in Section 2.3.
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2.3. Front-End: Tightly Coupled LIO and Mapping

State vector χ, which includes all of the states in the sliding window, is defined as

χ =
[

x0, x1, x2, · · · , xm−1, xb
l

]
xk =

[
pw

bk
, vw

bk
, qw

bk
, bak , bωk

]
, k ∈ {0, 1, 2, . . . , m− 1} (18)

xb
l =

[
pb

l , qb
l

]
,

where m is defined in Table 1, xk is the state at the time when the kth LiDAR measurements
are acquired, and xb

l are the extrinsic parameters between the LiDAR and IMU.
To estimate the state defined in (18), the following cost function is optimized to obtain

a maximum posteriori estimation:

min
χ

{∥∥rp − Hpχ
∥∥2

+
m−1

∑
k=0

∥∥∥rB

(
ẑbk

bk+1
, xk, xk+1

)∥∥∥2

Q
bk
bk+1

+ ∑
j∈L

ρ
∥∥∥rL

(
ẑ(j, f ), χ

)∥∥∥2
}

, (19)

where L is a set of indices that characterizes the LiDAR features in the sliding window,
which includes two type of sets, namely edge E and plane F, such that L = {E, F}. f
is the feature correspondence of j feature. ρ is a loss function used for outlier rejection,
rp and Hp are the prior information from marginalization defined in the subsequent

analysis, rB

(
ẑbk

bk+1
, xk, xk+1

)
is the residual for the IMU measurements, and rL

(
ẑj

f , χ
)

is
the residual for the LiDAR measurements defined in the subsequent analysis. The residuals
are described in detail in Sections 2.3.1 and 2.3.2. To make different types of measurements
unitless and scale-invariant, the Mahalanobis norm is applied to (19). Qbk

bk+1
is the covariance

matrix of the IMU measurement, where Qbk
bk+1

is obtained by propagating the uncertainty
using (11). The Ceres solver [21] was used to solve the nonlinear problem defined in (19).

2.3.1. IMU Measurement Model

Replacing true states α
bk
bk+1

, β
bk
bk+1

, and γ
bk
bk+1

in (4) with the result from (12), allows a
residual form to be constructed in (20).

rB

(
ẑbk

bk+1
, xk, xk+1

)
=



r
α

bk
bk+1

r
θ

bk
bk+1

r
β

bk
bk+1

rba

rbω



=



R(qw
bk
)T
(

pw
bk+1
− pw

bk
+ 1

2 gw∆t2
k − vw

bk
4tk

)
− ᾱ

bk
bk+1

2
[(

γ̄
bk
bk+1

)−1
⊗
(

qw
bk

)−1
⊗ qw

bk+1

]
xyz

R(qw
bk
)T
(

vw
bk+1

+ gw∆tk − vw
bk

)
− β̄

bk
bk+1

bak+1 − bak

bωk+1 − bωk


, (20)

where [·]xyz denotes the extraction of the imaginary part of the denoted quaternion.
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2.3.2. LiDAR Measurement Model

The LiDAR cost function includes frame-to-frame and frame-to-map matching. The
frame-to-map matching provides high precision for each state, while the frame-to-frame
matching can suppress the variation of the states in the sliding window.

Consider Plk
j to be a feature in the kth LiDAR frame. For frame-to-map matching, Plk

j
is represented in the world frame w as

Pw
j = Tw

bk
Tb

l Plk
j . (21)

For frame-to-frame matching, point Plk
j is represented in the previous LiDAR frame

lk−1 as

Plk−1
j =

(
Tb

l

)−1(
Tw

bk−1

)−1
Tw

bk
Tb

l Plk
j . (22)

The residuals for edge E and plane F features are constructed, as shown in Figure 5,
and defined as follows.

2.3.3. Residuals for the Edge Features

The point-to-line distance describing the residuals for edge features can be com-
puted as

rE

(
ẑt
(j, f ), χ

)
=

∣∣∣(Pt
j − Pt

f1

)
×
(

Pt
j − Pt

f2

)∣∣∣∣∣∣Pt
f1
− Pt

f2

∣∣∣ , (23)

where Pt
j is Plk

j represented in t frame, t can represent either w or lk−1 using (21) or (22),

respectively. Pt
f1

is the closest edge feature to Pt
j, and Pt

f2
is the second closest point.

2.3.4. Residuals for the Plane Features

The point-to-plane distance known as the Hesse normal form can be computed

rF

(
ẑt
(j, f ), χ

)
= nt

f · P
t
j + dt

f , (24)

where nt
f is the normal vector of the closest plane to Pt

j, and dt
f is the distance from the

closest plane to the origin of frame t.

