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Abstract: This paper presents a Bayesian filter based solution to the Space Object (SO) tracking
problem using simulated optical telescopic observations. The presented solution utilizes the Proba-
bilistic Admissible Region (PAR) approach, which is an orbital admissible region that adheres to the
assumption of independence between newborn targets and surviving SOs. These SOs obey physical
energy constraints in terms of orbital semi-major axis length and eccentricity within a range of orbits
of interest. In this article, Low Earth Orbit (LEO) SOs are considered. The solution also adopts the
Partially Uniform Birth (PUB) intensity, which generates uniformly distributed births in the sensor
field of view. The measurement update then generates a particle SO distribution. In this work, a
Poisson Labeled Multi-Bernoulli (PLMB) multi-target tracking filter is proposed, using the PUB
intensity model for the multi-target birth density, and a PAR for the spatial density to determine
the initial orbits of SOs. Experiments are demonstrated using simulated SO trajectories created
from real Two-Line Element data, with simulated measurements from twelve telescopes located in
observatories, which form part of the Falcon telescope network. Optimal Sub-Pattern Assignment
(OSPA) and CLEAR MOT metrics demonstrate encouraging multi-SO tracking results even under
very low numbers of observations per SO pass.

Keywords: random finite sets; space situational awareness; multi-target tracking; Poisson labeled
multi-Bernoulli filter

1. Introduction

The efficient detection, tracking, and cataloging of orbiting space objects (SOs) are of
paramount importance for improved Space Situational Awareness (SSA). Due to a recent
collision in space and an increased number of launches, a large number of SOs now exist.
As a result, the demand for modern SO tracking applications to produce more accurate
and more computationally efficient detection and tracking capabilities is higher than ever.

Some of the components of the forces acting on SOs can be considered to vary in a
random manner causing their orbits to change over time. Therefore, recursive Bayesian
estimation methods have been adopted to detect, track, and update the states of SOs [1–3].
Under this paradigm, a probability density function of the multi-target state of the SOs
entering the field of view (FoV) of a sensor can be propagated in time using captured
observations. Subsequently, the estimated states of the SOs are propagated by updating a
recursive Bayesian filter based on further observations.

Due to the large variance of various orbital parameters, limited FoVs of the sensors
and typically small numbers of observations per SO pass, it is challenging to initialize new
tracks and update existing tracks due to high data association uncertainty when no prior
information about the SOs is available. To rectify this problem, the Admissible Region (AR)
approach was proposed to limit the candidate SO orbits to be tracked by selecting either a
subset of acceptable range and range rate pairs for optical observations or right ascension
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rate and declination rate pairs for radar observations [3]. The AR approach was further
improved using additional constraints on the orbital properties such as the semi-major axis
length and eccentricity and then referred to as the Constrained Admissible Region (CAR)
method [3].

The hard constraints of the CAR approach have been replaced with a probabilistic
representation, called the Probabilistic Admissible Region (PAR) method, to facilitate orbit
initiation in Bayesian tracking methods using optical telescopic observations [4].

A popular approach used in various multi-target tracking (MTT) problems is Multiple
Hypothesis Tracking (MHT) [5,6]. In recent years, Random Finite Set (RFS) algorithms
based on Finite Set Statistics (FISST) [7,8] have been applied successfully to a variety of
MTT problems. In particular, they estimate the cardinality as well as the multi-target
state under a joint Bayesian framework and circumvent the necessity of external fragile
measurement to track association algorithms.

Several Bayesian SO tracking algorithms have been developed using the CAR and
PAR approaches, including the recent RFS based methods [9–11]. Jones et al. applied the
Cardinalized Probability Hypothesis Density (CPHD) filter to the SO tracking problem,
adopting the PAR and partially uniform birth (PUB) models. However, the Probability
Hypothesis Density (PHD) and CPHD filters have been shown to perform less accurately
than more recent labeled RFS based filters [12–14]. In this article, an RFS based tracking
algorithm, the Poisson Labeled Multi-Bernoulli (PLMB) [12] filter, is used to process optical
observations from multiple geographically disparate sensors. The PLMB filter can label
tracks and has been shown to outperform the PHD and CPHD filters [13] and to perform
similarly to other labeled RFS filters [12] such as the δ-Generalized Labeled Multi-Bernoulli
(GLMB) or Labeled Multi-Bernoulli (LMB) filters. In contrast to the GLMB and LMB filters,
however, it has the advantage of using a Poisson birth intensity which allows the direct
use of the PUB model [10].

Poisson based birth filters can be used directly with the PUB-PAR concepts. Such
filters include the PHD filter with complexity O(MN), where N is the number of target
hypotheses and M the number of measurements. The PHD filter was superseded by the
CPHD filter, the original implementation of which had complexity O(M3N), with a later
improved implementation demonstrating a complexity of O(MN) [15].

Recently, the Poisson Multi-Bernoulli (PMB) [16] and PLMB filters were developed,
in which full measurement to state assignments are estimated using the Loopy Belief Propa-
gation (LBP) algorithm, resulting in a filter complexity of O(IMN), where I is the number
of iterations required by the LBP algorithm to converge to a solution. The PLMB filter is
an approximation of a labeled Poisson Multi-Bernoulli Mixture (PMBM) filter. While the
PLMB filter propagates a single LMB distribution, the PMBM filter propagates multiple Multi-
Bernoulli (MB) distributions. Its measurement to state assignment component can be solved
either with Murty’s algorithm [17], giving an overall filter complexity of O(T(M + 2N)3)
or with Gibbs sampling, under which an overall filter complexity of O(TMN2) results [14],
where T is the number of MB components. In [12] it was shown that the LBP-PLMB filter
has a similar multi-target tracking performance to the PMBM filter, but with much higher
computational efficiency. These reasons motivate the use of the PLMB filter.

The goal of this work is to build a multi-target space debris tracker based on the PLMB
filter which propagates target state estimates in time using an LMB density, and a Poisson
intensity to model the probability density of new born targets. Each target density will be
modeled using particles due to the nonlinearity of the measurement and motion models.

The proposed methodology includes:

• The construction of a database based on published Two-Line Element (TLE) data.
• Simulated measurements based on the type of observations and locations of twelve

observatories of the Falcon Telescope Network (FTN) [18].
• The use of a particle distribution for the prediction step and a Gaussian distribution

for the update step. The state vector is represented in the Earth-Centered Inertial (ECI)
frame of reference.
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• The use of a motion model which takes into account the gravitational effect of the
moon and sun and solar radiation pressure acting on the SO [19]. This is in contrast to
previous work which only considered the gravitational effects of the Earth [20].

• The use of a measurement model for simulated optical measurements modelling each
telescopic image.

The contributions of this article include:

• The use of a PUB-PAR-PLMB filter inspired by [10,12], for modeling the SOs initial
uncertainty region within the PLMB filter. It reduces the search space for the standard
birth densities, and it is more efficient and effective than a Gaussian birth density.

• The use of a PAR, which is created from a dense uniform grid, resulting in a sparse
weighted particle distribution.

To place this work into perspective, in Section 2, the PAR and PUB models are
explained, where the analysis and equations summarize the work of Jones et al. [10].
In Section 3, a summary of the PLMB filter prediction and update concepts are provided
based on the analysis in [12]. A precise SO kinematic model is shown in Section 4, in order
to account for the long periods of time which can elapse between successive measurements.
A telescopic image based measurement model, which provides angular measurements of
the start and end points of streaks caused by moving SOs, is given in Section 5. A method
for single and multi-target state extraction from the PLMB filter posterior distribution
and useful multi-target filter performance metrics are presented in Section 6. Finally,
Sections 7 and 8 show the results and conclusions, respectively.

2. Multi SO Initialization

Multi-SO initialization is composed of two components, namely the use of a PUB
during the prediction step, and the PAR approach, which provides the single SO spatial
density parameters in the update step.

