
sensors

Article

Collaborative Complete Coverage and Path Planning for
Multi-Robot Exploration

Huei-Yung Lin 1,* and Yi-Chun Huang 2

����������
�������

Citation: Lin, H.-Y.; Huang, Y.-C.

Collaborative Complete Coverage

and Path Planning for Multi-Robot

Exploration. Sensors 2021, 21, 3709.

https://doi.org/10.3390/s21113709

Academic Editors: Oscar Reinoso

García and Luis Payá

Received: 12 May 2021

Accepted: 24 May 2021

Published: 26 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Electrical Engineering, Advanced Institute of Manufacturing with High-Tech Innovation,
National Chung Cheng University, Chiayi 621, Taiwan

2 Department of Electrical Engineering, National Chung Cheng University, Chiayi 621, Taiwan;
yichun@godel.ee.ccu.edu.tw

* Correspondence: lin@ee.ccu.edu.tw; Tel.: +886-5-272-0411

Abstract: In mobile robotics research, the exploration of unknown environments has always been
an important topic due to its practical uses in consumer and military applications. One specific
interest of recent investigation is the field of complete coverage and path planning (CCPP) techniques
for mobile robot navigation. In this paper, we present a collaborative CCPP algorithms for single
robot and multi-robot systems. The incremental coverage from the robot movement is maximized by
evaluating a new cost function. A goal selection function is then designed to facilitate the collaborative
exploration for a multi-robot system. By considering the local gains from the individual robots as
well as the global gain by the goal selection, the proposed method is able to optimize the overall
coverage efficiency. In the experiments, our CCPP algorithms are carried out on various unknown
and complex environment maps. The simulation results and performance evaluation demonstrate
the effectiveness of the proposed collaborative CCPP technique.

Keywords: mobile robot; multi-robot system; complete coverage; path planning

1. Introduction

Due to the high demand of industrial applications and the recent advances of IoT
(Internet-of-Things)-based appliances, the latest robotics research has covered a wide range
of diverse areas [1]. One specific important topic related to environment exploration is
the complete coverage and path planning (CCPP) problem for mobile robots. Its main
objective is to find a path for the robot such that every location in the workspace can be
visited. The techniques are commonly adopted to explore the environment or structure
of interest comprehensively for inspection purposes [2]. In the past few decades, CCPP
algorithms have attracted much attention in the robotics research community due to their
practical applications to cleaning, mining, agriculture and rescue robots, etc. Although
technical challenges consist of various aspects of complete coverage and path planning
methods, the essential issue lies in the exploration of an unknown environment.

The key factors for exploration include the completeness and time efficiency (and
other specific costs) for the environment coverage. In the literature, complete coverage is a
classic computational geometry problem and various approaches have been proposed [3].
One class of simple yet robust methods is to utilize the divide and conquer strategy. This
approach partitions the entire environment into a number of subregions called cells. Each
cell is then covered by a few fundamental simple robot motion paths such as zigzag or
spiral [4]. This decomposition is finally assembled to form the full coverage of the space.
Since the solutions to the unconstrained complete coverage problem have been extensively
investigated, the current developments for robot exploration applications mainly focus on
the coverage efficiency [5]. This might consist of the overall execution time for the complete
coverage task, the total travel length of the motion trajectory, and the efficiency for energy
consumption [6], etc.
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In general, CCPP algorithms can be categorized into offline and online approaches [7].
The offline algorithms are designed for situations where the information of the environment
is available a prior and the motion path can be planned before executing the exploration
task. To deal with the obstacles inside the region of interest in space, area decomposition
methods are commonly adopted. A unified mesh structure is used to represent the entire
environment, and a local coverage is carried out on the individual triangular meshes.
Alternatively, the Voronoi diagram can be utilized to establish the distributed coverage
framework [8]. In an early work, Choset proposed the boustrophedon cellular decom-
position, which generalized from trapezoidal decomposition but allowed non-polygonal
obstacles [9]. The coverage problem was then reduced to finding the optimal path from the
adjacent graph representing the cells. González et al. presented a backtracking spiral algo-
rithm for complete coverage [10]. It can be combined with general grid-based algorithms
to improve the performance of structured filling paths [11].