Figure 5. Illustration of residuals for edge and plane features. Residuals are shown by the blue lines.
(a) The residual of edge feature Pt

j with the corresponding line shown in green that is formed by Pt
f1

and Pt
f2

. (b) The residual of the plane feature Pt
j with the plane shown in green that is formed by the

feature correspondences.
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The residuals described in (23) and (24) are applied to construct one of the residuals
defined in (19) as

∑
j∈L

ρ
∥∥∥rL

(
ẑ(j, f ), χ

)∥∥∥2
= ∑

j∈E
ρ
∥∥∥rE

(
ẑw
(j, f ), χ

)∥∥∥2

+ ∑
j∈F

ρ
∥∥∥rF

(
ẑw
(j, f ), χ

)∥∥∥2

+ ∑
j∈F

ρ
∥∥∥rF

(
ẑlk−1
(j, f ), χ

)∥∥∥2
, (25)

where rE

(
ẑw
(j, f ), χ

)
is the residual of the edge feature for frame-to-map matching, rF

(
ẑw
(j, f ), χ

)
is the residual of the plane feature for frame-to-map matching, and rF

(
ẑlk−1
(j, f ), χ

)
is the

residual of the plane feature for frame-to-frame matching. The residual of the edge fea-
ture for frame-to-frame is not considered, since it does not help for boosting the accuracy
of RTLIO.

2.3.5. Marginalization

In order to reduce the computational complexity and preserve the history information,
a marginalization procedure needs to be applied to the sliding window method. This
marginalization aims to keep the most-recent frame in the window, and the Schur comple-
ment is applied to construct a prior term based on marginalized measurements. The detail
can be referred to [22,23]. A factor graph of such a system is shown in Figure 6. The frame-
to-map constraints do not influence the adjacent states, and so only the frame-to-frame
constraints are considered.

Figure 6. Illustration of the factor graph and the marginalization strategy. The oldest frame in the
sliding window will be marginalized into prior information after optimizing (19).

Combining all of the residuals and solving the cost function defined in (19) yields
the best estimation of states. The local map is then obtained based on the current state
estimation, by applying an appropriate algorithm [11].

2.4. Back-End: Loop Closure and Pose-Graph Optimization

The optimization-based approach provides sufficient accuracy in an indoor environ-
ment, but for large-scale cases, it is inevitable that accumulated drift will occur due to vari-
ous factors, such as extrinsic parameters between the LiDAR and IMU, the asynchronous
sampling of measurements, and inaccurate data association during LiDAR matching. One
way to correct for such drift is using loop closure. This method starts with identifying
the previously visited places. Once a loop is detected by computing feature correspon-
dences, a relocalization process tightly integrates these constraints into a cost function. This
procedure minimizes drift and achieves much smoother state estimation. After the loop
closure and relocalization are performed, the sliding window shifts and aligns with the
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past poses. Then, a pose-graph optimization algorithm can match all keyframes, in order to
minimize the drift and ensure the global consistency of the system. These processes might
not influence the current state estimation, but the optimized pose-graph can facilitate the
consistency of global map reconstruction after performing the state estimation.

2.4.1. Loop Closure

The loop closure algorithm is described in Algorithm 1. Once a frame is marginalized
from the sliding window, its point cloud in the body frame, Pm, and its pose, Tm, will
be fed into the loop closure algorithm. If the L2-norm between Tm and the pose at the
lastest keyframe is higher than an Euclidean distance threshold, the marginalized frame is
considered as a new keyframe. In this way, the keyframes are kept uniformly distributed
in the space. Then, KD-tree search with search radius of r is performed if the keyframe
database, (DT , DP), which is the set of the keyframe pose and point cloud, is not empty.
T
′
m from DT is the closest keyframe transformation matrix to Tm. If T

′
m can be found in

DT , the loop is assumed to be detected. Then, TICP is obtained by matching Pm with the
local map, M, based on the threshold of the point-to-point RMSEs. M is the local map
constructed by registering keyframe point cloud DP to the world frame based on DT .

