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Abstract: Innovative technology has been an important part of firefighting, as it advances firefighters’
safety and effectiveness. Prior research has examined the implementation of training systems using
augmented reality (AR) in other domains, such as welding, aviation, army, and mathematics, offering
significant pedagogical affordances. Nevertheless, firefighting training systems using AR are still an
under-researched area. The increasing penetration of AR for training is the driving force behind this
study, and the scope is to analyze the main aspects affecting the acceptance of AR by firefighters. The
current research uses a technology acceptance model, extended by the external constructs of perceived
interactivity and personalization, to consider both the system and individual level. The proposed
model was evaluated by a sample of 200 users, and the results show that both the external variables
of perceived interactivity and perceived personalization are prerequisite factors in extending the
TAM model. The findings reveal that the usability is the strongest predictor of firefighters’ behavioral
intentions to use the AR system, followed by the ease of use with smaller, yet meaningful, direct
and indirect effects on firefighters’ intentions. The identified acceptance factors help AR developers
enhance the firefighters’ experience in training operations.

Keywords: augmented reality; firefighting training; technology acceptance model (TAM); factor
analysis; regression analysis; usability; user experience

1. Introduction

Augmented reality (AR) is defined as a system that has the following properties:
(a) combines real and virtual objects, (b) is interactive in real-time, and (c) is registered
in three dimensions [1]. Feiner et al. [2] described the term AR as an enhancement of the
real world by a virtual world, which provides valuable information, such as descriptions
of important features or instructions for performing physical tasks. Milgram et al. [3]
discussed AR displays in a general sense, and defined AR as augmenting natural feedback
to the operator with simulated cues. Drascic and Milgram [4] examined the meaning of the
term AR, and proposed AR displays as being the image of a primarily real environment,
which is augmented with computer-generated imagery.

AR has been explored in all levels of education [5,6], providing great advantages
such as student motivation and learning effectiveness [7–10]. AR is on the verge of trans-
forming the human–computer relationship. AR contributes to interactivity and facilitates
co-creation [11]; thus, AR has the potential to create training environments and scenarios
that are cost-effective, safe and personalized. This represents a good fit with the training
carried out for firefighters. The immersive nature of the training using mixed reality offers
a unique realistic quality, which is not generally present in traditional education in the
classroom, yet retains considerable cost advantages over large-scale real-life exercises and
is gaining increasing acceptance [12].

The first potential of integrating AR in firefighting training is the cost effectiveness.
Indeed, current firefighting training in the real environment requires important costs in
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infrastructures, such as a large training area, propane-fed firefighting props, fire extin-
guishers, ventilation, and ladders. The training facility has to deal with complex and
varied scenarios, and their replication needs vehicles, dumpsters, pipes, containers, and
even apartment floorplans. AR can handle all these infrastructures, providing consid-
erable savings in consumables; thus, the preparation time for each training scenario is
significantly reduced.

Secondly, the use of AR leverages the trainees’ experiences to a wide variety of training
scenarios. The firefighting area varies widely depending on the category and, as such, there
is aerial support of wild firefighting [13], urban firefighting [14], and ship firefighting [15].
The aforementioned scenarios can be covered in an AR training process, giving the trainees
the opportunity to repeat the training session and advance their skills in firefighting.

Apart from the cost effectiveness and the variety of scenarios offered, the AR adoption
has no environmental charge, no uncontrolled fires, toxic gas emission, or heat burst. AR
does not entirely supplement traditional training exercises; however, it offers the possibility
to train in high-risk scenarios, without actually encountering any physical risk of the
trainees’ health. Despite the reported side effects experienced by the head-mounted display
(HMD) [16], most users face no symptoms, while only a few experience minimal discomfort
in training environments.

For all the aforementioned advantages, using AR to train firefighters is a novel train-
ing approach that will improve the training of qualified firefighters. Some preliminary
studies have already been conducted in the field of firefighting training [15,17–19]; how-
ever, the conditions under which firefighters may accept the technology of the developed
systems still remain unclear. In this context, there is a lot of room for improvement in
this area. The current research aims to evaluate the use of AR technology in training
firefighters, which is an area that has not been thoroughly investigated. At the same time,
the evaluation is carried out using a novel model, which was adequately extended to
emphasize the human element in relation to the system (human–computer interaction) and
context (personalization).

We assessed the acceptance of AR technology for firefighting training, by propos-
ing an acceptance model specific for a “Naval Fire Fighting Training & Education Sys-
tem” (NAFTES) (https://etraining.naftes.eu/, accessed on 5 April 2021) AR application.
NAFTES is freely available through the Google Play store. The suggested model includes
the basic TAM variables, namely, usefulness, ease of use, and intention to use, extended
by two more constructs, namely, perceived interactivity and personalization, which are
addressed to evaluate the human–AR system interaction and the contextual affordances to
support the training of the ship crew and officers. NAFTES was developed for two different
variants, suitable for mobile (smartphones, tablets) and wearable devices (HoloLens), aim-
ing to help trainees achieve their learning goals. The trainees can either select the mobile
variant to use their personal devices and interact in the augmented ship space, or combine
the AR glasses and see-through lenses. Furthermore, the system holds personalization in
its incorporated mechanisms, since it provides tailored information to the users, to help
towards fulfilling their learning needs. During the training phases, the system visualizes
objects, information, and videos that are available to the users, according to their location,
activity and actions, and delivers the corresponding assessment units to them. Regarding
the level of expertise, the system offers further help to inexperienced users and supports
them during their interaction with it. In the case of a diagnosed difficulty in using the
application, the system proposes the use of the AR Walker application to familiarize the
participants with the equipment. Moreover, it provides two different simulation scenarios
for novice and advanced users, in order to match their different levels of proficiency. As
such, the system provides a high degree of adaptability to trainees who have the ability
to select the learning path, based on their interest, existing knowledge or the demands of
their role.