On the other hand, the online algorithms aim to perform the exploration and update
the map coverage based on the information collected in the environment. It usually
considers the unknown space for exploration, and minimizes the overall cost for complete
coverage while maintaining the least revisit areas. In this regard, Liu et al. proposed an
algorithm which adopted the random path planning, followed by a comb-like path for
local complete coverage [12]. It was successfully applied to the vacuum cleaning robots
with low-cost hardware in a small unknown environment. Oh et al. presented a map
representation based on triangular cells for cleaning robot navigation [13]. They combined
the wall-following and template-based local navigation to achieve the complete coverage.
More recently, an online coverage path planning algorithm ε? was proposed for unknown
environment exploration [14]. It utilized a so-called exploratory turing machine to store
and update the information of explored and unexplored regions at a time-varying basis.
The adaptive navigation can avoid the local extrema and is computationally efficient.

In addition to the general constraint on the travel length for coverage, the energy
consumption is also an essential issue for the exploration task. It is specifically important
for real situations when the mobile robot operates under the battery-powered limitation or
the outdoor environment [15]. A complete coverage might require the robot to recharge
multiple times for a large environment. The full exploration with an energy cost was first
studied by Shnaps and Rimon using a model approximated with the path length [16].
Based on the similar energy-constrained concept, Wei and Isler proposed a constant-factor
approximation algorithm [17]. Under the assumption of contour-connected environment,
the robot was restricted to parallel motion and tested on the field experiment with an
unmanned aerial vehicle.

The learning based approach has been investigated for complete coverage and path
planning in recently years. One particular method is the use of reinforcement learning
(RL) techniques to deal with the task modeled by the traveler sales problem (TSP). In [18],
Le et al. proposed a complete path planning algorithm using a TSP-based RL optimization
method for a tiled robot. The reward of the trained RL model was maximized to derive
the robot shapes and trajectories. It provided the comparable results obtained from the
ant colony optimization approach in terms of energy and time. They have also applied
the similar technique on a self-reconfigurable robot with adjustable dimensions [19]. With
the emphasis on the tileset energy-aware CCPP, the proposed method had better per-
formance compared to the genetic algorithm (GA). To deal with the CCPP problem in a
large complex environment, Kyaw et al. formulated it using TSP and deep reinforcement
learning (DRL) [20,21]. The recurrent neural network (RNN) was trained using RL and
combined with the cellular decomposition method to iteratively generate the coverage
path. Schäfle et al. presented a GA-based method to generate rectilinear paths for complete
path planning [22]. The cost function was evaluated using the energy to optimize the path
planning with respect to the energy consumption.

In this paper, we propose the complete coverage and path planning techniques for
the applications of single robot and multi-robot system. A few typical maps of interest are
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illustrated in Figure 1. Alternatively, the simulation environments using fundamental geo-
metric primitives can be adopted for the construction of various application scenarios [23].
It consists of the maps with simple geometric structures, home-like environments and
large-scale spaces. The objective is to reduce the overall computation time for complete
coverage by minimizing the repeated region visit via the optimal path planning. For some
application scenarios such as finding scattered articles or checking abnormal events in a
large-scale environment, it is desired to lower the excessive labor by robotics and automa-
tion. This work investigates the collaborative exploration strategy for the full coverage
of an unknown space with a team of mobile robots. A new cost function is proposed to
evaluate the local exploration gain from the incremental movement. We develop the multi-
objective CCPP algorithms and use 2D grid maps for implementation. The experiments
carried out on various environments have demonstrated the efficiency of our collaborative
CCPP approach for multi-robot system through the incremental exploration minimization.

(a) The simple style maps with geometric structures.

(b) The maps of home-like environments.

(c) The maps of large-scale spaces.

Figure 1. Several typical maps of interest used to evaluate the proposed CCPP algorithms. There are simple style maps
with geometric structures, home-like environments, and large-scale spaces.
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2. Multi-Robot System and Cost Function

In the past few years, the applications using multiple robots have been widely avail-
able. Despite the advantages of cooperation and collaboration, the multi-robot research is
more challenging due to the complication on the objective definition, information sharing,
and task assignment [24]. It is commonly required to have a clear problem statement,
and the development for the multi-robot system is then used to improve the efficiency.
For the environment exploration task, the existing techniques using multiple robots are
relatively limited. The difficulties usually lie on the real-time communication and online
decision-making among the mobile robots. To cope with the complete coverage and path
planning for multiple agents, one approach is to modify the efficient algorithms studied
for a single robot to the multi-robot collaboration.