Algorithm 1 Loop closure algorithm.
Input: Tm, Pm from the sliding window
Output: TICP

1: if (Tm, Pm).isKeyframe() then
2: if DT 6= φ or DP 6= φ then
3: T

′
m ← KDtree.RadiusSearch(Tm, DT , r);

4: M← registerPointCloud(DT , DP);
5: if T

′
m 6= 0 then

6: TICP ← ComputeICP(Pm, M, Tm);
7: end if
8: end if
9: T

′
m ← 0

10: DT = DT ∪ Tm
11: DP = DP ∪ Pm
12: end if

2.4.2. Tightly Coupled Relocalization

As long as the current pose in the world coordinate is obtained, TICP and M are fed
back to the RTLIO module for state correction. The relocalization scheme is modified
from (19) by solving the following cost function:

min
χ

{∥∥rp − Hpχ
∥∥2

+
m−1

∑
k=0

∥∥∥rB

(
ẑbk

bk+1
, xk, xk+1

)∥∥∥2

Q
bk
bk+1

+ ∑
j∈L

ρ
∥∥∥rL

(
ẑ(j, f ), χ

)∥∥∥2
+ ∑

j∈L
ρ
∥∥∥rM

(
ẑ(j,m), χ

)∥∥∥2
}

with the constraint

rM

(
ẑ(j,m), χ

)
= Pw

j − Pw
m

= Rw
bk

(
Rb

l Plk
j + pb

l

)
+ pw

bk
− Pw

m, (26)

where Pw
m ∈ M is the closest point to Pw

j in the global map. By solving the modified cost
function, the current states can be used for relocalization in the global map.
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2.4.3. Global Pose-Graph Optimization

Due to the LiDAR inertial setup, roll and pitch angles are fully observable once gravity
and the bias are estimated. Therefore, the accumulated drift only occurs in the other four
degrees of freedom (x, y, z, yaw) and can be reduced by solving keyframe states in the
pose-graph. Every keyframe state serves as a vertex in the pose-graph, and two types of
edges between the vertices are utilized. The pose-graph is illustrated in Figure 7.

Figure 7. Constructing a pose-graph: every node in the graph represents the state of a keyframe. S
is the set of the sequential edges, where S =

{
s0

1, s1
2, · · · , sk

k+1, · · ·
}

. H is the set of loop closure

edges, where H =
{

h0
k+1, · · ·

}
.

2.4.4. Sequential Edge

A sequential edge represents the relative transformation between each keyframe,
which is obtained from the RTLIO results. Considering a keyframe j and its previous
keyframe i, the sequential edge is defined as si

j =
{

p̂i
j, ψ̂i

j

}
, where p̂i

j and ψ̂i
j denote the

relative position and the relative yaw angle, respectively:

p̂i
j = R̂w

i ( p̂w
j − p̂w

i )

ψ̂i
j = ψ̂w

j − ψ̂w
i . (27)

If the current keyframe j has a corresponding keyframe i, the loop closure edge is
defined as hi

j =
{

p̂i
j, ψ̂i

j

}
which is obtained in Section 2.4.1. Then loop closure edge will be

added to the pose-graph as an additional constraint.

2.4.5. Pose-Graph Optimization for Four Degrees of Freedom

State vector χp of the pose-graph is defined as

χp = [x0, x1, · · · , xn−1]

xk = [pw
k , ψw

k ], k ∈ {1, 2, . . . , n− 1}, (28)

where n is the number of vertices in the pose-graph.
To find state χp defined in (28), the cost function is formulated as

min
χp

{
∑

si
j∈S

∥∥rij
∥∥2

+ ∑
hi

j∈H

ρ
∥∥rij
∥∥2
}

, (29)
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where the residuals of the sequential edge and the loop closure edge between keyframes i
and j are defined as

rij(pw
i , ψw

i , pw
j , ψw

j ) =[
R(φ̂w

i , θ̂w
i , ψw

i )
−1(pw

j − pw
i )− p̂i

j
(ψw

j − ψw
i )− ψ̂i

j

]
, (30)

where φ̂w
i and θ̂w

i are the roll and pitch angles, respectively, converted from qw
bk

defined
in (18). The loss function ρ is applied to penalize wrong connections of the loop closure
edges. Once pose-graph optimization is completed, all keyframe states are updated.
The global map is then updated by registering the keyframe point cloud according to
the states.

3. Experiment Results and Discussions

A series of experiments (https://github.com/ChadLin9596/ncrl_lio, accessed on 2
June 2021) were conducted to analyze the performance of the developed RTLIO algorithm
and compare it with the current state-of-the-art algorithms. To demonstrate the real-time
capability of our system, multiple indoor tests are presented in Section 3.1. The KITTI
dataset was used to compare the results with real-world benchmarks; the results are
discussed in Section 3.2.

