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Abstract: The advancement of indoor Inertial Navigation Systems (INS) based on the low-cost
Inertial Measurement Units (IMU) has been long reviewed in the field of pedestrian localization.
There are various sources of error in these systems which lead to unstable and unreliable positioning
results, especially in long term performances. These inaccuracies are usually caused by imperfect
system modeling, inappropriate sensor fusion models, heading drift, biases of IMUs, and calibration
methods. This article addresses the issues surrounding unreliability of the low-cost Micro-Electro-
Mechanical System (MEMS)-based pedestrian INS. We designed a novel multi-sensor fusion method
based on a Time of Flight (ToF) distance sensor and dual chest- and foot-mounted IMUs, aided by
an online calibration technique. An Extended Kalman Filter (EKF) is accounted for estimating the
attitude, position, and velocity errors, as well as estimation of IMU biases. A fusion architecture
is derived to provide a consistent velocity measurement by operative contribution of ToF distance
sensor and foot mounted IMU. In this method, the measurements of the ToF distance sensor are
used for the time-steps in which the Zero Velocity Update (ZUPT) measurements are not active. In
parallel, the chest mounted IMU is accounted for attitude estimation of the pedestrian’s chest. As
well, by designing a novel corridor detection filter, the heading drift is restricted in each straightway.
Compared to the common INS method, developed system proves promising and resilient results in
two-dimensional corridor spaces for durations of up to 11 min. Finally, the results of our experiments
showed the position RMS error of less than 3 m and final-point error of less than 5 m.

Keywords: indoor navigation; time of flight sensor; foot-mounted INS; online calibration; pedestrian
navigation; IMU inertial navigation

1. Introduction

Nowadays, indoor localization systems are being used in numerous applications,
especially in situations in which the Global Positioning System (GPS) or other signals may
have less coverage. Although some indoor positioning systems have been usually based
on inertial sensors, in recent decades various sensor fusion methods could increase the
accuracy of these systems. Moreover, the significant impact of indoor navigation systems
in underground locations, inside multistory buildings, and for pedestrian soldiers cannot
be underestimated. In order to satisfy the positioning accuracy of a mobile pedestrian, an
adaptive and online calibration method is needed to increase the accuracy of traditional foot-
mounted INS algorithms. An online calibration is defined as a process of error estimation
for pedestrian’s position, velocity, and attitude, followed by updating the system states
in each time-step. The online calibration can restrict the final divergence of the INS. A
novel sensor fusion architecture can lead the system to have more accurate error estimation
in each EKF or other KF-based models. In this paper, a new sensor fusion method is
presented. The architecture of the presented model is based on dual IMUs and a time of
flight (ToF) distance sensor. In contrast to the other usual foot-mounted INS methodologies,
this method uses a chest-mounted IMU to correct the orientation and heading estimation
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of a mobile pedestrian. In parallel, another IMU mounted on the foot performs the INS
kinematic calculation. Also, the ToF distance sensor is installed on the chest to calculate the
distance between the pedestrian and a probable in-front object. An innovative hardware,
designed for installing the chest mounted sensors, includes an IMU and a ToF distance
sensor. Details of the hardware setup are discussed further.

The proposed system is based on the EKF model, which estimates the errors of
position, velocity, orientation, and biases of inertial sensors. The main purpose of the
designed sensor fusion architecture is to provide a precise continuous measurement for the
EKF estimator in order to calibrate the indoor positioning system. The measurements of
orientation are calculated from our last AHRS algorithm, which is used in the EKF system.
In this paper, we use the orientation of a pedestrian’s chest instead of a pedestrian’s foot.
In other words, due to the large amount of error in attitude and heading estimation while
using the foot mounted IMU, an AHRS is accounted for the attitude and heading estimation
using inertial and magnetic data of the chest-mounted IMU. As illustrated in Figure 1, the
system includes two IMUs. The heading angle of the pedestrian is obtained from a 9-DoF
chest-mounted IMU. This IMU utilizes both inertial and magnetic data in order to obtain
the chest’s attitude. Moreover, the INS calculates the position, velocity and attitude using
a 6-DoF IMU on the foot. In parallel, the IMU on the chest is responsible for calibration
of the pedestrian’s orientation and decreasing the heading’s drift. By providing an error
between foot and chest orientation, an attitude error measurement could be provided
for the calibration system. As well as this, the range measurement of the ToF distance
sensor and the zero-velocity measurement of the ZUPT model are considered as main
measurements of the system. The designed system extracts the velocity measurements
from the range output of the ToF distance sensor.
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body and sensors.