Most of the early works on multi-robot exploration do not explicitly consider the
completeness of the space. Yamauchi proposed a frontier-based method where each robot
maintained its own global map [25]. Since the decision about where to explore was
made independently, the global optimization was not guaranteed. In [26], Burgard et al.
presented a technique to reach the same location by collaborative multi-robot exploration
in an unknown environment. The basic idea was to reduce the exploration time based on
the cost evaluated by the path length. A greedy algorithm with a goal selection function
was adopted in the implementation. This concept later became an important reference for
efficient exploration. Xin et al. proposed a distributed motion planning algorithm for the
cooperative multi-area coverage (CMAC) task [27]. A multi-point dynamic aggregation
(MPDA) model [28] was used to formulate the cooperative motion planning for multiple
robots. Nevertheless, their experiments carried out on isolated regions with zigzag motion
were fairly straightforward. Senthilkumar and Bharadwaj modified the spanning tree
coverage (STC) technique [29] for multi-robot exploration and coverage in an unknown
terrain [30]. An extended scheme of multiple STC was used to cover the continuous and
bounded region represented by the cellular decomposition. Thus, the complete coverage
can be performed in small areas with partially occupied cells and narrow door openings.

Unlike previous approaches, we tackle the CCPP problem starting with the design of
a suitable cost function. With the emphasis on the exploration of an unknown environment,
the complete coverage is achieved by the cost evaluation and the corresponding motion
strategy. Inspired by the work of frontier-based map exploration using particle swarm
optimization (PSO) [31], the goal selection and incremental exploration are designed
according to the equation

xi(t + 1) = xi(t) + vi(t + 1) (1)

where xi(·) and vi(·) are the position and movement of the ith robot, respectively. In our
approach, a guided trajectory is constructed to perform the maximum coverage. The cost
function for the heading direction φ of the robot is defined by

C(φ) = λ · (ρ +
φ

η
) + λ̄ · φ

α
(2)

and practiced on the simulation environment to improve the coverage efficiency.
The cost evaluated by Equation (2) is able to prevent the motion path too close to the

obstacles (or walls), and maximize the exploration gain. The parameters in the equation are
described as follows. First, ρ is the shortest distance between the robot and the midpoints
of a pair of obstacles. It is set as zero if no disjointed obstacles are discovered at the current
robot position. Second, the robot heading is denoted by the steering angle φ, and the range
is between −90 and 90 degrees. Third, the parameter η represents the information related
to the obstacles. It is defined by the accumulated obstacle points during the navigation. In
the implementation, a laser range scanner is adopted for the environment exploration. It is
used to detect the obstacles within a fixed distance and 180◦ field-of-view. The sampling
rate of laser range scanning is every 5 degrees for the detection of each obstacle point), i.e.,
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η =
∑t

j=0 ∑90
θ=−90 ζ(θ)

∑t
j=0 EAj

(3)

where EAj is the exploration area from the beginning at time j = 0 to the current time t,
and ζ(θ) indicates the obstacle point at the laser range-finder scanning angle θ. Since we are
only interested in the forward motion, the range of θ is between −90 and 90 degrees (with
the heading direction at 0◦). Fourth, α is the coverage gain of the incremental movement.
Finally, λ is a binary number to select either one of the two cost terms in Equation (2) for
computation. If there are obstacles scanned between −15 and 15 degrees or no exploration
gain, λ is set as 1; Otherwise, λ = 0. This is to increase the possibility of covering the
unknown space with the maximized area gain. The range setting of −15 to 15 degrees
aims to encourage the robot to move forward if there are no obstacles in this scanning
range, instead of moving in other directions. These values are determined empirically in
our implementation.

When there is no coverage gain, i.e., λ = 1, it is required for the robot to move to a
new location and continue the exploration. The ideal goal position needs to satisfy the
following two criteria.

• The repeated coverage is minimized on the way to the new location.
• The robot will not move the new location before finishing the coverage locally.

Thus, the goal selection function is defined by

τ = max(α, η) (4)

and the procedure is shown in Algorithm 1. In the algorithm, the candidate location is
found in the range of −90 to 90 degrees from the mobile robot’s heading angle. It checks
the direction which contains less information related to the obstacles and coverage in terms
of higher α and η. To make the robot move to the goal position, the Theta* algorithm
proposed by Viet et al. is adopted [32]. It is originally designed for a team of robots to cover
an unknown space using the Boustrophedon method. When the goal position is reached,
the multi-target Theta* algorithm is utilized to trace the record of backtracking points. That
is, the path derived from the multi-target Theta* algorithm is recorded and adopted for
our path planning. The one with the shortest traceback path is then set as the next starting
position for the continuing exploration.