NAFTES assumes the following different facets: (a) introductory training (IT); (b) the-
oretical (classroom) training (THT); and (c) hands-on training (HOT). IT is based on an

https://etraining.naftes.eu/
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advanced learning management system (LMS), which allows the trainees to be introduced
in the fire training fundamentals. THT is supplemented by multimedia material (videos,
animations, slides), which is to be integrated in the LMS, and retrieved and presented
during classroom hours. Finally, HOT is an advanced portable system, which will be
carried by trainees during their presence in the simulated engineering room. The system
is in the form of human–AR applications, which will overlay warnings or explanatory
text to the trainees’ viewport. Such applications will be executed in optical head-mounted
displays (Google glasses), which will retrieve material from the LMS. While creating 3D
environments is not new, developers have traditionally had to use 2D interfaces to build
3D experiences. Using AR, the full 3D space is used, which is unprecedented, and defines
many of the imminent changes in human–computer interaction (HCI). Another important
feature of such devices is their indoor localization capability. The NAFTES platform is
complemented by a post-training assessment module, which is appended in the IT–THT–
HOT workflow.

The AR firefighting training (AR-FFT) application provides two fire simulation sce-
narios, namely, an electric fire and a cooking oil fire. The participants have already been
trained in theory, and are familiar with the protocol they have to follow in each of the
aforementioned cases. The AR application helps them to evaluate their knowledge in a
simulation environment. The users navigate in fire-prone areas in a ship by using QR codes.
The trainees have to follow printed marks, placed in bright spots near the corresponding
equipment they describe, which reveal useful instructions. The personnel are familiarized
with the firefighting equipment and processes. The application also provides information
material and questions on the corresponding theory, aimed at self-evaluation.

For example, the instructor chooses to simulate the electric fire scenario, and places
five signs (fire plan, telephone, power relay, extinguisher, and exit door) in specific positions
on the ship deck. The trainees start the training simulation, searching for the center of the
fire (Figure 1), a common start point for both the electric and cooking oil fire scenarios.

Sensors 2021, 21, x FOR PEER REVIEW 3 of 19 
 

 

the ability to select the learning path, based on their interest, existing knowledge or the 

demands of their role. 

NAFTES assumes the following different facets: (a) introductory training (IT); (b) the-

oretical (classroom) training (THT); and (c) hands-on training (HOT). IT is based on an 

advanced learning management system (LMS), which allows the trainees to be introduced 

in the fire training fundamentals. THT is supplemented by multimedia material (videos, 

animations, slides), which is to be integrated in the LMS, and retrieved and presented 

during classroom hours. Finally, HOT is an advanced portable system, which will be car-

ried by trainees during their presence in the simulated engineering room. The system is 

in the form of human–AR applications, which will overlay warnings or explanatory text 

to the trainees’ viewport. Such applications will be executed in optical head-mounted dis-

plays (Google glasses), which will retrieve material from the LMS. While creating 3D en-

vironments is not new, developers have traditionally had to use 2D interfaces to build 3D 

experiences. Using AR, the full 3D space is used, which is unprecedented, and defines 

many of the imminent changes in human–computer interaction (HCI). Another important 

feature of such devices is their indoor localization capability. The NAFTES platform is 

complemented by a post-training assessment module, which is appended in the IT–THT–

HOT workflow. 

The AR firefighting training (AR-FFT) application provides two fire simulation sce-

narios, namely, an electric fire and a cooking oil fire. The participants have already been 

trained in theory, and are familiar with the protocol they have to follow in each of the 

aforementioned cases. The AR application helps them to evaluate their knowledge in a 

simulation environment. The users navigate in fire-prone areas in a ship by using QR 

codes. The trainees have to follow printed marks, placed in bright spots near the corre-

sponding equipment they describe, which reveal useful instructions. The personnel are 

familiarized with the firefighting equipment and processes. The application also provides 

information material and questions on the corresponding theory, aimed at self-evaluation. 

For example, the instructor chooses to simulate the electric fire scenario, and places 

five signs (fire plan, telephone, power relay, extinguisher, and exit door) in specific posi-

tions on the ship deck. The trainees start the training simulation, searching for the center 

of the fire (Figure 1), a common start point for both the electric and cooking oil fire sce-

narios. 

  

(a) Fire plan sign (b) Trainees are instructed to detect the center of the fire 

Figure 1. First screen of a scenario of fire on an electrical circuit. (a) Printed target sign, and (b) the 

corresponding instructions that appear in the firefighters’ view. 