Inspired by the PUB-CPHD filter in [10], a PUB-PLMB filter, combined with the PAR
method for modeling the initial state of a telescopic based measurement, is adopted. The
PAR is an AR which adheres to the assumption of independence between newborn and
surviving targets [10]. In contrast to the PUB-CPHD filter, the proposed PUB-PLMB filter
is a true multi-target tracking filter in that it estimates the identification of each target at
each time step in the form of a unique label. The CPHD filter is not a true multi-target
tracker, since, while it provides sequential estimates of the multi-target state, it does not
provide target identity estimates, meaning that no target correlation information across
time frames is provided. Furthermore, recent articles such as [12–14] have demonstrated
superior multi-target tracking performance with labeled filters such as the PLMB filter,
as opposed to non-labeled approaches such as the PHD and CPHD filters.

2.1. Partially Uniform Birth (PUB) Multi-Target Initiation Model

The PUB intensity generates a uniformly distributed birth density in the sensor FoV,
with intensity function given by:

DB(x) = λβ · U (θθθ(x);B) ·
JB

∑
i=1

w(i)
b N (φφφ(x); φ̄φφ(i), P(i)

φ ), (1)

where x is a target state in the ECI frame, θθθ(x) is a function that maps the target state to the
observable part of the state, which, for a telescopic image, is given by θθθ(x) = [α, β, α̇, β̇]T .
In this case, φφφ(x) = [s, ṡ]T is the non-observable part of the state, where s is the distance
between the observer and the target, and ṡ is the radial velocity of the target. Note that the
joint vector [θθθ(x)T , φφφ(x)T ]T is the target state in the telescopic camera coordinate system.
λβ is the expected number of targets of the Poisson intensity, U (θθθ(x);B) represents the
uniform density for the observable part of the target state with boundary B given by the
sensor FoV. The non-observable part of the state is modeled by a Gaussian Mixture (GM)
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density of JB components N (φφφ(x); φ̄φφ(i), P(i)
φ ), each with weight w(i)

b , mean vector φ̄φφ(i) and

covariance matrix P(i)
φ .

2.2. Probabilistic Admissible Region (PAR) Approach for New Target Density Approximation

The PAR approach is an orbital admissible region that adheres to the assumption
of independence between newborn targets and surviving SOs. These SOs obey physical
energy constraints in terms of orbital semi-major axis length and eccentricity within a range
of orbits of interest. In this article, Low Earth Orbit (LEO) SOs are considered.

The new SO distribution is modeled by the multiplication of the birth intensity DB(x) and
the measurement likelihood distribution lz(z|x), which will be shown in detail in Section 3:

DB(x)lz(z|x) ≈ λβ · N (θθθ(x); z, R) ·
JB

∑
i=1

w(i)
b N (φφφ(x); φ̄φφ(i), P(i)

φ ), (2)

where N (θθθ(x); z, R) is a Gaussian distribution on θθθ(x) modelling the resulting observable
density for a given measurement z, with sensor noise matrix R ([10], pp. 1459).

In order to estimate the non-observable part of the state φφφ(x) = [s, ṡ]T based on
constraints provided by the measurements, the PAR [1,10,21] methodology is used. More
details about the CAR/PAR methods, including equations and their parameters, are given
in Appendix A (Note that the following equations are based on the equations presented
in Appendix A.). As examples, Figures 1 and 2 show two curves corresponding to two
constraints, namely the semi-major axis length constraint (constraint 1) and eccentricity
constraint (constraint 2), calculated from simulated measurements from two randomly
chosen satellites from the TLE. The constraint regions are, for constraint 1:

c1(θθθ, φφφ; q) = ṡ2 + w1 ṡ + F(s) +
µ

a
= 0 (3)

and for constraint 2:

c2(θθθ, φφφ; q) = γ4 ṡ4 + γ3 ṡ3 + γ2 ṡ2 + γ1 ṡ + F(s)U(s) + µ2(1− e2) = 0 (4)

where a and e represent the semi-major axis length and eccentricity, respectively, of a
hypothesized SO orbit. The Earth gravitational constant µ = 3.986004418× 105 [ km3

s2 ]
and w1, F(s), U(s) and γ1 to γ4 are given in Appendix A. Note that these constraints
are functions with variables s and ṡ, and form a 2D nonlinear system of equations. The
solutions of the equations are given in Appendix A with their derivations given in [4,10,22].

Figure 2 shows curves corresponding to constraint 1 (magenta) and constraint 2 (red)
for the SO based on simulated measurements corresponding to satnum 337 from the TLE.
It also shows the posterior SO distribution, which is modeled with particles with weights
represented by the color map in the figure. The particle distribution state variables and
weights are determined as follows:

1. For a given measurement, z calculates the parameters of constraints 1 and 2.
2. Divide the (s, ṡ) space into a grid as shown in Figure 1. To define this, it is necessary

to determine the coordinates of the limiting points A, B, and C in the figure. These
are determined as follows:

(a) Obtain the points on the constraint curves 1 and 2 (corresponding to Equations (3)
and (4), respectively) at the region edges, given by amax = 43,000 [km] and
emax = 0.4. Note that LEO objects are defined by the constraints a ≤ amax and
e ≤ emax.

(b) Find (sc1
right, ṡc1

right), which is the coordinate at the right hand extreme of con-
straint 1 (Equation (3)), shown as point C in Figure 1. This coordinate can be
found by differentiating constraint 1 with respect to ṡ and setting ds/dṡ = 0.
Note that s is a function of ṡ, i.e., s = f (ṡ). The solution can be determined
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by realizing that ṡc1
right = −w1/2, then substituting for ṡc1

right into constraint 1

(Equation (3)) and solving the resulting 6-th degree polynomial to obtain sc1
right.

(c) For smin = 300 [km], corresponding to the lower limit of LEO SOs, obtain ṡ
(ṡc1

top and ṡc1
bottom), shown as points A and B in Figure 1:

ṡc1
top, ṡc1

bottom = −w1

2
±

√(w1

2

)2
− F(s)− µ

amax
(5)

3. For each point (s, ṡ) on the grid, sample z̃ ∼ N (·; z, R) and recalculate the parameters
of constraint Equations (3) and (4):

4. For each point (s, ṡ) on the grid:

(a) Solve for a and e from the constraint Equations (3) and (4):

a = − µ

ṡ2 + w1 ṡ + F(s)
(6)

e =

√
1 +

γ4 ṡ4 + γ3 ṡ3 + γ2 ṡ2 + γ1 ṡ + F(s)U(s)
µ2 . (7)

(b) A point on the grid is a valid LEO SO when it falls within both constrained
regions, which is equivalent to a ≤ amax and e ≤ emax. For example, in Figure 1,
points D and E are invalid because they are outside of both constraint regions.
Point F is within constraint 1′s region, but outside of constraint 2′s region;
therefore, it is also an invalid point. However, points G and H are within both
constraint regions, and are valid points. Invalid points have a weight γ̃ = 0,
and for valid points:

(c) evaluate the probability γ̃ = p(a, e) that the semi-major axis length and eccen-
tricity are a and e as determined from Equations (6) and (7). The distribution
p(a, e) is created using TLE data, and the procedure can be found in [10],
and Appendix C.

5. The birth particle distribution {γj, xj}JB
1 is then given by:

γj =
γ̃j

∑JB
j=1 γ̃j

(8)

xj = f eci
t-radec([s

j, ṡj, z̃j]), (9)

where f eci
t-radec(·) is a function that maps from a topological Right Ascension and

Declination (RADEC) frame to the ECI frame.

Figure 1. (s, ṡ) constraints 1, 2 and a grid construction for satnum = 42,583.
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Figure 2. (s, ṡ) PAR weighted particles for satnum = 337. Colors represent p(a, e) as indicated by the
color bar. Note that in white are particles for which γ is lower than a minimum acceptable value.

3. The Poisson Labeled Multi-Bernoulli (PLMB) Filter

This section describes the PLMB filter, which has been used to develop the multi
object tracking algorithm. The PLMB filter is capable of modelling any number of new
possible targets, and also tracking and identifying targets with a unique label. It is directly
applicable to the PUB model, already demonstrated in [10] with the CPHD filter.