3.1. Indoor Flight Test

During the experiments, multiple threads were utilized to achieve the desired per-
formance in real time. The first thread performed distortion compensation and feature
extraction from LiDAR measurements, as described in Section 2.1.4. The second thread
took those features and computed the incremental motion, as described in Section 2.1.5.
The third thread (described in Section 2.3) executed the RTLIO algorithm that solves the
states based on the initial guess from the second thread. The RTLIO generated two types of
odometry defined in Section 1.3: (i) LiDAR-rate pose, and (ii) the IMU-rate pose, which can
be obtained with minimal delay. This means that the high-frequency pose can be directly
used for real-time feedback control.

The precision and computation time are discussed and compared with other LiDAR-
based methods in Section 3.1.2, for experiments conducted in the laboratory with the
OptiTrack motion capture system as the ground truth. The flight tests with RTLIO and the
other methods are presented in Section 3.1.3.

3.1.1. System Setup

The quadcopter setup used in this work is shown in Figure 8. It comprised a 16-beam
LiDAR system (Velodyne VLP-16, 10 Hz), IMU (400 Hz), and Intel NUC (NUC8i7BEH)
with an i7-8559U CPU running at 2.70 GHz and 20 GB of memory. The RTLIO algorithm is
implemented on the board to perform state estimation in real time.

https://github.com/ChadLin9596/ncrl_lio


Sensors 2021, 21, 3955 16 of 21

Figure 8. The quadcopter used for the indoor flight tests.

3.1.2. Precision and Time Cost

Data recorded with quadcopter flying in circular trajectories in the laboratory were
used as the input to LOAM (cf. [11]), ALOAM (cf. [11] (https://github.com/HKUST-Aerial-
Robotics/A-LOAM, accessed on 1 April 2021), and RTLIO to conduct postprocessing. The com-
parison of performance is shown in Figure 9, where ALOAM is an extension of LOAM
produced by HKUST. The relative pose errors (RPEs) and the time costs of the methods are
listed in Table 2, which indicates that the odometry from RTLIO had lower RPEs, but a greater
time cost. The methods discussed in this section are able to estimate the pose state to a certain
precision, and the impact of the time costs is discussed in Section 3.1.3. The IMU-rate poses
from RTLIO cannot be compared with poses from ALOAM and LOAM, because ALOAM
and LOAM cannot generate high frequency poses.

Table 2. Comparison of RMSE of RPE and average time costs for the RTLIO, ALOAM and LOAM methods.

Method Number of Frames Translation (m) Rotation (deg) Computation Time (ms)

LOAM (10 Hz) 1203 0.0599 1.4218 67.5977
ALOAM (10 Hz) 1224 0.0078 0.3955 61.1810
RTLIO (10 Hz) 1224 0.0066 0.1881 96.3577

Figure 9. The comparison of trajectory with LOAM, ALOAM, RTLIO.

3.1.3. Indoor Flights

Figure 10 shows the results of RTLIO along the x, y, and z axes, from take off to
landing. These results show that high-performance localization is crucial to the real-time
feedback control of the quadrotor and trajectory tracking, and the time delays from RTLIO
and LOAM are compared in Figure 11. The computation time for RTLIO is 0.2944 ms,
and the delay is small enough for feedback control.

https://github.com/HKUST-Aerial-Robotics/A-LOAM
https://github.com/HKUST-Aerial-Robotics/A-LOAM
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Figure 10. Flight trajectory with RTLIO along the x, y, and z axes.

Figure 11. Time delays for (left) LOAM, (right) IMU-rate pose in RTLIO.

3.1.4. Indoor Flight with an Obstacle

Indoor flight experiments were also conducted with the quadcopter flying along
a corridor with the localization obtained by RTLIO. Figure 12a shows the setup of the
indoor test environment, Figure 12b shows the top view of the map in the xy plane and the
trajectory of the UAV, starting from the “WORLD” to “IMU”. These tests and the results
presented in Section 3.1.3 demonstrate the capability of the RTLIO algorithm to perform
localization for the feedback control of the quadcopter and trajectory tracking, either in a
laboratory or corridor environment, and that the generated mapping is reliable.

Figure 12. Results for indoor flying with a corridor: (a) setup (b) top view of the map and the
trajectory of the entire flight (from WORLD to IMU).