Afterwards, further instructions to follow are displayed, and the trainees have to find 

the next correct check point and follow the new instructions that appear. According to the 

protocol, on incident identification, the personnel must find the nearest telephone to re-
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Figure 1. First screen of a scenario of fire on an electrical circuit. (a) Printed target sign, and (b) the
corresponding instructions that appear in the firefighters’ view.

Afterwards, further instructions to follow are displayed, and the trainees have to find
the next correct check point and follow the new instructions that appear. According to the
protocol, on incident identification, the personnel must find the nearest telephone to report
the occasion to the damage control center and provide useful information (Figure 2).

The next steps of the safety protocol are displayed in Figures 3 and 4. The personnel
are advised to make effort to isolate the equipment, as they know that the case of an electric
fire precedes the switching off of the power switch before looking for a fire extinguisher to
fight the fire.
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Figure 2. Second screen of a scenario of fire on an electrical circuit. (a) Printed target sign, and (b) the
corresponding instructions that appear in the firefighters’ view.
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Figure 4. Fourth screen of a scenario of fire on an electrical circuit. (a) Printed target sign, and (b) the
corresponding instructions that appear in the firefighters’ view.

Finally, the scenario suggests that in the case of no meaningful results regarding the
previous actions, all the personnel should exit the dangerous area and seal the compartment
(Figure 5).
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Figure 5. Fifth screen of a scenario of fire on an electrical circuit. (a) Printed target sign, and (b) the
corresponding instructions that appear in the firefighters’ view.

When completing all the check points correctly, the trainees have successfully accom-
plished the particular protocol.

2. Literature Review

Davis [20] proposed a technology acceptance model (TAM), which consisted of two
independent variables, namely, perceived usefulness (PU) and perceived ease of use
(PEOU), as the main predictors of the user’s attitude towards using the system (AT), which
influences the behavioral intention to use the system (BI). The undermentioned studies
have examined the acceptance of AR applications in educational settings, adding particular
extensions and aspects to the core TAM.

The related literature review is structured into the analysis of six different studies
on AR acceptance in educational settings, and the possible extensions of their models.
Yusoff et al. [21] evaluated the use of a mixed reality prototype, named the mixed reality
regenerative concept, in the training of biomedical science students. The study was based
on a modified TAM, incorporating the external variables of perceived innovativeness and
perceived enjoyment. The findings showed positive correlations between the constructs;
however, the results needed further advanced regression analysis to better evaluate the
proposed model.

Wojciechowski and Cellary [22] presented a 3D image-based AR learning environ-
ment called ARIES. The evaluation of the system was based on TAM, enhanced with the
constructs of perceived enjoyment and interface style. The study on the attitude of the
learners toward ARIES showed great potential for education; however, more experimental
studies should be carried out in order to determine the achievement of the learning goals.

Wang et al. [23] conducted a case study of forty-one aviation students in order to
evaluate their acceptance of AR instructions and the future utilization of AR maintenance
manuals in aviation training. The authors were based on the simplified four-construct
TAM, excluding the actual system use and external variables. The study was one of the first
ones to incorporate TAM in aviation training, and the findings showed that the students
accepted the integration of AR in their educational settings.

Mao et al. [24] evaluated officers’ acceptance of an AR-based military decision-making
process (ARB-MDMP) training system, which provided realistic troop patterns, terrain
environment, and battlefield intelligence. The research model was based on TAM, and two
external variables were added, namely, interface style and perceived situation awareness.
The findings were encouraging and showed that the ARB-MDMP system had significant
effectiveness for the officers during their courses.

Ibili et al. [25] developed a mobile AR application to teach geometry, and examined the
mathematics teachers’ level of acceptance of the tutoring system. The authors extended the
TAM model by including the external variables of anxiety, social norms, and satisfaction.
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The results supported nine out of a total of fourteen hypotheses, providing important
implications for future AR tutoring applications.

Papakostas et al. [26] examined the integration of AR simulation in vocational educa-
tion and training (VET), specifically in the field of industrial manufacturing. The authors
were based on a modified TAM, and extended it by two external variables in order to
evaluate the use of a marker-based AR application, named Soldamatic, in welding training.
The findings showed that both of the external variables, namely, perceived enjoyment and
system quality, were strong predictors of the proposed model, and evaluated pedagogical
affordance and technological innovation at the same time.

Although there has been a lot of research on the adoption of AR for training, few
studies have concentrated on the context of firefighting training [27–29], which mostly ex-
amined VR-based training systems. This research details the user experience of augmented
reality in firefighting training, and provides a deeper understanding of the behavioral
purpose to use augmented reality in marine training. Special reference is made to the
factors related to the human sensory experience, such as interactivity and personalization.

One of the main criteria of effectively managing a naval fire emergency is good
preparedness. AR is a promising technology that assists training and improves the abilities
that are needed to deal with risky and unexpected circumstances. So far, little research has
been made to investigate the acceptance of such a technology by firefighters.

Contrarily, there is still much to be done to mitigate the shortcomings of AR technology
in this area. Without sufficient user studies and through the use of traditional training
methods, there is little real-world evidence on the actual effectiveness of AR training. The
case of technology acceptance among firefighters needs to be addressed.