The multi-target tracking density is given by a LMB density characterized by its
Probability Generating Functional (PGFl) Glmb

X [h], ([8], p. 456), [23]:

Glmb
X [h] = ∏

`∈L
(1− r` + r`〈 f`(x), h(x)〉), (10)

where, for the RFS X , f` is the single target density of a target with label `, r` the target’s
probability of existence and h(x) a function defined in the space of the individual elements
with 0 ≤ h(x) ≤ 1.

The birth process is modeled by a Poisson intensity DB(x) = λB fB(x), where λB is the
expected number of targets to be born with spatial distribution fB(x). The union of Poisson
and LMB densities in PGFl form is:

Gplmb
X [h] = Gp

B [h]G
lmb
Y [h], (11)

where Gp
B [h] is a Poisson PGFl:

Gp
B [h] = eDB [h−1] (12)

and Glmb
Y [h] is an LMB PGFl (Equation (10)). Equations (10)–(12) provide in PGFl form,

the general PLMB filter equations. Their implementation will be discussed in the follow-
ing subsections.

3.1. Multi-Target Prediction

For a prior LMB density with parameters (r`, f`), and ` ∈ L, where L is the set of all
target labels, the prediction (r′`, f ′`) of the LMB density is given by

r′` = r`〈PS, f`〉 and f ′`(x) =
〈PSlx(x|·), f`〉
〈PS, f`〉

, (13)

where PS(x) is the probability of survival, lx(xk|xk−1) is the kinematic model, and in general
〈ξ, η〉 =

∫
ξ(x)η(x)dx represents the inner product. This prediction step is efficient and

equivalent to the Labeled Probability Hypothesis Density (LPHD) filter prediction step
in [13,23].
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3.2. Multi-Target Update

The Bayesian update of the Poisson multi-Bernoulli PGFl (11) is a Labeled Multi-
Bernoulli Mixture (LMBM) PGFl, which is approximated by an LMB PGFl. The resulting
LMBM PGFl is composed of three components: New targets, detected targets, and misde-
tected targets [12]:

G+
X |Z [h] = ∏

`∈L

(
1− r+` + r+`

〈
f+` , h

〉)
, (14)

where (r+` , f+` ) are the probability of existence and the probability density of the updated
target identified by the label `, respectively.

The probability of existence r+` is obtained by solving the assignment problem on
the cost matrix Wn,m by applying LBP [16]. Other methods used to solve the assignment
problem are Murty’s algorithm [17], and Gibbs sampling [24]. The cost matrix Wn,m
represents the weights of different combinations of targets `n, n ∈ 1 . . . N, for a total of
N targets and M measurements zm, m ∈ 1 . . . M. Misdetected targets are represented by
m = 0 and n ≥ 1 and new born targets are represented by n = 0 and m ≥ 1.

The parameters representing misdetected targets are given by:

Wn,0 = 1− r′`n
+ r′`n

〈
(1− PD) f ′`n

, 1
〉

, (15)

r+n,0 =
r′`n

〈
(1− PD) f ′`n

, 1
〉

Wn,0
, f+n,0(x) =

(1− PD(x)) f ′`n
(x)〈

(1− PD) f ′`n
, 1
〉 . (16)

The parameters representing detected targets are given by:

Wn,m = r′`n
〈PDlz(zm|·) f ′`n

, 1〉, (17)

r+n,m = 1, f+`n ,m(x) =
PD(x)lz(zm|x) f ′`n

(x)

〈PDlz(zm|·) f ′`n
, 1〉 , (18)

and new target labels, which, in this article, are represented by a triplet of the current
time step k, measurement index m and sensor index o, are `N+m = (k, m, o), and their
parameters are given by:

W0,m = DK(zm) + 〈DB lz(zm|·), 1〉, (19)

r+0,m =
〈DB lz(zm|·), 1〉

W0,m
, f+0,m(x) =

DB(x)lz(zm|x, `N+m)

〈DB lz(zm|·), 1〉 . (20)

The uniform distribution of clutter, DK(z) ≈ λκ/Vκ , where λκ is the expected number of
clutter measurements and Vκ the area formed by the sensor FoV. The density f+0,m(x) is
obtained as a particle distribution by the PAR methodology described in Section 2.

The PUB intensity in Equation (1) can be expressed by separating the observed and
non-observed components:

DB(x) = λβU (θ(x)) f (φ(x)) (21)

and, therefore,

〈DB(x)lz(zm|x), 1〉 ≈ λβ

〈
1

Vκ
lz(zm|θ(x)), 1

〉〈 JB

∑
i=1

w(i)
b N (φ(x); φ̄(i), P(i)

φ ), 1

〉

= λβ
1

Vκ
× 1 =

λβ

Vκ
.

(22)
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The probability of existence r+0,m is given by:

r+0,m =
λβ

λκ + λβ
(23)

and the cost value W0,m is:

W0,m =
λκ + λβ

Vκ
. (24)

The LBP algorithm returns the weights pn,m that each assignment has for each label.
A pseudo-code of the LBP algorithm can be found in ([16], p. 20). Then, the posterior for
previously existing targets is given by:

r+`n
=

M

∑
m=0

pn,mr+n,m, f+`n
(x) =

M

∑
m=0

pn,m f+n,m(x), (25)

and for new targets:
r+`N+m

= p0,mr+0,m, f+`N+m
(x) = f+0,m(x). (26)

Equations (25) and (26) give the parameters of the posterior multi-target distribution
of Equation (14).

4. SO Kinematic Prediction Model

The equation of satellite motion is assumed to be [11]:

r̈ = − µE

‖r‖3 r + δp(r, ṙ) + aε, (27)

where δp(r, ṙ) represents perturbation forces produced by different sources, and aε repre-
sents non-modeled forces. r and ṙ are the position and velocity components, respectively,
of the state vector x, i.e., x = [r(t)T , ṙ(t)T ]T . The predicted state is then given by:

xk|k−1 =

[
r(tk−1)
ṙ(tk−1)

]
+
∫ tk

tk−1

[
ṙ(t)
r̈(t)

]
dt, (28)

where tk is the time at time step k. Each particle of the state is propagated using the
method given in [19], using the Shampine–Gordon (The Shampine–Gordon integrator is a
multi-step method which uses the information from previous steps, in contrast with the
Runga–Kutta method, which discards previously calculated information. Therefore, the
Shampine–Gordon integrator is more efficient. The Shampine–Gordon integrator and the
SO propagator C code used in this article can be found at https://www.researchgate.net/
publication/340793133_High_Precision_Orbit_Propagator_C_code, (accessed on 16 May
2021). The Shampine–Gordon integrator has been used in other state propagation models
including the DROMO [25], SPOOK [26–28], and ZUNIEM [29] propagators, in which good
performance has been demonstrated.) integrator [30], which models the following forces:

• Earth central gravitation,
• Earth non-spherical forces, such as geopotential, solid tides, ocean tides,
• solar, and lunar gravitation,
• solar radiation pressure.

Further details on the implementation of the model can be found in [2,19,31–33].
Non-modeled perturbations aε can be estimated by [11,34]:

aε(r(tk−1), ṙ(tk−1), t, ω(tk−1)) = f eci(r(tk−1),ṙ(tk−1))
ric ((t− tk−1)ω(tk−1)) (29)

https://www.researchgate.net/publication/340793133_High_Precision_Orbit_Propagator_C_code
https://www.researchgate.net/publication/340793133_High_Precision_Orbit_Propagator_C_code
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where ω is a zero-mean Gaussian noise source on the second component in the object’s
Radial-Intrack-Crosstrack (RIC) frame, and f eci

ric is the mapping that transforms a vector in
the object’s RIC frame to the reference ECI frame (see Appendix B.4).

4.1. Particle State Prediction

For a target modeled by a particle distribution {γk−1, xk−1}J
j=1, where γk represents a

particle weight at time k, the predicted distribution is given by:

γk|k−1 = γk−1 (30)

xk|k−1 = xk−1 +
∫ tk

tk−1

[
ṙ(t)
r̈(t)

]
dt. (31)

4.2. Variable Time Step Prediction

Since, most of the time, targets are not observable, in order to reduce computational
cost and improve integration performance, the target is predicted over a single time step or
a long time step. It was noted in this work that using many single time step integrations is
more computationally intensive than using a single long time step integration. The long
time step prediction method requires the intermediate time steps and states calculated dur-
ing integration and applies a spline interpolation method, function f j

ι (`n, t) in Algorithm 1,
to estimate future state values at desired time steps.