3.2. KITTI Dataset Evaluation

The developed RTLIO was also evaluated using KITTI dataset, which includes mea-
surements from an inertial navigation system (OXTS RT3003), which provides the ground-
truth pose and IMU measurements at 100 Hz, a 64-beam LiDAR (Velodyne HDL-64E,
10 Hz), two grayscale (Point Grey Flea 2 FL2-14S3M-C, 10 Hz), and two color cameras
(Point Grey Flea 2 FL2-14S3C-C, 10 Hz). In this test, only the IMU and the LiDAR were
used to evaluate our algorithm.
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3.2.1. Front-End Performance

The RTLIO in the front-end did not include loop closure and pose-graph optimization.
The results show that the average errors of the translation and rotation along the given
path were 1.8560 % and 0.0043 deg/m, respectively, as reported by the KITTI evaluation.
The average translation and rotation errors over different lengths in each sequence are
shown in Figure 13.
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Figure 13. Average translation and rotation errors of the front-end evaluated over different lengths
in the KITTI dataset for sequence from 00 to 10.

3.2.2. Full Closed-Loop Performance

After adding the back-end to the RTLIO, the full pipeline was also evaluated using
the KITTI dataset. The overall results show that the average errors of the translation and
rotation along the given path are 1.6392% and 0.0035 deg/m, respectively. Figure 14 shows
that the RTLIO including the back-end effectively reduces the errors compared with the
front-end in Figure 13.
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Figure 14. Average translation and rotation errors of the full pipeline evaluated over different lengths
in the KITTI dataset for sequences 00 to 10.

The APE (Absolute Pose Error) evaluated with EVO (https://github.com/MichaelGrupp/
evo, accessed on 1 April 2021) is listed in Table 3, in which the sequences that contain a
trajectory without loop closure are marked with an *.

The results in Table 3 indicate that the RTLIO with back-end can outperform RTLIO in
APE (especially in the sequence with loop closure).

https://github.com/Michael Grupp/evo
https://github.com/Michael Grupp/evo
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Table 3. Translation and rotation of APE in the KITTI dataset.

RTLIO RTLIO with Back-End

Sequence Translation (m) Rotation (deg) Translation (m) Rotation (deg)

00 9.4542 2.5884 1.8196 0.7324
* 01 27.5966 8.0052 31.3346 9.2077
02 10.3673 1.5718 5.8435 1.3680

* 04 1.8050 1.2320 1.0295 1.3538
05 3.5576 1.7812 0.9164 0.4610
06 5.7340 2.9552 1.4797 0.6996
07 1.2983 0.7238 0.9850 0.6497
08 22.4302 4.0389 10.2060 2.1994
09 20.9436 5.8630 3.4717 2.3290

* 10 2.3719 1.2684 2.3041 1.2050

3.3. Time Consumption

The time consumption of each module in indoor flight test and KITTI datasets using
an Intel i7-7700 CPU with 24~GB of memory is listed in Table 4. Threads 1–3 are used
for computing the front-end of the RTLIO, and thread 4 is used for the back-end, which
also reconstructs a globally consistent map. However, the RTLIO was unable to run in
real time using the KITTI datasets, since scan matching is more difficult in the outdoor
environment. Additionally, the time consumption increases with the increase of the number
of the channels of the LiDAR. The higher the number of channels, the higher the resolution
(i.e., 16 channels for VLP-16, 32 channels for HDL-32E), according to the website from
Velodyne: (https://velodynelidar.com/products/hdl-32e, accessed on 2 June 2021).

Table 4. Time Statistics.

Thread Module Time (ms) Rate (Hz)

Indoor KITTI

1 feature
extraction 6 25 10

2 frame-to-frame
odometry 15 65 10

3 sliding window
optimization 65 350 10

4 loop closure 130 200 X
pose-graph optimization 10 120 X

4. Conclusions and Future Work

The RTLIO developed in this work can generate accurate and reliable odometry
information in real time, and the initialization process is performed when the UAV is
already in motion. The developed RTLIO method uses LiDAR and IMU to generate
high-frequency odometry with improved performance compared to the methods that only
use LiDARs. Moreover, a consistent and accurate global map is constructed using the
loop closure and pose-graph optimization method. Experiments were conducted with the
quadrotor in indoor environment and using KITTI dataset, and the results demonstrated
that the RTLIO can outperform ALOAM and LOAM in terms of exhibiting a smaller time
delay and greater flight stability. The RTLIO with back-end algorithm can outperform the
RTLIO with only front-end algorithm, since the accumulated drift can be reduced by the
developed pose graph.

Future works include designing a more stable initialization method to deal with
diverse situations. In addition, detection algorithms can be integrated into the method
for removing feature points on moving objects. Finally, integrating vision sensors with
the current system to improve the precision of odometry will be conducted to increase the
stability of pose estimation along the z axis.

https://velodynelidar.com/products/hdl-32e
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