Consistent with the previously stated goals, the main objective of this study is to
present a modified TAM model, evaluating the user experience of AR in firefighting training.
The existing literature explains the acceptance of AR technology in fields such as aviation,
engineering, and military, however it does not consider the specific usage constraints
in the domain of firefighting. From this, it can be deduced that there is much room for
future investigation in this area. To fill the gap in the literature, we propose a detailed,
domain-specific acceptance model, in which both interactivity and cognitive affordances
were investigated, and thus their influence on user acceptance was measured. The related
research questions that form the hypotheses of the proposed model are as follows:

• Is AR acceptable by firefighters as part of their training to develop their skills? (RQ1);
• How do the technical aspects of using AR affect trainees’ experiences of using it? (RQ2);
• What effect does the AR application’s content have on the trainees’ user experience? (RQ3).

We evaluated the AR firefighting application by expanding a TAM model, according
to the research statement. Furthermore, the use of augmented reality in naval training,
especially in the field of firefighting, has been shown to have a high potential for making
training sessions more cost-effective, safer, and scenario-independent.

3. Evaluation Procedure

3.1. Research Model and Hypotheses

Davis [20] proposed a model for studying the acceptance of information systems,
based on the theory of reasoned action (TRA) of Fishbein and Ajzen [30]. TAM actually
suggests that perceived ease of use and usefulness are the primary drivers of the acceptance
of a new technology. PU is defined as the degree to which the user believes that using
a particular system would enhance his/her job performance, while PEOU is defined as
the degree to which a user believes that using a particular system would be free of effort.
Davis and Venkatesh [31] formed the final version of TAM, suggesting that there is a causal
link between external variables and user acceptance in a workplace. Behavioral intention
(BI) to use a system is directly influenced by PE and PEOU, and indirectly by the external
variables (Figure 6).
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In this study, the final version of the model TAM, consisting of the variables of
perceived usefulness, perceived ease of use, and behavioral intention, is proposed and
found to be useful in predicting the use of AR for firefighting, and the following hypotheses
are proposed:

Hypothesis 1 (H1). PEOU of the AR firefighting application positively affects its PU.

Hypothesis 2 (H2). PEOU of the AR firefighting application positively affects its BI.

Hypothesis 3 (H3). PU of the AR firefighting application positively affects its BI.

The belief of a system user may be influenced by external factors, referred to as
external variables [32]. In addition to the TAM model, two external variables are integrated
into the extended TAM model, with an effect on PU and PEOU.

Lee and Lee [33] provided empirical evidence supporting perceived interactivity (PI)
as a prerequisite factor for extending the core TAM model, in order to understand usage be-
havior. McMillan and Hwang [34] measured interactivity based on three elements, namely,
the direction of communication, user control, and time. The direction of communication
is focused on the way that computers facilitate human interaction, emphasizing two-way
communication. The user control examines the way humans control computers, while
some HCI studies focus on human perception, and others on computer design [35]. The
third element of interactivity is time, which evaluates the user’s ability to navigate in the
application quickly and easily. An interactive system provides the users the benefits of
working in their own time and choosing their preferred navigation paths [36].

In the context of the current research, PI results in firefighters’ positive beliefs about the
usefulness and ease of use of the AR application, which in turn influences their behavioral
intentions in the naval firefighting training. We advanced the TAM model by employing
the interactivity of the crew and the officers, as a prerequisite variable, and therefore, the
following hypotheses are composed:

Hypothesis 4 (H4). PI of the AR firefighting application positively affects its PU.

Hypothesis 5 (H5). PI of the AR firefighting application positively affects its PEOU.
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Furthermore, personalization has been found to be a major component of many
information technology-based systems [37]. Training through an AR environment can
personalize learning needs in order to promote the quality of the training. AR is ideal for
dangerous tasks, such as firefighting, allowing the firefighters to use dynamic learning,
giving them a sense of control as they can repeat the training stages as many times as
they need, learning at their own pace. Individualized, adaptive systems, facilitated by
technologies such as AR, can represent the revolutionary capacity for lifelong learning,
which can be incorporated into the future of training systems [38]. Hubert et al. [39]
pointed out that the perceived value of personalization plays a significant role in the IT
system’s acceptance.

In the context of the current research, the perceived value for personalization (PP)
might play an important role with regard to the firefighters’ positive attitude towards the
naval firefighting training AR application. We advanced the TAM model by employing the
personalization as the second prerequisite variable of the proposed TAM model, and the
hypotheses included in the model are as follows:

Hypothesis 6 (H6). PP of the AR firefighting application positively affects its PU;

Hypothesis 7 (H7). PP of the AR firefighting application positively affects its PEOU.