Since there are various indoor positioning methods using the wireless data trans-
mission systems, these systems can be categorized in the following types: the range
measurements using Time of Flight (ToF) distance sensors, Angle of Arrival (AOA) mea-
surements acquired by the antenna, and Received Signal Strength (RSS) data. Numerous
previous works have been provided in the next part as a review of literature, however, the
main contribution of this paper is fusing the ToF and IMU sensors for online calibration of
pedestrian indoor positioning systems.
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This article is presented in the seven following sections. In Section 2, we present a com-
plete review of prior works in the literature relevant to our research. Section 3 elaborates
an EKF-based AHRS method as well as inertial foot-mounted positioning methodology. In
Section 4, we describe the architecture of a proposed multi-sensor fusion method using dual
chest-foot mounted IMUs aided by a ToF distance sensor. The experiments and the results
are presented in Section 5. Furthermore, the results of all experiments are compared and
discussed in Section 6. Finally, the conclusions, as well as some future research potentials,
are presented in Section 7.

2. Related Works

Until now, there has been a minimal number of attempts to address the problem of
pedestrian indoor navigation systems. Many researchers with plentiful algorithms have
tried to correct the foot-mounted position estimation in indoor environments. These algo-
rithms utilize the MEMS-based inertial sensors as six or nine degree of freedom (DoF) IMUs
consist of three-axis gyroscope, three-axis accelerometer, and three-axis magnetometer
mounted on the feet. The theoretical investigation and performance comparisons of various
indoor localization systems are included in some surveys. For instance, in [1–3], some
algorithms such as the Bluetooth-based wireless method, Radar mapping systems, Global
Positioning System (GPS)-based methods, and RFID augmentation etc. are comprehen-
sively compared and discussed. The accuracy time, system description, initialization and
evaluation methods of each algorithm are well-investigated. Further, the vast majority
of technical parameters were included in these articles such as wearability, power con-
sumption, sensor calibration, building model, as well as complexity, cost-effectiveness,
and precision.

After presenting the Openshoe method [4] based on the Pedestrian Dead Reckoning
(PDR) system with the foot-mounted IMU, and by emerging the Zero-Velocity Potential
Update (ZUPT) method in [5], numerous Kalman Filter (KF) and GPS-based indoor lo-
calization methods have been presented. For example, online calibration of INS/ZUPT
using Extended Kalman Filter (EKF) [6], Constrained Square-Root Unscented Kalman Filter
(CSR-UKF) and UKF methods [7,8], magnetic field Gradient-based EKFs [9] are evaluated
and discussed. Moreover, various tightly and loosely coupled integrations of indoor PDR
systems are designed and evaluated using Bluetooth [10], GPS [11], and Radio Frequency
Identification (RFID) [12], which showed a more accurate performance compared to the
stand-alone INS and Openshoe methods. In these papers, the localization methods were
tested in even Non-Line-Of-Sight (NLOS) cases, in which there are several environmental
barriers for the propagated RF signal. The time delay caused by these NLOS emissions
are tackled by these works to cope with their estimation and optimization problem. The
Bluetooth-based indoor navigation with ToF range sensor fusion could show an efficient
performance in real-time embedded implementations. Furthermore, Ultrasonic and Time-
of-Flight sensors could present the precision of 1–5 m in harsh environments with more
involved geometry [13–15]. Although these systems used wireless sensor networks and dif-
ferent accurate measurements, their performances are partially dependent on the building’s
complexity, fusion method and, somewhat for Ultrasonic methods, the system cannot locate
the pedestrian without the anchors and tags. Further, positioning methods using aforemen-
tioned Radio Frequency (RF) signals have the risk of interferences and disturbances, which
lead to deterioration of the location error by providing inaccurate measurements.