The decision rule used in the experiments presented in Algorithm 1 for using a long
∆Tι or single tk − tk−1 time step prediction is to use long prediction after Nsteps

th single time
state predictions in which the estimate is out of the FoV of all telescopes. The number of
consecutive time steps where target `n is out of all telescopes’ FoVs is given by U`n . If
the target is not observed after the long time step prediction ∆Tι, another long time step
prediction is executed. When the target state is within the FoV of any of the telescopes,
the next predictions are carried out using the single time step prediction.

Algorithm 1 Prediction Step Algorithm

1: Input: Xk =

{(
`1, r1,

{
γ

j
`1

, xj
`1

}J`1

j=1

)
, . . . ,

(
`N , rN ,

{
γ

j
`N

, xj
`N

}J`N

j=1

)}
,

U`n . Number of consecutive time steps where target `n is out all telescopes’
FoVs.

2: Output: Xk =

{(
`1, r1,

{
γ

j
`1

, xj
`1

}J`1

j=1

)
, . . . ,

(
`N , rN ,

{
γ

j
`N

, xj
`N

}J`N

j=1

)}
. States are

overwritten.
3: for n ∈ 1 . . . N do . Prediction for the distribution of each element.
4: for j ∈ 1 . . . J`n do
5: γ

j
`n
← γ

j
`n

. Weights remain the same.

6: if U`n ≥ Nsteps
th & tk−1 ∈ [tι

`n
, tι
`n
+ ∆Tι] then . Long term prediction.

7: tι
`n
← tk−1

8: f j
ι (`n, t)← xj

`n
+
∫ tι

`n
+∆Tι

tι
`n

ẋj
`n
(t)dt

9: end if
10: if tk−1, tk ∈ [tι

`n
, tι
`n
+ ∆Tι] then . Interpolated prediction.

11: xj
`n
← f j

ι (`n, tk)

12: else . Single time step prediction.
13: xj

`n
← xj

`n
+
∫ tk

tk−1
ẋj
`n
(t)dt

14: end if
15: end for
16: end for
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5. SO Observation Model

An SO detection in a telescopic image is a streak. In this work, SO detection is modeled
in terms of the angles [α1, β1, α2, β2] of the streak limits, with respect to the image center,
see Figure 3. The FoV of the telescope is within the range α ∈ [−A/2, A/2] with respect to
the horizontal axis and β ∈ [−B/2, B/2] with respect to the vertical axis. The measurement
is not instantaneous and occurs during an elapsed time known as the exposure time ∆texp.
The measurement can then be expressed as:

[α, β, α̇, β̇]T =

[
α1, β1,

α2 − α1

∆texp
,

β2 − β1

∆texp

]T
. (32)

Figure 3. Image taken from the sidereal tracking of NORAD satellite 25,853, from the Mitre Corpo-
ration. Horizontal/vertical arrowed red lines indicate angular axes, red dots indicate the satellite
coordinate (α1, β1) at tk and (α2, β2) at tk + ∆texp.

An observation model for real image measurements can be found in [35]. The obser-
vation model is given by the function ẑ = H f cam

eci (x), where f cam
eci (x) is the projection of the

state vector into the camera spherical coordinate system and H is the observation matrix:

H =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

. (33)

The single target measurement model is then given by the likelihood function lz(z|x),
modeled by the Gaussian distribution:

lz(z|x) = N (z; H f cam
eci (x), R). (34)

An observed state ẑj
k = [α

j
k, β

j
k, α̇

j
k, β̇

j
k]

T can be represented in terms of the telescope

image coordinates (αj
1,k, β

j
1,k, α

j
2,k, β

j
2,k) = [α

j
k, β

j
k, α

j
k + ∆texpα̇

j
k, β

j
k + ∆texp β̇

j
k]

T .

The probability of detection of a particle xj
k|k−1 is given as follows:

PD(x
j
k|k−1) =

{
PD, if |αj

1,k|, |α
j
2,k| ≤ A/2 & |βj

1,k|, |β
j
2,k| ≤ B/2

0, otherwise.
(35)

Therefore, the average probability of detection of the predicted particle distribution
{γj

k|k−1, xj
k|k−1}

J
j=1 is

P̄D

(
{γj

k|k−1, xj
k|k−1}

J
j=1

)
=

J

∑
j=1

γ
j
k|k−1PD(x

j
k|k−1). (36)

The single target posterior densities are calculated based on the procedure in [11]:
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1. Transform the particle state to the topocentric camera coordinates, with weights

corrected by the probability of detection {γj
k|k−1, xj

k|k−1}
J
j=1 −→ {PD(x

j
k|t−1)γ

j
k|k−1,

f cam
eci (xj

k|k−1)}
J
j=1.

2. Approximate as a Gaussian distribution (µµµk|t−1, Pk|t−1).
3. Update using a linear Kalman filter.

4. Sample the resulting distribution {1/J, xj
k,cam}

J
j=1. Note that the radial components

s, ṡ do not change because they are not observed.
5. Transform from camera to ECI space −→ {1/J, f eci

cam(xj
t,cam)}

J
j=1.

The particle distribution of undetected targets is given by xj
k = xj

k|k−1 and:

γ
j
k =

[1− PD(x
j
k|k−1)]γ

j
k|k−1

∑J
j′=1 [1− PD(x

j′

k|k−1)]γ
j′

k|k−1

. (37)

Algorithm 2 shows the calculation of the average probability of detection, cost matrix,
and state parameters representing missdetected targets under the function MISSDETECTION(·).

Algorithm 2 Module of updated missdetected single target update.

1: Input:
(
`n, rn,

{
γ

j
`n

, xj
`n

}J`n

j=1

)
,

2: Output: Wn,0,
(
`n,0, rn,0,

{
γ

j
`n,0

, xj
`n,0

}J`n,0

j=1

)
, P̄n

D

3: P̄n
D ← ∑j γ

j
`n

PD(x
j
`n
) . PD(x

j
`n
) corresponds to Equation (35).

4: P̄n
M ← ∑j γ

j
`n
(1− PD(x

j
`n
))

5: Wn,0 ← (1− rn) + rn P̄n
M

6:

(
`n,0, rn,0,

{
γ

j
`n,0

, xj
`n,0

}J`n,0

j=1

)
←
(
`n, rn P̄n

M
Wn,0

,
{

γ
j
`n

1−PD(xj
`n
)

P̄n
M

, xj
`n

}J`n

j=1

)

The complete pseudo code of the multi-target tracking update is given in Algorithm 3.
In Algorithm 3, the following functions are used:

• PARTICLESTOGM(
{

γj, yj}J
j=1): Converts a set of weighted particles to a Gaussian

Mixture. This can be implemented with a variant of the Expectation Maximization
(EM) algorithm, such us the Fixed Weighted-Data EM (FWD-EM) [36].

• ∼GM(
{

wi, µµµi, Pi
n
}I

i=1): Extracts samples from a GM distribution by first sampling the
Gaussian component i with respect to the weights wi, and then sampling from the
normal distribution N (·, µµµi, Pi

n).
• PAR(z, o, ȯ, Rcam

eci (tk, o)): Calculates the weighted particle distribution of the hypothe-
sis given by the measurement z and its observer o (with parameters o, ȯ, Rcam

eci (tk, o)).
• LBP(Wn,m): Calculates the individual contribution of each state-measurement pair

from the cost matrix Wn,m using the LBP algorithm [16].
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Algorithm 3 Update

1: Input: Xk =

{(
`1, r1,

{
γ

j
`1

, xj
`1

}J`1

j=1

)
, . . . ,

(
`N , rN ,

{
γ

j
`N

, xj
`N

}J`N

j=1

)}
,

Zk = {z1
1, . . . , z1

M1
, . . . zO

1 , . . . , zO
MO
},

2: Output: Xk =

{(
`1, r1,

{
γ

j
`1

, xj
`1

}J`1

j=1

)
, . . . ,

(
`N , rN ,

{
γ

j
`N

, xj
`N

}J`N

j=1

)}
3: for o ∈ 1 . . . O do
4: for n ∈ 1 . . . N do

5: Wn,0,
(
`n,0, rn,0,

{
γ

j
`n,0

, xj
`n,0

}J`n,0

j=1

)
, P̄n

D = MISSDETECTION(`n, rn,
{

γ
j
`n

, xj
`n

}J`n

j=1
)

6:
{

wi
n, µµµi

n, Pi
n

}In

i=1
= PARTICLESTOGM(

{
γ

j
`n

PD(x
j
`n )

P̄n
D

, f cam
eci

(
xj
`n

, o
)}J`n

j=1
)

7: end for
8: for m ∈ 1 . . . Mo do
9: for n ∈ 1 . . . N do . Detected targets.