The flow of the research model is shown in Figure 7.
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3.2. Method

3.2.1. Research Population

This study tested the proposed TAM model at the training of ship crews in firefighting
operations. The participants were 200 volunteer firefighters, first responders, advisers
working in the crisis management sector, and teachers from vocational education providers,
all of whom had the opportunity to test, firsthand, the AR application of NAFTES. The
AR application has been developed for both mobile devices and HoloLens glasses. The
participants have been demonstrated both technologies; however, for the sake of the
experiment, they used the mobile AR training system running in their own mobile devices.
The reason for this decision is the cost of each equipment (i.e., mobile devices and HoloLens
glasses), as HoloLens is not yet considered an economically viable approach. Their previous
experience regarding the use of AR technology was just for entertainment purposes through
gaming. The volunteers were aged between 18 and 60 years old. The measurements of
gender and age were derived from a randomly selected sample and do not have an impact
on our research findings. The demographics analysis is shown in Table 1.
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Table 1. Demographics.

Measure Item Frequency Percentage (%)

Sample size 200 100.0

Gender Male 136 68.0
Female 64 32.0

Age (18–60) Below 22 48 24.0
23–34 72 36.0
35–49 57 28.5

Over 50 23 11.5

Professional qualification Under 1 year 128 64.0
1–5 years 51 25.5

Over 5 years 21 10.5

3.2.2. Research Instruments

The study was carried out for a period of six months, in which the participants had
the chance to interact with, and validate the capabilities of, AR. The users’ feedback was
evaluated in order to reveal the AR’s strengths in real applications. Data were collected
via a questionnaire, which was delivered to the participants. The participants were asked
to evaluate all five constructs, namely, PI, PP, PU, PEOU, and BI, by rating their training
experience using a 7-point Likert scale, ranging from (1) strongly disagree to (7) strongly
agree. The variables of the proposed model are assessed using indicators (Table 2), adopted
from validated questionnaires [40–43] from previous related studies, and adapted according
to the purpose of our study.

Table 2. Questionnaire details used in the survey.

Constructs Indicator Questionnaire Source

Perceived interactivity (PI)

PI1 I felt that I had a lot of control over my
experiences of using the AR application. Yoo et al. [44]

PI2 Getting information from
the AR application was very fast.

PI3 I think using the AR application was enjoyable. Zhao and Lu [45]

Perceived personalization (PP)

PP1 I value AR application that is
personalized for the device that I use.

Hubert et al. [39]
PP2 I value AR application that is

personalized for my usage experience preference.

PP3
I value AR application that acquires my personal

preferences and personalizes
the services themselves.

Perceived usefulness (PU)

PU1 Using AR application
improves my learning performance.

Davis [20]
PU2 Using AR application makes

my training more productive.

PU3 Using AR application enhances
my effectiveness on my training.

PU4 Overall, I find AR application useful in my job.

Perceived ease of use (PEOU)

PEOU1 Learning to operate AR
application is easy for me.

Davis [20]
PEOU2 I find it easy to get AR

application to do what I want to do.

PEOU3 My interaction with the
AR application is clear and understandable.

PEOU4 Overall, I find AR application easy to use.

Behavioral intention to use (BI)

BI1 Using AR application
enhances my training interest.

Fishbein and Ajzen [30]BI2 I intend to use AR
application for training in the future.

BI3 I will recommend others
to use AR application for training.
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3.3. Data Analysis

The structural equation modeling (SEM) approach is used to analyze the collected data.
The partial least squares (PLS) algorithm was used to build the model for the regression
analysis of the variables. By estimating the individual item loadings on their respective
variables, and then estimating the causal relationships among the variables, PLS allows for
an optimal assessment of the measurement and structural models at the same time [46].

PLS is a strong candidate for data analysis because of the exploratory nature of our
sample, where the primary goal is to understand the variance of the dependent variables
induced by the independent variables, rather than the goodness of fit between the model
and data [41].

In this analysis, PLS is used to test seven hypotheses and assess the relationships
between the variables. SmartPLS v.3.3.3, a software tool for PLS-SEM developed by
Ringle et al. [47], was used to conduct the data analysis.

4. Experimental Results and Discussion

4.1. Model Validation

In the current study, we used a reflective measurement model, which assumes that the
measures represent the indication of an underlying construct [48]. We initially assessed the
quality of the measurement model by using the criteria of internal consistency, convergent
validity, and discriminant validity. The satisfactory results of the first phase led us use the
structural model in order to test our hypotheses.

4.1.1. Measurement Model

The descriptive statistics of the constructs’ indicators of the proposed model present
the mean values (M), the standard deviation (SD), the excess kurtosis and skewness
(Table 3). The indicators’ values provide justification for our decision, as they range from
−1 to +1 for kurtosis and skewness, which are within the acceptable limits [49,50].

Table 3. Descriptive statistics of the indicators.