Accurate attitude and heading estimation using the Attitude and Heading Reference
System (AHRS) in indoor positioning algorithms has been one of the main drawbacks
which needs to be solved appropriately. Some articles attempted to compensate the heading
drift by designing a novel AHRS model. Designing an EKF-based attitude error estimation
system [16], attitude accuracy improvement using decision tree [17], and RF signals [18]
are discussed and experimented with. In these works, the heading drift compensation
is based on the proper antenna and receiver design; however, the methods have been
performed in short-term experiments in which their robustness and stability were not
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proved. Apart from this, map matching methods based on modeling the building architec-
ture using human activity and simultaneous localization and mapping (SLAM) methods
can somewhat be effective in 3D positioning in multiple floors and stairways [19,20]. Per-
formance of the PDR systems using the smartphone’s inertial sensors and cameras are
also investigated in [21,22]. These methods could not reduce the heading drift in different
conditions and trajectories. In these articles, a novel step detection method, stride length
estimator, heading inference algorithm, and end-to-end indoor localization system had
been designed. These smartphone-based methods were assessed by some in-pocket and
in-hand walking scenarios.

Smooth low-speed walking, high-speed walking, multi-floor positioning, and body
tracking using the foot-mounted IMUs are well-investigated in the aforementioned articles;
however, some systems have not shown fast correspondence to error correction during
running experiments. There are various kinds of stance, still, and step detection systems.
These detectors are able to compare the statistic metrics obtained from IMU measurements
to an especial threshold. Stance Hypothesis Optimal dEtection (SHOE), acceleration-
Moving Variance (MV), acceleration-MAGnitude (MAG), and Angular Rate Energy (ARE)
are some well-known detectors [23]. Further, the augmentation of the regular foot-mounted
INS with a downward-facing range sensor as an Ultrasound-Aided Stance Hypothesis
Optimal dEtection (UA-SHOE) is investigated in [23]. These methods showed acceptable
position accuracy in walking cases, and more accurate performance during the running
experiments. In this paper, we have proposed an adaptive multi-sensor fusion approach
for the most prevalent kinds of buildings with straightaways and corridors. By using the
distance measurement of ToF range sensors and inertial measurements of two foot- and
chest-mounted IMUs, we could achieve highly precise attitude and position estimation.
Although some other papers have also pointed out the capability of ToF distance sensors
in indoor positioning and mapping methods [24], our design uses the least number of
non-inertial sensors and presents a new fusion model integrated with the ZUPT for durable
measurement coverage.

3. Methodology
3.1. AHRS Model for Chest-Mounted IMU

The EKF method with a variable covariance matrix is designed to estimate the quater-
nion vector of attitude and heading of a chest mounted IMU. The method is based on the
magnitude of the angle between the estimated gravitional acceleration, and the measured
specific force. This method is completely discussed in our last article metioned in [16].
Also, the error prediction filter regulated by a PI controller is added to diminute the error
of attitude and heading estimation in dynamic situations [16]. The EKF model is defined
with the state vector xk =

[
q1 q2 q3 q4

]T and the transition matrix Fk. While, Σ

is defined as the rotation angle for each time step, ω =
[
ωx ωy ωz

]T is the angular
velocity vector, and dt is the sampling time. The Equations (1) and (2) present the transition
matrix in mentioned EKF model.

xk= Fkxk−1, Fk= cos
(

Σ
2

)
I +

2
Σ

sin
(

Σ
2

)
0
ωx
ωy
ωz

−ωx
0
−ωz
ωy

−ωy
ωz
0
−ωx

−ωz
−ωy
ωx
0

dt, (1)

Σ =
√
(ω x ·dt)2 + (ωy ·dt)2 + (ω z ·dt)2 , (2)

The normalized specific force,
=
f b, and the normalized horizontal component of the

geomagnetic field,
=
mb, are defined as the main measurements of the system, given by

Equation (3). The measurement model of the system is highly non-linear, however after
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obtaining the Jacoban of the measurement matrix, the measurement equation is changed to
zk= Hkxk. In which, Hk is defined in the Equation (4).

zk =
[

=
f b

=
mb

]T
, (3)

Hk =



q3
−q2
−q1
q1
−q4
q3

−q4
−q1
q2
q2
q3
q4

q1
−q4
q3
−q3
q2
q1

−q2
−q3
−q4
−q4
−q1
q2

, (4)

In [16], the initilization process and calculation of the error covariance matrix P0 are
discussed in detail. The measurement noise covariance matrix, Rk, which is varied based
on the α variable, is calculated in Equations (5) and (6).