10: ∀i ∈ 1 . . . In qi
n,mN (x; µµµi

n,m, Pi
n,m)← N (zm; Hx, Ro)N (x; µµµi

n, Pi
n)

11: Wn,m ← ∑i wi
nqi

n,m

12:

(
`n,m, rn,m,

{
wi

n,m, µµµi
n,m, Pi

n,m

}In,m

i=1

)
←
(
`n, 1,

{
wi

nqi
n,m

Wn,m
, µµµi

n,m, Pi
n,m

}In

i=1

)
13: end for
14: W0,m ←

λβ+λo
γ

VFoV(o)
. New Targets.

15:
{

γ
j
0,m, yj

0,m

}J0,m

j=1
= PAR(zm, o, ȯ, Rcam

eci (tk, o))

16:

(
`0,m, r0,m,

{
γ

j
0,m, xj

0,m

}J0,m

j=1

)
←
(
(k, m, o), λβ

λβ+λo
γ

{
γ

j
0,m, f eci

t-radec(y
j
0,m)

}J0,m

j=1

)
17: end for
18: pn,m = LBP(Wn,m) . Loopy Belief Propagation.
19: for n ∈ 1 . . . N do . Updated existing targets.
20: rn ← ∑Mo

m=0 pn,mrn,m

21:
{

yj
n

}J

j=1
∼ GM(

{
pn,mrn,mwi

n,m, µµµi
n,m, Pi

n,m

}In ,Mo

i=1,m=1
) . Sample from a GM distribution.

22:

(
`n, rn,

{
γ

j
`n

, xj
`n

}J`n

j=1

)
←
(
`n, rn,

{
γ

j
n,0

pn,0rn,0
rn

, xj
n

}J`n

j=1

)
∪
{

rn−pn,0rn,0
Jrn

, f eci
t-radec(y

j
n)
}J

j=1
23: end for
24: for m ∈ 1 . . . Mo do . Updated new targets.
25: n← N + m

26:

(
`n, rn,

{
γ

j
`n

, xj
`n

}Jn

j=1

)
←
(
`0,m, p0,mr0,m,

{
γ

j
0,m, xj

0,m

}J0,m

j=1

)
27: end for
28: end for

6. Multi-Target SO State Extraction and Performance Metrics
6.1. State Extraction

To extract the target states, the particle distribution in the ECI frame is converted to a
Gaussian distribution in the RADEC frame. Usual methods to achieve this are Euclidean
particle averaging. However, Euclidean averaging is not the best option for calculating the
average positions of orbital trajectories. Averaging particle states converted to RADEC
coordinates is also problematic due to the discontinuities that occur when αra = 2π
and βdec = π. Instead, methodologies used in Riemannian manifolds are applied as
follows [37,38]. Let {γj, xj}J

j=1 be the particle distribution for a given target. The weighted

average is calculated in spherical coordinates RADEC x = [r, αra, βdec]
T . Now, the unit

vector qj represents the target position on the unit sphere:

qj = [cos(αj
ra) sin(β

j
dec) sin(αj

ra) sin(β
j
dec) cos(β

j
dec)]

T . (38)
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Define the logarithmic map, with respect to a reference unit vector q0, as:

θθθ := Logq0
(q) = uθ, u =

q− q0 cos(θ)
sin(θ)

, θ = arccos(qT
0 q), (39)

and the exponential map as:

q := Expq0
(θθθ) = <(q0 cos(θ) + u sin(θ)), θ = ‖θθθ‖, u =

θθθ

θ
. (40)

The weighted average [38] is calculated using the Gauss–Newton iterative algorithm
by initiating q̄ ← q1 or q̄ ← qj∗ with j∗ = argj max

{
γj}J , and iterating until the error

between two consecutive iterations is lower than a chosen threshold:

τ =
J

∑
j=1

γjLogq̄(qj), q̄← Expq̄(τ). (41)

Then, for q̄ = [q̄x, q̄y, q̄z]T , the conversion to RADEC coordinates is given by:

ᾱra = arctan
(

q̄y

q̄x

)
, (42)

β̄ra =
π

2
− arccos(q̄z), (43)

r̄ =
J

∑
j=1

rj. (44)

It is then necessary to convert back to Cartesian coordinates in the ECI frame to give
x̄ = f eci

radec([r̄, ᾱra, β̄ra]T).

6.2. Defining the Distance between Estimates and Ground Truth

To quantify the performance of the PLMB filter, distance metrics are needed. In
particular, the Optimal Sub-Pattern Assignment (OSPA) and CLEAR MOT metrics used
in this article require the individual error distances between estimated SO states and
ground truth.

Since the estimation of SO orbital trajectories is sought in this article, it makes sense to
define single SO estimate to ground-truth distance errors in terms of distances along their
orbital trajectories, rather than the Euclidean distance between them. For example, if an SO
is on one side of the Earth according to ground-truth, but its estimate is on the other side,
the error distance should be half of the perimeter of the orbit.

When objects have different distances from the Earth (r1 and r2), the distance between
two vectors x1 and x2 can be modeled by the line integral of a spiral:

r(θ) = a + bθ. (45)

Imposing r(0) = a = min(r1, r2),

θ12 = arccos
x1 · x2

‖x1‖‖x2‖
, (46)

where θ12 is the angle between x1 and x2, and r(θ12) = max(r1, r2), so b = (max(r1, r2)−
min(r1, r2))/θ12.
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The line integral is given by:

∫ θ12

0
r(θ)dθ =

∫ θ12

0
a + bθdθ = aθ + b

θ2

2

∣∣∣∣θ12

0

= θ12 min(r1, r2) +
max(r1, r2)−min(r1, r2)

θ12

θ2
12
2

= θ12
r1 + r2

2
,

(47)

and finally:

d◦(x1, x2) = θ12
r1 + r2

2
= arccos

(
x1

‖x1‖
· x2

‖x2‖

)
‖x1‖+ ‖x2‖

2
(48)

is the error distance between x1 and x2, to be used in the multi-SO error metrics for
quantifying the performance of the PLMB filter.

6.3. Multi-Target Tracking Metrics

The multi-SO tracking results here are compared using the OSPA [39] and OSPA(2) [40]
metrics and the Multi Object Tracking Precision (MOTP) and Multi Object Tracking Ac-
curacy (MOTA) CLEAR MOT metrics [41]. Both the OSPA and OSPA(2) metrics measure
the precision and cardinality of two sets of targets (ground truth and estimates in this
case) in one value per time step, with the difference that the OSPA(2) metric is designed to
evaluate labeled tracks, whereas the OSPA metric does not take labels into account. The
MOTP metric gives the estimated target location errors, when correctly detected, and the
MOTA metric gives the accuracy in tracking targets, taking into account missdetections,
false alarms, and label switching.

7. Results
7.1. Database Construction

The database is built using simulated telescopic measurements of LEO SOs, obtained
from the TLE file of 4 October 2019 (The TLE file used in the experiments, containing
SO trajectory parameters from 2–6 October 2019, and a video demonstrating the resulting
tracking performance can be downloaded at: https://www.dropbox.com/sh/a79hgj5
hpo4vys8/AACu9OAYHLmgy4gK4V8NtqcMa?dl=0, (accessed on 16 May 2021)), which
contains data related to more than 5000 SOs. The measurements are simulated by projecting
the SO trajectories into the image plane of twelve telescopic cameras from the FTN. The
name, location, and simulated pointing directions of the telescopes are shown in Table 1.