Indicator M SD Kurtosis Skewness

BI1 5.630 1.050 −0.273 −0.543

BI2 5.540 1.117 −0.349 −0.491

BI3 5.470 1.131 −0.332 −0.583

PEOU1 5.125 1.208 −0.494 −0.277

PEOU2 5.455 1.191 −0.204 −0.528

PEOU3 4.955 1.242 −0.618 −0.088

PEOU4 5.265 1.321 −0.094 −0.499

PI1 5.030 1.067 −0.631 −0.010

PI2 6.160 0.771 0.935 −0.908

PI3 5.210 1.130 −0.734 −0.191

PP1 5.210 1.130 −0.734 −0.191

PP2 5.380 1.164 −0.676 −0.396

PP3 4.940 1.240 −0.915 0.083

PU1 5.240 1.040 −0.737 0.042

PU2 5.200 1.058 −0.484 −0.026

PU3 5.640 1.044 −0.217 −0.563

PU4 5.440 1.160 −0.719 −0.298
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After the descriptive statistics analysis, we assessed the measurement model’s reli-
ability, by measuring the indicator reliability and the internal consistency (Table 4). The
indicator reliability is done by a factor analysis, which checks all the factor loadings of each
indicator, and accepts the values greater than 0.700 [51]. The internal consistency can be
measured either by Cronbach’s alpha (CA) or composite reliability (CR). CA is sensitive
to the number of the indicators and considers each indicator to be equally reliable, while
CR considers the different factor loadings of the indicators, measuring the true value of a
construct’s reliability [48]. Both of the measurements, CA and CR, show a well-estimated
reliability in the case where their corresponding values are greater than 0.700 [52,53]. Fur-
thermore, Table 4 presents the assessment of the convergent validity of the constructs,
made through the average variance extracted (AVE) values of each construct, which are
accepted when they are greater than 0.500 [54].

Table 4. Measurement model’s reliability and convergent validity.

Construct Indicator Outer Loading CA CR AVE

BI
BI1 0.992

0.979 0.986 0.959BI2 0.978
BI3 0.969

PEOU

PEOU1 0.970

0.981 0.986 0.947
PEOU2 0.975
PEOU3 0.961
PEOU4 0.985

PI
PI1 0.949

0.902 0.940 0.839PI2 0.833
PI3 0.961

PP
PP1 0.983

0.976 0.985 0.955PP2 0.977
PP3 0.972

PU

PU1 0.933

0.967 0.976 0.911
PU2 0.947
PU3 0.971
PU4 0.966

Moreover, the discriminant validity assessment has the goal to ensure that a reflective
construct has the strongest relationships with its own indicators. In order to examine the
discriminant validity of the constructs, we firstly calculated the square root of the AVE
in each variable, comparing its value to the other variables’ correlation values [55]. The
model’s discriminant validity (Table 5) is valid when the AVE square root for each variable is
greater than its correlations coefficients with the other factors. Secondly, Henseler et al. [56]
proposed an alternative approach, based on the multitrait–multimethod matrix, to assess
discriminant validity, namely, the heterotrait–monotrait ratio of correlations (HTMT). The
HTMT results are shown in Table 6; when the HTMT value is below 0.900, discriminant
validity has been established between two reflective constructs.

Table 5. Measurement model’s discriminant validity (Fornell Larcker criterion).

BI PEOU PI PP PU

BI 0.979

PEOU 0.896 0.973

PI 0.900 0.854 0.916

PP 0.909 0.894 0.828 00.977

PU 0.952 0.918 0.899 00.949 00.954
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Table 6. HTMT results.

BI PEOU PI PP PU

BI

PEOU 0.814

PI 0.859 0.809

PP 0.830 0.813 0.882

PU 0.876 0.841 0.861 0.876

Regarding the results shown in Table 4, we found that the factor loadings’ values
ranged from 0.833 to 0.992, all of them above the 0.700 threshold, ensuring indicators’
reliability. With regards to the internal consistency reliability, the CA and CR values
(Table 4) ranged from 0.902 to 0.981 and from 0.940 to 0.986, respectively, which are both
greater than the threshold limit of 0.700. Therefore, the measurement model’s reliability is
confirmed. As far as convergent validity is concerned, the AVE values in Table 4 were above
the recommended value of 0.500, ranging from 0.839 to 0.959. Therefore, the convergent
validity of the constructs is confirmed.

Lastly, the discriminant validity was measured in two parts. Based on the results
shown in Table 5 of the Fornell and Larcker [55] criterion, it is evident that the diagonal
values are greater than the other correlation values. Based on the results shown in Table 6
of the Henseler et al. [56] criterion, the HTMT values ranged from 0.809 to 0.882, less than
0.950, providing support for the existence of discriminant validity.

4.1.2. Structural Model

After the assessment of the measurement model, we used the PLS algorithm to
evaluate the path coefficients, and to test the hypotheses along with their significance
levels. We ran bootstrapping estimation with the 2000 resampling method, and obtained
the t-statistics corresponding to each path of our model.

We initially evaluated the coefficient of determination (R2). The R2 values can describe
the level of predictive accuracy, as high R2 values are indicative of the quality of the model.
The coefficient value of the paths of the inner model are assessed in order to measure the
level of significance and show how strong the effect of a variable is on another variable. The
path coefficient values range from−1 to +1, and show significance when its value is greater
than 0.200 [57]. Figure 8 shows the inner model’s path coefficients and the coefficients of
determination.
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We used a two-tailored t-test, with a significance level of 1%. The critical t-statistics
value is 2.580 for a significance level of 1% (Wong, 2013). A summary of the results from
the structural model’s hypotheses testing is shown in Table 7. The following findings show
that all seven hypotheses (H1 to H7) are supported: H1 (β = 0.182, p < 0.01), H2 (β = 0.142,
p < 0.01), H3 (β = 0.822, p < 0.01), H4 (β = 0.294, p < 0.01), H5 (β = 0.363, p < 0.01), H6
(β = 0.542, p < 0.01), and H7 (β = 0.593, p < 0.01).