Rk =



 R1 0 0
0 R1 0
0 0 R1

 03 × 3

03 × 3

 R2 0 0
0 R2 0
0 0 R2



, (5)

R1= Km+α·Kn, α = cos−1


(

Cb
ngn

)
· fb

‖gn‖·‖fb‖

, (6)

R1 is noise covariance parameter of the specific force designed to vary with time
with regard to α, which is the magnitude of the angle between the estimated gravitional
acceleration and the measured specific force. R2 is the noise covariance parameter of the
angular velocity. The Km and Kn are regulating constants of the measurement noise covari-
ance matrix. In fact, the constant Km is selected to compensate for the lower magnitude
of acceleration, and Kn is the weight constant of α. Further, Cb

n is the transform matrix
between the navigation frame to the sensor’s body frame. fb and gn are the estimated
gravitional acceleration, and the measured specific force, respectively.

3.2. Foot-Mounted Inertial Navigation

The indoor localization system is entirely based on the simple inertial kinematic
equations using the outputs of a 3-axis acceleration and 3-axis gyroscope. The overview
of foot-mounted pedestrian inertial navigation methods and equations are presented in
the following parts. This consists of the bias correction, the rotation matrix integration,
the acceleration and gravity removal equation, the position and velocity equations, and
calibration of position, velocity, and rotation matrix sections. It should be mentioned that n
and s are representing the navigation and body frame indices. The ba is the acceleration
bias and bg is the gyroscope drift. The p, v, and a are the position, the velocity, and the
acceleration, respectively. Also, ac andωc are the calibrated acceleration and angular rate.
In addition, Rn

s k is the rotation matrix between body to navigation frame, and g is the
earth gravity value. Finally, the vector

[
ωc

s
x,k ωc

s
y,k ωc

s
x,k

]
shows the elements of

compensated angular velocity in body frame. Figure 2 represents the foot-mounted INS
after performing the online calibration. The EKF-based error states model is introduced
in Section 4.3. This model estimates the IMU biases as well as error of position, velocity,
and attitude in order to calibrate the INS in each iteration. In the model depicted in
Figure 2, the system is calibrated by compensating the position, velocity, and orientation
vectors. The following part shows the kinematic equations of foot-mounted INS, see the
Equations (7)–(18).
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• Bias Correction for acceleration and gyroscope.

ac
s
k+1= as

k+1− ba
s
k, (7)

ωc
s
k+1= ωs

k+1− bg
s
k, (8)

• Rotation matrix integration.

δΩk =

 0 −ωc
s
z,k ωc

s
y,k

ωc
s
z,k 0 −ωc

s
x,k

ωc
s
y,k ωc
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, (9)
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• Acceleration in the navigation frame.

ac
s
k+1= as

k+1− ba
s
k+1, (11)

an
k+1= Rn

s k+1ac
s
k+1−

[
0 0 g

]−1, (12)

• Calculation of position and velocity using Trapezoid integration method.

vk+1|k= vk|k +
(
an

k+an
k+1
)∆t

2
, (13)

pk+1|k= pk|k +
(
vn

k+vn
k+1
)∆t

2
, (14)

• Correction after the online calibration.

vk+1|k+1= vk+1|k−δvk+1, (15)

pk+1|k+1= pk+1|k−δpk+1, (16)

δΘk =

 0 −φs
z,k φs

y,k
φs

z,k 0 −φs
x,k

−φs
y,k φs

x,k 0

, (17)

Rn
s k+1|k+1= Rn

s k+1|k
2I3×3+δΘk+1·∆t
2I3×3−δΘk+1·∆t

, (18)
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The vector
[
φs

x,k φs
y,k φs

z,k

]
is an approximation of the attitude for small angles,

and δΘk is its skew symmetric form. In the Equations (7)–(18), k is iteration step and ∆t is
the sampling time.

4. Multi-Sensor Fusion Architecture

The sensor fusion architecture in this article is based on dual IMU (the chest- and
foot-mounted) and a ToF distance sensor. As depicted in Figure 3, there are three types
of measurements for the designed EKF error prediction block. The first measurement is
obtained from the mentioned AHRS model, which utilizes the orientation of the volunteer’s
chest. The second and the third measurements can be used alternatively to compensate
the drawback of each other. Because both measurements from ToF and ZUPT are the
velocity type, alternative usage of them can lead to the provision of continuous velocity
measurements for the EKF estimator. Although the ToF sensor gives only the single direc-
tion velocity measurement, it can support the EKF design to estimate more accurate errors.
As a result of this, the indoor INS can be calibrated online and persistently. The stance and
still detection block is responsible for recognizing the stance steps of the pedestrian. Herein,
the ZUPT is performed in stance time and in contrast; when the stance is not detected,
the sensor fusion architecture sends the ToF measurement to the EKF system. This part is
divided to the four subsections, namely, stance detection phase, corridor detection filter,
EKF model and parameters, and measurement model and ToF sensor fusion, respectively.
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4.1. Stance Detection Phase