Table 1. Location of the observatories of the FTN [18] with their simulated pointing directions.

Telescope Location
(City, State) Country Longitude

(East) Latitude Altitude (Meters) Azimuth ◦ (Simulated Pointing
Direction)

Elevation ◦ (Simulated Pointing
Direction)

Woodland Park, CO USA 255.01 39.01 2790 179 5
Yoder, CO USA 255.80 38.89 1961 180 5

Grand Junction, CO USA 251.76 39.96 1380 176 5
Durango, CO USA 252.13 37.27 1880 173 5

Sterling, CO USA 256.80 40.65 1177 181 5
La Junta, CO USA 256.46 37.97 1221 183 5

State College, PA USA 282.17 40.86 317 184 5
Vicuña Chile 289.32 −29.99 1139 4 5

Canberra Australia 149.17 −35.29 600 260 5
Gingin Australia 115.71 −31.36 18 230 40

Braunschweig Germany 10.55 52.28 73 69 5
Cape Town South Africa 18.46 −33.96 110 103 12

In the experiment, a subset of nine SOs were used. These SOs are those that produce a
higher number of measurements from the telescopes when the sample frequency is seven
frames per second (fps).

Experimental results at three different measurement update times (a) and (b) at m = 1,
(c) at m = 2, (d) at m = 11 are shown in Figure 4. The complete ground truth trajectories

https://www.dropbox.com/sh/a79hgj5hpo4vys8/AACu9OAYHLmgy4gK4V8NtqcMa?dl=0
https://www.dropbox.com/sh/a79hgj5hpo4vys8/AACu9OAYHLmgy4gK4V8NtqcMa?dl=0
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are shown in cyan. Gold stars (∗) represent the telescope positions, which change over time
due to the Earth’s rotation, as can be seen comparing the graphs. Circles show the ground
truth SO location and their neighbouring numbers m correspond to the mth measurement
update. The pink points show the SO’s particles. In Figure 4a,b, it is interesting to see the
particle distribution of a new target (pink) where the high radial standard deviation (σr)
of the estimate in the radial direction (gold line) with respect to the telescope’s position is
evident. The error distance between ground truth and the average particle position state
is 52 [km]. Figure 4c shows the update at the next time step, where it can be seen that σr
reduced significantly. Figure 4d shows the update after 11 time steps together with the
measurement of satnum = 337, which in this case is observed by a different telescope with
respect to Figure 4b,c, as seen by the gold line. At this time step, the error distance is greatly
reduced to 0.68 [km], and σr is reduced even further.
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(a) m = 1
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(b) m = 1, zoomed plot.
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(c) m = 2, zoomed plot.
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(d) m = 11, zoomed plot.
Figure 4. Experimental SO tracking results at three different time steps (a–d) for satnum = 337 from the TLE, where figure
(b) is a zoomed view of the SO trajectory in figure (a). The complete ground truth trajectories are shown in cyan. Gold
stars (∗) represent the telescope positions. Circles show the ground truth SO location and their neighboring numbers m
correspond to the mth measurement update. The pink points show the SO’s particles.
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7.2. Grid Size Performance for the Probabilistic Admissible Region

The process of computing the particle distribution composed of state vectors and their
associated weights can be parallelized. The PAR algorithm was implemented in C++ and
processed on a computer with 16 threads. Using a uniform grid (s, ṡ) the values p(a, e),
were calculated and consequently the weighted particles {γ, [s, α, β, ṡ, α̇, β̇]T} obtained.
Since most of the weights γ have values close to zero, the corresponding elements are
discarded, reducing the size of the particle set.

Experiments with three regular grids (s, ṡ) were executed to demonstrate the compu-
tational times and corresponding numbers of particles in the resulting distributions:

• A 100× 100 grid resulted in an average particle set size of 136± 29 weighted par-
ticles and required 0.04 [s] to execute. The resulting particle set was composed of
1.36± 0.29% of the total number of elements in the grid.

• A 200× 200 grid resulted in an average particle set size of 465± 130 weighted par-
ticles and required 0.15 [s] to execute. The resulting particle set was composed of
1.16± 0.33% of the total number of elements in the grid.

• A 300× 300 grid resulted in an average particle set size of 964± 308 weighted par-
ticles and required 0.34 [s] to execute. The resulting particle set was composed of
1.07± 0.34% of the total number of elements in the grid.

Note that, even though the number of particles generated is proportional to the
number of grid cells, it is typically less than only 1.5% of this number. Furthermore, not all
the (s, ṡ) pairs in each grid cell need to be calculated. This is because only those cells which
comply with the PAR constraints (i.e., only the cells enclosed within both the magenta and
red regions of Figure 1, such as points G and H) are necessary.

7.3. Conversion of Weighted Particles to a Gaussian Mixture Distribution

The state represented by a set of weighted particles in the prediction step is converted
to a GM distribution in the update step. The conversion was implemented using the FWD-
EM method [36] modified using the Fuzzy C-Means method for initialization suggested
in [42], under which a superior performance was demonstrated. This procedure required
the FWD-EM algorithm to execute for a fixed number of Gaussian components. In this
work, GMs containing between 1 and 10 components were calculated and their fit to the
weighted particles compared using the Bayesian Information Criterion (BIC). In the case of
a single Gaussian component, its mean and standard deviation were calculated from the
weighted average and standard deviation of the particles.

In the case of multiple Gaussian components, the FWD-EM algorithm was used.
Experimentally, the lowest BIC was obtained based on a single-Gaussian component in
all the conversions. This possibly surprising result can be explained because the Gaussian
distribution is calculated in spherical as opposed to Cartesian coordinates. For this reason,
a single Gaussian component is used in the following experiments.

7.4. Global Tracking

Ten Monte Carlo (MC) experiments with randomly simulated observations, using
the parameters in Table 2, were realized using the PLMB filter. The OSPA and CLEAR
MOT metrics were computed for performance evaluation. All the parameters used in this
experiment are shown in Table 2.
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Table 2. Parameters of the experiment.

Parameter Symbol Value

Process noise standard deviation ω 10−7[ms−3]
Sensor noise standard deviation σ 2[arcsec]

Sample time ∆t 7 [s]
Exposure time ∆texp 4 [s]

Sensor noise covariance matrix R σ2


1 0 −∆t−1

exp 0
0 1 0 −∆t−1

exp
−∆t−1

exp 0 2∆t−2
exp 0

0 −∆t−1
exp 0 2∆t−2

exp


Sensor FoV for α [−2.2, 2.2]◦

Sensor FoV for β [−1.2, 1.2]◦

Expected number of new targets λβ 8.1× 10−5

Expected number of clutter measurements λκ 0.1
Probability of detection PD 0.8
Probability of survival PS 0.99999

Maximum number of particles J 100
Area to mass ratio AMR 0.01105

PAR grid size 300× 300

The distances between ground truth and estimated targets were calculated using (48).
The MOTA metric in this case was 96.34± 1.09% and MOTP metric was 3.14± 0.24 [km].
This indicates that each target was correctly tracked more than 96% of the time since it
was detected by a telescope, with a distance precision between 2.9–3.4 [km]. Figure 5
shows the resulting cardinality, in which it can be seen that most of the time the estimated
number of tracks was correct, and in some intervals the error corresponds to only a single
cardinality error, as can also be seen in the OSPA cardinality error, third row of Figure 6.
The OSPA and OSPA(2) metrics are shown in Figure 6. The first row of graphs shows
the complete OSPA errors, whereas the second and third rows show the individual OSPA
localization and cardinality error components. It can be seen that the OSPA distance (first
row) graphs appear to be very similar to the OSPA localization graphs (second row). This
is because, during all the experiments, the cardinality errors are low. The OSPA metric
shows particularly low errors between 7–11 h. To explain this, it is necessary to analyze
the individual tracks in Figures 7–9. The first measurement of each SO occurs at different
times, and its track begins at that moment. The first estimate which is modeled by the PAR
produces a hypothesis with low uncertainty in the angular directions, but high uncertainty
in the radial direction with respect to its observing telescope, as shown in Figure 2. This
effect can be seen in Figure 8, where, during the time period 11–16 h, the radial error is
very high, close to 100 [km], which is reduced to less than 1 [km] when new measurements
contribute to reduce target hypothesis uncertainty. It can then be seen that the radial
distance between the SO’s estimate and ground truth remains below 1 [km] for most of
the time.