Table 7. Structural model’s results.

Hypothesis Path β Coefficients t-Statistics p-Value Supported or Not

H1 PEOU→ PU 0.182 40.610 0.000 Yes

H2 PEOU→ BI 0.142 20.876 0.004 Yes

H3 PU→ BI 0.822 170.790 0.000 Yes

H4 PI→ PU 0.294 100.417 0.000 Yes

H5 PI→ PEOU 0.363 60.988 0.000 Yes

H6 PP→ PU 0.542 190.631 0.000 Yes

H7 PP→ PEOU 0.593 110.891 0.000 Yes

Two more items are indicative of the quality of the proposed model, namely, the
relevance or predictive validity (Q2) [58,59], and the effect size (f2) [60]. Q2 is applicable
only to reflective endogenous constructs [61], as BI, PEOU, and PU are in the proposed
model, and its values range from negative values to greater than zero (high prediction), or
ideally to one (maximum value reflecting reality). We calculated the Q2 values (Table 8)
based on the blindfolding procedure, which is actually a technique that omits data for
a given block of indicators and then predicts the omitted part based on the calculated
parameters. The rule of thumb indicates that a Q2 greater than 0.500 is regarded as a
predictive model [62].

Table 8. R2 and Q2 results.

Constructs R2 Q2

BI 0.910 0.867

PEOU 0.840 0.790

PU 0.946 0.855

Finally, we calculated the Cohen’s f2 effect size (Table 9), which is a very informative
standardized measure, allowing the evaluation of local effect size, i.e., one variable’s
effect size within the context of a multivariate regression model [63]. The effect sizes are
interpreted as follows [60]: f2 ≥ 0.020, f2 ≥ 0.150, and f2 ≥ 0.350, represent small, medium,
and large effect sizes, respectively.

Table 9. f2 results.

BI PEOU PU

BI

PEOU 0.040 0.102

PI 0.270 0.416

PP 0.687 1.027

PU 1.208

The findings of Table 8 present Q2 values much higher than the cut-off limit of 0.500,
indicating a highly predictive model. More specifically, BI’s Q2 value was calculated as
0.867, and PEOU and PU were calculated as 0.790 and 0.855, respectively. Moreover, the 91%
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of variance in the behavioral intention to use the AR firefighting application is defined from
the usefulness and the ease to use AR technology. The 94.6% of variance in the perceived
usefulness is defined from the ease of use, the interactivity and the personalization, while
the 84% of variance of the perceived ease of use is defined by perceived interactivity and
perceived personalization.

Regarding the f2 measurements in Table 9, large effect sizes are represented from PU to
BI (f2 = 1.208), PP to both PU (f2 = 1.027) and PEOU (f2 = 0.687), and PI to PU (f2 = 0.416). PI
has a medium effect on PEOU (f2 = 0.270), while PEOU has a small effect on BI (f2 = 0.040)
and PU (f2 = 0.102). All of the significant paths of the proposed model show at least a weak
effect size greater than 0.020, while the majority of the four out of a total of seven paths
show large effect sizes, much greater than 0.350.

4.2. Findings and Discussion

This study contributes to the acceptance of AR technology by firefighters, by combin-
ing the variables PU, PEOU, and BI from the core TAM model [31], and two more external
variables, namely, PI and PP. Our findings have implications for academia, as the accep-
tance of information systems technology by firefighters is an under-researched area. The
results of our study provide a good explanation of the domain-specific acceptance model.

Regarding the results of the outer model, the indicators’ reliability and the internal
consistency are confirmed. Indeed, all the factor loadings ranged from 0.833 to 0.992, which
are greater than the 0.700 threshold limit. As far as the internal consistency of the variables
is concerned, the CA values ranged from 0.902 to 0.981, while the CR ranged from 0.940 to
0.986. Sagnier et al. [42] chose to use CR rather than CA for internal consistency, justifying
their approach in the conservative measurement of CA. However, we assessed the quality
of the constructs by using both CA and CR, which were greater than the 0.700 cut-off value.
To examine the convergent validity, we assessed the AVE value of each construct, which
ranged from 0.839 to 0.959, exceeding 0.500.

Furthermore, the model’s discriminant validity is assessed by two means, first by the
AVE square root of each variable, and secondly by the HTMT ratio of correlations. Pal and
Patra [41] also used both means, based on the criticism about the use of the Fornell and
Larcker [55] criterion for measuring the discriminant validity as not always an effective
mean for evaluating this type of validity. Our measurements of the AVE square root values
of the inter-item correlation matrix supported the conditions of discriminant validity. With
respect to the HTMT values, the correlation between the constructs ranged from 0.809 to
0.882, less than the recommended threshold value of 0.950, confirming the existence of
discriminant validity alternatively.

Regarding the results of the inner model, the findings showed that the BI target
endogenous variable has a coefficient of determination (R2) value of 0.910, meaning that
PU and PEOU explain 91.0% of the variance of BI. Moreover, PI and PP explain 84.0% of
PEOU, while PI, PP, and PEOU explain 94.6% of the variance of PU.