Algorithm 1 Goal Selection Algorithm

Require: The robot position
Ensure: The robot position

1: If λ == 0, then
2: Collect the sensor information from −90◦ to 90◦, find the location with the most

coverage free.
3: Set a node for every five degrees.
4: Combine the information from Steps 2 and 3 to find the location with max(α, η).
5: Move to the target location.
6: If the explored location to the unknown location, then
7: Use the Theta* algorithm to reach the target location.
8: Else
9: Find the information for coverage according to cost function.

10: Go to Step 6.

3. Complete Coverage and Path Planning

Based on the cost function design presented in Section 2, the complete coverage and
path planning algorithms are proposed for single robot and multi-robot system. The grid
maps are constructed by cells with binary values, and the coverage is performed step by
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step under the robot movement. A simulation interface is developed for the verification of
our algorithms and the demonstration of the coverage results.

Similar to the technique proposed by Pereira et al. to cover the unknown
environment [33], our exploration method adopts the individual decision rules for the
robots, and shares the same environment map via the online communication to minimize
the coverage overlap. The frontier-based exploration algorithm is used with the emphasis
on the multi-robot coordination and the strategy for new position selection. The main
objective is to constrain the steering angle change of the mobile robot, and move to the
next unknown area for exploration. Alternatively, we can also consider the A* or D* al-
gorithms for trajectory optimization [34,35]. In the collaborative exploration, each robot
will broadcast its location and exploration history on the map. A consistent global map is
updated among the multiple robots for future path planning. Algorithm 2 shows the basic
multi-robot exploration algorithm. In the algorithm, the global map is first created with a
2-dimensional array to store the status values for all cells. This array is maintained and
updated for each movement of the individual robots.

Algorithm 2 Basic Multi-Robot Exploration Algorithm

Require: A team of mobile robots
Ensure: Explored map created with a 2-D array

1: repeat
2: Update the 2-D map, read data from the sensor.
3: Detect the obstacle locations.
4: Rotate the robot to keep the largest distance, and follow the wall to explore.
5: Send the current 2-D map array to other robots for update.
6: Confirm the exploration information.
7: Update the global map.
8: until All information {obstacle, coverage free} filled.

To make it easier for the algorithm verification in the simulation environment, it is
assumed the real-time communication among multiple robots is available. Thus, Steps
5 and 6 in Algorithm 2 will not be affected. In an advanced collaborative exploration
algorithm, the costs of multiple robots are sorted. It is used to increase the efficiency of
the multi-robot system by the arrangement of individual robots. Algorithm 3 outlines the
details of the improved multi-robot exploration strategy. In this algorithm, each mobile
robot checks the status and updates the global map through RobotHeading. It provides the
information about which specific area is best suited to be explored by a certain robot. To
achieve the optimal movement of a multi-robot system, the costs of all robots are sorted
and the one with the smallest value is used to cover an unknown region. The cost functions
of other robots are then evaluated again for the exploration of the next area.

One of our main objectives is to completely cover a large-scale unknown space using
multiple robots. There could be possible coverage issues such as the environment con-
taining dense obstacles and many scattered unknown areas. To ensure the robot to find
the best target position with the efficient path planning, several additional features are
adopted. As given in Algorithm 4, when a mobile robot with the smallest cost is found in
the exploration, other robots will not choose to cover the same unknown area. The coverage
gain α is checked sequentially for the individual robot to derive the best exploration area.

It should be noted that, although the algorithms are presented for multi-robot complete
coverage and path planning task, we do not provide a theory or theoretical analysis on
this problem. There might not be an optimal solution for the diverse and complicated
environment maps. The intuition behind the design of our cost function is to maximize the
exploration gain for each robot movement while reducing the possible coverage overlap
among multiple robots. For the collaborative exploration among multiple robots, we
evaluate the local gain in the neighborhood of individual robots, and provide the global
uncovered areas for all robots as a guidance to discovery. The algorithms are guaranteed to
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terminate when all region borders (including obstacles) are observed, which indicates the
complete coverage by definition.

Algorithm 3 Improved Multi-Robot Exploration Algorithm

1: If all data in the exploration is coverage free, then
2: Check RobotHeading and the global map.
3: Else
4: If the unknown area obtains coverage free and obstacle data, then
5: Sort the costs of all robots; high η and low rotation angle receive a higher priority.
6: Else
7: The robot with the shortest distance is to explore the area.
8: Explore with the largest α.
9: If two robot repeat the same area for exploration, then

10: Go to Step 4.
11: Else
12: Go to Step 1.