5 10 15 20 25

0

2

4

6

8

10
True

Estimated

Figure 5. SO average cardinality for the MC experiments at each time step. The black curve shows
the ground-truth and the red curve, the estimated cardinality.
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Figure 6. The OSPA metric values (first column) and OSPA(2) metric values (second column). The
first row shows the complete OSPA errors, whereas the second and third rows show the individual
OSPA localization and cardinality error components. The OSPA parameters were c = 10 [km], p = 2
and OSPA(2) window size = 200 time steps equivalent to 1400 [s].
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Figure 7. Trajectory results for satnum = 337.
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Figure 8. Trajectory results for satnum = 5715, first MC realization.

7.5. Identifying Individual SO Tracks

In Figures 7–9, the first row of graphs show an SO’s estimated probability of existence
r in blue, and the observation window time when measurements are captured in red. The
second row of graphs show the ground truth to SO distance from Equation (48), which is
the orbital distance used in the OSPA and CLEAR MOT metrics.

Graphs from the SO track with satnum 337 are shown in Figure 7. This SO yielded
seven consecutive measurements immediately after PAR initialization. Therefore, the initial
distance errors reduced significantly after this first set of seven measurements. As seen
during time period 9–20 h, the SO produced no measurements, provoking an increase of
distance error, but its track was successfully maintained and updated at time 20.5 h.

Figure 8 shows PLMB tracking performance, in a MC realization, for satnum 5715
in which only one measurement was obtained immediately after PAR initialization. In
this case, the first graph in Figure 8 shows that r ≈ 0.7 until just after 15 h, then r reduces
before the next measurement when the probability of detection increases (The probability
of detection increases above zero when the target hypothesis distribution overlaps the
FoV of its observing telescope, see Equations (35) and (36)). Subsequently, r increases to
approximately unity and remains near this value after future measurements.

Finally, Figure 9 shows the tracking result of a less successful case (another MC real-
ization for satnum 5715) in which multiple labels, and hence target tracks, are erroneously
assigned to a single SO. Figure 9a shows that a track with label (k, m, o) = (5612, 1, 9) is
assigned to this SO. Its probability of existence r is significantly reduced at a time of 17 h
and then increases back to unity at a time of approximately 19 h. During this time period,
Figure 9b shows that a new track, with label (8836, 1, 5), is also assigned to satnum 5715,
but with higher probability of existence r. This demonstrates a failure to maintain the track
of satnum 5715 during this time period. Possible solutions to this problem include the
implementation of another state extractor which takes into account the history of tracks
with hysteresis. Other alternatives can be the fusion of tracks or the use of sets of trajectories
as in [43]. Improving the state model by using a GM density, instead of a single Gaussian
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density as carried out here, or by using a distribution which better models the “banana
shape” of the SO distribution, could also be beneficial.
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(b)
Figure 9. Trajectory results for satnum = 5715, second MC realization. (a) first hypothesis; (b) second hypothesis.



Sensors 2021, 21, 3684 21 of 28

7.6. Computational Performance

To measure the computational performance, the average time to execute ten simula-
tions was calculated. On average, the computational time necessary for one cycle (from
time k to k + 1) of the PUB-PAR-PLMB filter was 2.5 [s]. This time consumption was made
up of the following components, where all percentages are with respect to this cycle time.
Note that the element Others refers to data logging, overhead, and other functions:

• Prediction: 79.94%.

– SO particle propagation with the dynamic model (Section 4), O(N): 71.49%.
– Spline predictor (Section 4.2), O(N): 8.31%.
– Others: 0.14%.

• Update: 19.95%.

– PAR algorithm (Section 2), O(M): 15.88%.
– LBP algorithm (Section 3.2), O(NM): 0.02%.
– PD (Section 5): 0.15%.
– f cam

eci (Section 5): 0.30%.
– Others: 3.60%.

• State extraction: 0.02%.
• Others: 0.09%.

It can be seen that approximately 70% of the total filter cycle time is used by the
integrator within the prediction component. Note that this component forms part of the SO
dynamic model and not specifically the PUB-PAR-PLMB filter. The scope of this work is
not to optimize the SO propagator, but to demonstrate the suitability of the PLMB filter for
multi-SO tracking. Nevertheless, it should be noted that this computational time could be
reduced by using a different target predictor such as the Extended Kalman Filter (EKF) or
the Unscented Kalman Filter (UKF) predictors and by using a single target state distribution
which better fits the "banana shape" of SO distributions.

It can also be seen that the time required by the LBP algorithm for measurement to
state assignment approximation is very small compared with the total filter cycle time. This
is expected since, in these experiments, the number of measurements (M) and estimated
targets (N) is low. However, since the LBP algorithm’s execution time increases with both
N and M, then, as the numbers of measurements and targets increase, its execution time
would start to dominate the overall filter cycle time.

8. Conclusions

A simulated space debris database was created based on TLE data, in which LEO
satellites/debris were observed by simulated telescopes based on the FTN. A satellite
measurement that corresponds to both ends of detected streaks was converted into celestial
coordinates. These coordinate pairs were then used as inputs to the PLMB SO tracking
algorithm. The experiment simulated measurements observed by twelve telescopes. The
implementation demonstrates a particle filter version of the PLMB filter. A multi-sensor
strategy was used by performing an iterative multi-target update by each sensor based
on the LBP algorithm. It would be interesting to compare this with a more sophisticated
multi-sensor tracking concept, for example based on Gibbs sampling, as used in [14]. The
implementation of the PAR and PUB approaches for modeling the birth of the PLMB filter
demonstrated a high accuracy and efficiency. The tracking results of the PLMB filter are
promising and demonstrated good results even during long periods with no measurements.
The performance could possibly be improved in future work with a different single target
state distribution which better fits the “banana shape” of SO distributions, a more complex
state extractor, by using sets of trajectories and/or another propagator/integrator.

This article has presented a proof of concept of applying the PLMB filter together
with the PUB and PAR. For future work, it would be interesting to substitute various
components such as the PUB, PAR, or the PLMB filter itself and compare results.
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Appendix A. Solution of PAR Constraint Equations

The constraint equations are derived from the celestial two-body energy equation:

ε =
‖ṙ‖2

2
− µ

‖r‖ (A1)

with energy ε, where µ is the gravitational constant of the Earth, r is the position, and ṙ is
the velocity of the state vector in the ECI frame. The concept of these constraints is shown
in Figure A1.

Figure A1. The CAR/PAR approach for initializing target tracks.

The measurement is assumed to take place in a topological RADEC coordinate system.
This is a spherical coordinate system parallel to the ECI frame. The relation between the
measurement and the state is given by [10]:

r = o + sus (A2)

ṙ = ȯ + ṡus + s(α̇uα + β̇uβ) (A3)

where the Cartesian axes of the measurement are:

• us = [cos (α) cos (β) sin (α) cos (β) sin (β)]T

• uα = [− sin (α) cos (β) cos (α) cos (β) 0]T

• uβ = [− cos (α) sin (β) − sin (α) sin (β) cos (β)]T ,

s = sus is the position vector with respect to the observer and s = ‖s‖. o is the center of the
observer respect to the ECI frame, and ȯ is its velocity. The observer velocity ȯ = ωωω⊕ × o,
where ωωω⊕ is the angular rotation of the Earth in the ECI frame, the calculation of which is
given in Appendix B.