The structural model suggests that PU has the strongest effect on BI (0.822), while
PEOU has a weaker effect on BI (0.142). Both hypothesized path relationships between PU
and BI, and PEOU and BI, are statistically significant as their t-statistics values, 17.790 and
2.876, respectively, are greater than the cut-off value of 2.580. Furthermore, PEOU is highly
affected firstly by PP (0.593) and secondly by PI (0.363). As far as PU is concerned, it is
affected firstly by PP (0.542), secondly by PI (0.294), but also from PEOU (0.182).

From the evaluation results presented in this section, it can be observed that the
behavioral intention to use the AR application is highly affected by usefulness, while
ease of use has a much weaker effect. In our study, we found a positive, yet comparably
smaller, effect of the perceived ease of use on user acceptance of AR, either directly on
the behavioral intention to use, or indirectly through the perceived usefulness. It seems
reasonable considering the domain of firefighting, which involves critical situations with
people’s lives at stake. Firefighters demand an AR application for their training, firstly
absolutely useful for real-life scenarios, and secondly to be easy to use. They seem willing
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to tolerate a certain amount of difficulty to handle a technology application, as far as the
usability is proper. These findings are in line with previous studies [20,64], which consider
perceived usefulness to be a strong predictor of intention to use.

The perceived usefulness is also very well predicted by the external variables of
interactivity and personalization, which were included in our proposed model in order
to evaluate the system and the individual level, respectively. As far as the perceived
interactivity is concerned, we found significance in the role of the communication, the
user control, and the time. By implication, it suggests that firefighters (a) appreciate two-
way communication through the AR application, (b) enjoy the flexibility of controlling a
mobile device for their training, thus operating virtual objects, and (c) need fast-delivered
messages and information, as their reactions have to be immediate and effective.

As far as the perceived personalization is concerned, we also found significance for the
application’s usability. Indeed, firefighting is a process where numerous operations occur
simultaneously. As such, firefighters can participate in fire service training through various
training formats, encouraging personal and professional growth. The AR firefighting appli-
cation offers guidance and support, in order to assist personally every trainee to navigate
through the competitive process of attaining a career as a firefighter. The participants
experience one-on-one personal coaching through virtual classroom training sessions.

The perceived interactivity positively affects not only the system’s usability, but also
the perceived ease of use. Indeed, in the fire service, the hands-on portion of the training is
based on the interactivity of the training platform. The must-have features, as well as the
right support to assist with the AR functionality, give credits to the trainees’ ease to use the
AR application, increasing the retention and the actual system usage.

The perceived personalization equally affected usefulness and ease of use. A training
system tailored to the firefighters’ needs provides the personnel self-paced training, with
greater consistency. The better the AR application fits to the firefighters needs, the easier
and more convenient the training is. On the contrary, traditional in-person training sessions
are typically one-size-fits-all. The trainees attend the same training session, regardless of
their roles, i.e., ship crew or officers.

In summary, our findings provide three meaningful implications for the user accep-
tance of AR firefighting training. The first one is that the external variable of perceived
interactivity has a positive impact on the perceived usefulness and perceived ease of use.
The second one is that the second external variable of perceived personalization has also a
positive, but stronger than interactivity, impact on the perceived usefulness and perceived
ease of use. The third one is that usability is the strongest predictor of behavioral intention;
however, the direct and indirect effect of ease of use is still meaningful. The perception of
interaction experienced by firefighters is about controlling the content, the communication,
and the speed, and the personalization on the feedback of their actions. These factors influ-
ence the intrinsic motivation of the firefighters, their perception of the ease of use of the
AR application, and the perceived usefulness. The contribution in the field of AR, based on
the study of the proposed TAM model, is that the use of AR technology may be prevalent
in firefighting training, and may become an integral part of the educational procedure.
This assumption is justified by the fact that firefighting is a high-risk job and firefighters
are exposed to danger, so they prioritize their safety. The evaluation results show that AR
can potentially become a useful technology upgrade for an immersive training, so that
firefighters would be prepared for high-risk incidents.

In our proposed model, usability was found to be the strongest predictor of the
intention to use AR in firefighting training. The variable of usability is crucial and, as such,
the results can be expanded in other domains such as aviation and military. Indeed, the
aforementioned domains base their training on highly usable applications, combining both
interactive and adaptive techniques.
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5. Conclusions and Future Work

The presented technology acceptance model contributes to achieving an in-depth
understanding as to why firefighters accept or reject an AR firefighting training application
(i.e., NAFTES). The training advantages of cost-effectiveness, variety of real-life scenarios,
and safety, offered by the AR platform, made us consider a novel, well-established model
to measure the user experience and usability of the training application. The results
of the conducted evaluation additionally provide insights into the significance and the
comparative importance of the external variables, thus providing better support for their
ongoing development.

Regarding the limitations and the future steps of this research, the study involved
trainees from Greece, who possibly exhibited some common features in terms of user
experience. Therefore, it is possible that our findings may possess limited generalization,
so future research should involve more countries, aiming at enhancing the quality of the
training of ship crews in firefighting operations.
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