Algorithm 4 Advanced Multi-Robot Exploration Algorithm

Require: A team of robots
Ensure: The exploration map

1: repeat
2: Initialize the global map.
3: Move by the cost, update the map, and label with µ1 if not filled from the movement.
4: Check RobotHead if two obstacles having coverage free.
5: Yes
6: Rotate with the highest η, label the rotated target as µ2, and label the other side

as µ3.
7: Apply the Theta* algorithm to complete the µ1 exploration for the closet unknown

area.
8: No
9: Go to Step 3.

10: Check the robots for the same coverage area.
11: until All information {obstacle, coverage free} filled.

4. Implementation and Experiments

In our implementation and experiments, the graphical user interface for the simulation
environment is developed. It is constructed using FLTK as the cross-platform SDK, OpenGL
for graphics drawing, and OpenCV for the map image reading. The hardware system
for the implementation is a PC with Intel Core i7-4700 CPU @ 3.6 GHz and 8 GB RAM,
running on Microsoft Windows 10 64 bits OS. As illustrated in Figure 2, the application
interface provides a 1300 × 900 window size to accommodate a large-scale environment
map. An example of the binary image map and the complete coverage result are illustrated
in Figure 2a,b, respectively. In the simulation environment, the field-of-view (FOV) of the
laser ranger scanner can be set as 120◦, 180◦ or 360◦. This is used to simulate the appli-
cation scenarios of the real environments which adopt a high-precision optical scanning
device [36,37]. There are eight directions for the robot movement, namely left, right, front,
rear, front left, front right, rear left and rear right, and used as the parameter RobotHead in
the algorithm. The direction of RobotHead is determined according to the cost evaluation.
For the non-omnidirectional motion setting, the angle is derived in the range of −90 to
90 degrees. It is then assigned to one of the five orientations at −90◦, −45◦, 0◦, 45◦ and 90◦

for movement.
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(a) The binary map. (b) The coverage map.

Figure 2. The application interface of the complete coverage and path planning simulation environ-
ment used for the multi-robot exploration.

Three types of maps are created to evaluate the proposed CCPP algorithms for the
exploration using single and multiple robots. The map design consists of simple geometric
structures, home-like environments and large-scale space, as shown in Figure 1. In the first
experiment, we investigate the coverage efficiency associated with the turning and for-
ward motion of the robot. The comparison is carried out on simple map layouts using
Algorithm 3. Table 1 tabulates the comparison of the exploration time when the robot per-
forms a full stop or slows down before making turns. Figure 3 shows the results of complete
coverage and motion path for these two cases. The regions explored by the robots with
the visible range are indicated using the green and gray colors. The exploration process
terminates if all unveiled areas are enclosed by the boundaries. In the evaluation, the results
illustrate that the performance is not necessarily improved by slowing down before making
turns. Thus, the further simulation experiments will be carried out with a full stop before
the robot heading direction change.

Table 1. The comparison of the exploration time when the robot performs a full stop or slows down before making turns.

Single Robot Multiple Robots

Full Stop Slow Down Improvement Full Stop Slow Down Improvement

Map Exp1-A 120.64 s 116.47 s 3.3% 47.32 s 54.89 s −1.6%

Map Exp1-B 118.51 s 121.06 s −2.1% 54.07 s 47.00 s 13.1%

Map Exp1-C 106.19 s 108.43 s −2.1% 53.10 s 53.17 s −0.13%

Map Exp1-D 108.11 s 108.43 s −0.3% 54.83 s 52.82 s 3.67%

In the second experiment, we demonstrate the complete coverage and path planning
results using the proposed collaborative CCPP algorithms. Figure 4a,b shows the explo-
ration results with single robot and multi-robot system, respectively. The efficiency of our
algorithms is evaluated using four different maps, and the complete coverage results are
shown in Figure 5. Table 2 tabulates the exploration time for single robot and multi-robot
system on the four maps. The evaluation shows the improvement when multiple robots
are deployed for the complete coverage. An example of the exploration process using
the multi-robot CCPP algorithm is illustrated in Figure 6. The figures indicate that the
high coverage gain is an important criterion for the robot movement. Several additional
complete coverage results using multiple robots for the large environment and complex
workplace are shown in Figure 7.
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(a) Map Exp1-A.