Appendix A.1. Constraint 1

The semi-major axis length constraint is provided by the energy:

ε = − µ

2a
(A4)
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where substituting (A2) and (A3) into (A1), for a ≤ amax, results in:

c1(θ, φ; q) = ṡ2 + w1 ṡ + F(s) +
µ

amax
≤ 0 (A5)

where
F(s) = w2s2 + w3s + w4 −

2µ√
s2 + w5s + w0

(A6)

with:

w0 = ‖o‖2,

w1 = 2ȯ · us,

w2 = α̇2 cos2 (β) + β̇2

w3 = 2α̇(ȯ · uα) + 2β̇
(
ȯ · uβ

)
,

w4 = ‖ȯ‖2,

w5 = 2o · us

(A7)

Appendix A.2. Constraint 2

The eccentricity constraint is given by the angular momentum h = r× ṙ, where the
energy is:

ε = −µ2(1− e2)

2‖h‖2 (A8)

and substituting (A2) and (A3) into (A1), for e ≤ emax results in:

c2(θ, φ; q) = γ4 ṡ4 + γ3 ṡ3 + γ2 ṡ2 + γ1 ṡ + γ0 ≤ 0 (A9)

where

γ0 = F(s)U(s) + µ2(1− e2
max)

γ1 = F(s)P(s) + w1U(s)

γ2 = U(s) + c0F(s) + w1P(s)

γ3 = P(s) + c0w1

γ4 = c0

(A10)

where the coefficients ci are calculated from the angular momentum:

h = ṡh1 + s2h2 + sh3 + h4 (A11)

and:

P(s) = c1s2 + c2s + c3 (A12)

U(s) = c4s4 + c5s3 + c6s2 + c7s + c8 (A13)
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with:

c0 = ‖h1‖2

c1 = 2h1 · h2

c2 = 2h1 · h3

c3 = 2h1 · h4

c4 = ‖h2‖2

c5 = 2h2 · h3

c6 = 2h2 · h4 + ‖h3‖2

c7 = 2h3 · h4

c8 = ‖h4‖2

(A14)

and

h1 = o× us

h2 = us × (α̇uα + β̇uβ)

h3 = us × ȯ + o× (α̇uα + β̇uβ)

h4 = o× ȯ.

(A15)

Appendix B. Coordinate Transformations

The variables, regarding Earth orbit variations, used in the coordinate transformations,
on 4 October 2019 (the date of our experiment) were:

• tlod = −− 0.0003216[s]
• xp = 0.195512′′ = 9.478689242× 10−7 [rad].
• yp = 0.308733′′ = 1.496779822× 10−6 [rad].
• UTC1-UTC: dutc1 = −0.1536855 [s].
• ddpsi = −− 0.116622′′ = −− 5.65399411183563× 10−7 [rad].
• ddeps = −− 0.009989′′ = −− 4.84280386060315× 10−8 [rad].
• TAI-UTC: dat = 37 [s].

Appendix B.1. Observer’s Position and Velocity

The Earth’s angular velocity is ωE = 7.29211514670698× 10−5 ×
(

1− tlod
86400

)
and, as a

vector in Earth-Centered, Earth-Fixed (ECEF) frame, it is ωE = [0, 0, ωE]
T . The Earth’s

angular rotation in the ECI frame is ωωω⊕ = RpnsωωωE, where Rpns = RprecRnuteRst are given
in Vallado’s [44] MATLAB functions (precess.m, nutation.m and sidereal.m). Note that Rpns is
time dependent; therefore, it must be calculated at each time step.

The observer position in the ECI frame is given by o = RpnsPMoECEF, where PM and
oECEF are calculated with Equations (A16) and (A17), respectively.

The observer velocity in the ECI frame is given by ȯ = ωωω⊕ × o.

Appendix B.2. Polar Motion Matrix

The polar motion matrix is:

PM(xp, yp) =

 cos xp 0 − sin xp
sin xp sin yp cos yp cos xp sin yp
sin xp cos yp − sin yp cos xp cos yp

 ≈
 1 0 −xp

0 1 yp
xp −yp 1

. (A16)
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Appendix B.3. Geodetic Coordinate to ECEF Frame

oECEF = f ecef
geo (ogeo), where ogeo is the observer position in latitude λ, longitude φgc

and altitude hobs.

oECEF =

(N + hobs) · cos(λ) · cos(φgc)
(N + hobs) · cos(λ) · sin(φgc)(
(1− e2

⊕) · N + hobs
)
· sin(λ)

, (A17)

where

• the radius of curvature at prime meridian N = R⊕√
1−e2

⊕ sin2(λ)
,

• the equatorial Earth radius R⊕ = 6378.137 [km],
• the Earth’s eccentricity e⊕ = 8.1819190842622× 10−2.

Appendix B.4. RIC to ECI Frame Transform

For a target x = [rT , ˙rT ]T , the mapping function from the RIC to the ECI frame is
given by:

f eci
ric (y) = [u v w]y, (A18)

where

u =
r
‖r‖ , w =

r× ṙ
‖r× ṙ‖ , v =

w× u
‖w× u‖ . (A19)

Appendix B.5. Topological RADEC to ECI Frame Transform

For a telescope with coordinates o, ȯ, the transformation from the topological RADEC
to the ECI frame x = f eci

t-radec(z), where z = [r, α, β, ṙ, α̇, β̇], is given by

x =



r cos (β) cos (α)
r cos (β) sin (α)

r sin (β)
ṙ cos (β) cos (α)− z cos (α)β̇− yα̇
ṙ cos (β) sin (α)− z sin (α)β̇ + xα̇

ṙ sin (β) + rβ̇ cos (β)

+

[
o
ȯ

]
. (A20)

Appendix B.6. ECI to Telescope Camera Coordinate Transformation

It is first necessary to transform from the ECI coordinates x to Cartesian camera
coordinates xcam, and then to spherical camera coordinates zcam:

xcam =

[
Rcam

eci (t)(r− o)
Rcam

eci (t)(ṙ− ȯ)

]
(A21)

where Rcam
eci (t) = Rsez

eci (t)R
cam
sez , Rsez

eci (t) is the rotation matrix from the ECI to the South-East-
Zenith (SEZ) frame [44] at time t, and Rcam

sez (Equation (A28)) is the rotation matrix of a
telescope pointing in direction (αc, βc), with respect to the Earth plane.
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Let xcam = [x, y, z, ẋ, ẏ, ż]T , and let s =
√

x2 + y2; then,

r =
√

s2 + z2 (A22)

α =


arctan

(
y
−x

)
if s > ε

arctan
(

ẏ
−ẋ

)
otherwise

(A23)

β =


arctan

( z
s

)
if s > ε

sign(z)
π

2
otherwise

(A24)

ṙ =
xẋ + yẏ + zż

r
(A25)

α̇ =


yẋ− xẏ

s2 if s > ε

0 otherwise
(A26)

β̇ =


żs2 − z(xẋ + yẏ)

r2s
if s > ε

0 otherwise
(A27)

where ε is a threshold representing a value close to 0, since α̇ and β̇ are undefined when
s = 0. Here, ε = 10−10, and

Rcam
sez =

cos αc cos βc − sin αc cos βc − sin βc
sin αc cos αc 0

cos αc sin βc − sin αc sin βc cos βc

 (A28)

Appendix C. Construction of Semi-Major Axis Length and Eccentricity
GM Distribution

The construction of the p(a, e) density is realized with the procedure described in [10].
The density p(qs) = p(a, e) is a GM approximation of the a-e density derived via the public
TLE catalog from 4 October 2019. Using the 1118 samples consistent with the a and e
constraints in ([10], Table I), the EM algorithm with a convergence tolerance of 10−7 is used
to generate a GM with 30 components. Figure A2 shows the a and e values for more than
10,000 SOs from the TLE and the resulting GM distribution.
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Figure A2. Probability density of the semi-major axis (measured in units of Earth radius) and
eccentricity of LEO targets. The red points show the non-LEO targets and blue points the LEO targets
of the TLE file of 2–6 October 2019. Contour lines indicate the resulting GM probability density using
30 components and a convergence tolerance of 10−7, replicated 10 times.
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The TLE provides the orbit eccentricity but does not directly provide the semi-major
axis length. Instead, it provides the the mean motion n, which is the number of revolutions
that the satellite moves around the Earth in one day. Using the Kepler equation n2a3 = µ,
it is possible to obtain the semi-major axis length a in terms of the mean motion n.
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