(b) Map Exp1-B.

(c) Map Exp1-C.

(d) Map Exp1-D.

Figure 3. The results of complete coverage and motion path for the two cases: full stop and slow down before making turns.
From the left to the right: single robot with full stop, single robot with slow down, multiple robots with full stop, multiple
robots with slow down. Observe that the trajectories can be fairly diverse due to the different motion control methods.

Finally, our multi-robot exploration method is compared with the technique proposed
by Pereira et al. [33]. The algorithm adopts a leading edge based method and combines
with the coordination of multiple robots using topological maps for full coverage. Figure 8
shows the complete coverage results of the two methods. The exploration times are
tabulated in Table 3. In general, Pereira’s technique provides lower coverage efficiency in
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small rooms, as the trajectories shown in Figure 8a,b. Thus, the reduction of the processing
time using our algorithm is more significant (up to 37%). Moreover, we are able to provide
better coverage results for all cases. In the proposed algorithms, the trajectories depend
only the layout and obstacles in the map. Since it is assumed that no dynamic objects in
the environment, our techniques are constantly stable in the experiments.

In our experimental results, it is first demonstrated that the motion control behavior,
i.e., performing a full stop or slowing down before making turns do not affect the coverage
efficiency in a noticeable way. Thus, it is preferable not to consider the complicated
motion acceleration for robot control. Second, the collaborative multi-robot algorithm
implementation for complete coverage indeed provides much less exploration time. It is
able to minimize the overlapping coverage areas to reduce the cost on multiple visits from
different robots. In the proposed techniques, the coverage efficiency is greatly improved,
specifically for the maps of large-scale environments.

(a) The CCPP results with single robot.

(b) The CCPP results with multiple robots.

Figure 4. The exploration results with single robot and multi-robot system.

Table 2. The exploration time for single robot and multi-robot system on the four maps. The evalua-
tion shows the improvement when multiple robots are deployed for the complete coverage.

Single Robot Multi-Robot System

Map Exp2-A 128.52 s 64.84 s

Map Exp2-B 370.35 s 184.50 s

Map Exp2-C 406.69 s 202.38 s

Map Exp2-D 263.37 s 115.96 s



Sensors 2021, 21, 3709 11 of 15

(a) Map Exp2-A.

(b) Map Exp2-B.

(c) Map Exp2-C.

(d) Map Exp2-D.

Figure 5. The efficiency of our algorithms is evaluated using four different maps. The left to the right: the original maps,
the coverage results of single robot, the coverage results of multiple robots.
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(a) T = 0 (b) T = 20 (c) T = 50

(d) T = 75 (e) T = 90 (f) T = 128

Figure 6. An example of the exploration process using the proposed multi-robot CCPP algorithm.
The figures indicate that the high coverage gain is an important criterion for the robot movement.

Figure 7. Some additional complete coverage results of the multi-robot system with more complex
environment maps. The experiments are carried out using the proposed algorithm with three robots.

Table 3. The performance comparison of our proposed technique with the algorithm presented by
Pereira et al. [33].

The Algorithm in [33] The Proposed Method Our Improvement

Map Exp3-A 187.252 s 118.347 s 37.8%

Map Exp3-B 168.816 s 110.924 s 34.3%

Map Exp3-C 203.577 s 184.496 s 9.4%

Map Exp3-D 172.378 s 140.941 s 19.2%
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(a) Map Exp3-A.

(b) Map Exp3-B.

(c) Map Exp3-C.

(d) Map Exp3-D.

Figure 8. The complete coverage results of the multi-robot exploration using our technique and the
algorithm proposed by Pereira et al. [33]. From the left to the right: the original maps, the coverage
results using our technique, the coverage results using Pereira’s algorithm.

5. Conclusions

In mobile robotics research, one important application is to explore the unknown
environments completely and efficiently. In this work, we present the complete coverage
and path planning techniques for single robot and multi-robot system. A cost function
evaluated based on maximizing the coverage gain is proposed. We design a goal selection
function to facilitate the collaborative exploration using multiple robots. By simultaneously
considering the local gains from the individual robots and the global optimization among
the robots, the overall coverage efficiency is improved. Our proposed algorithms have been
tested on various unknown and complex environment maps. The simulation results and
performance comparison with the existing approach have demonstrated the effectiveness
of the proposed technique. In future work, we aim for our development to focus on the
issues of limited or delayed communication among the robots. This is an important and
practical problem encountered in real-world multi-robot applications.
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