The stance detection phase accounts for distinguishing the times that the pedestrian’s
foot is placed on the ground without movement. As depicted in Figure 4, this module can
send the binary values for two possible states of the pedestrian, namely, stance (1 value) or
movement (0 value). As a result, this phase enables the ZUPT measurements for stance
detection, and on the other hand, it can enable the measurement of the ToF range sensor
for the EKF estimator. With regard to the stance hypothesis optimal detection (SHOE)
algorithm [23], to detect the stance in each time-step, the module should authorize three
important conditions. Firstly, the magnitude of acceleration must be between minimum
and maximum empirical threshold values. Secondly, the local acceleration variance should
satisfy its lower threshold. Finally, the third condition is the magnitude of the gyroscope
which should satisfy the special threshold.
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Figure 4. Output of the stance and still detection phase for 150 s walking.

In order to detect one stance, all the three of the above conditions, given by Table 1,
must be satisfied spontaneously. The recorded data is filtered using the median filter
with a window size of at least 11 samples to prevent a faulty stance detection phase. The
defined thresholds can be selected in special intervals. The intervals of thresholds for
magnitude of acceleration and gyroscope, as well as acceleration variance, are defined in
Table 1. The above thresholds can significantly affect the stance detection performance in
different pedestrian situations, such as fast walking, slow walking, and running. Further,
the amount of the sampling windows can be selected due to the processing speed and
desired system accuracy. Figure 4 demonstrates the simple walking experiment at usual
speed, which shows the detected stances during 150 s of a pedestrian’s walk. The figure
shows the results of steps while all the three discussed conditions are satisfied.

Table 1. Triple conditions of the stance detection phase.

Number Condition Specification Threshold

1 Magnitude of acceleration ai =
√

ai,x
2+ai,y

2+ai,z
2 9 ms−2 < ai < 11 ms−2

2 Local acceleration variance
σai

2 = 1
2s+1

i+s
∑

k=i−s
(ai − âi )

2

âi =
1

2s+1

i+s
∑

l=i−s
al

σai
2 > 9 (ms−2

)2

s = 15 (samples)

3 Magnitude of gyroscope ωi =
√
ωi,x

2+ωi,y
2+ωi,z

2 |ωi| < 1 ·5 rad·s−1

4.2. Corridor Detection Filter

Although there are several types of buildings and indoor spaces, most indoor building
environments may have passageways connected together with corridors. The main purpose
of the corridor detection filter is restricting the heading drift, while the pedestrian keeps
walking in the detected corridor. The filter follows the fact that the heading of a pedestrian
during a straight walk should not change. The filter is included in the INS block presented
in Figure 3. To achieve this, two conditions should be satisfied at the same time, given in
Equation (19). The difference of estimated heading between the time steps k and k − w is
calculated and compared to an optional threshold ψth, where w is defined as window size
and ψ is the estimated heading. |ψ(k) − ψ(k − w)| ≤ ψth, k ≥ w + 1

σk =

√
∑k

i=k − w (ψ i − µ)
2

w+1 ≤ σth, k ≥ w + 1
, (19)

ψ(k)= ψ(k − w) if σk ≤ σth and |ψ(k)−ψ(k−w)| ≤ ψth, (20)

Further, the standard deviation in each window should be less than its threshold
defined as σth. µ is the heading’s mean value in one window size. Moreover, Equation (20)
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shows that the heading in the time step k is equal to the heading in the time step k − w if
both conditions are fulfilled. The window size, w, can be determined in a range of 5–20,
and σth is in a range of 70◦–90◦. As well as this, defining the σth depends on the window
size and can gain a wide range value.

4.3. EKF Model, Parameters and Update

The online calibration of indoor inertial positioning systems is based on the extended
Kalman filter (EKF) block which estimates the errors of INS. This calibration method
utilizes the orientation measurement obtained by an AHRS system connected to the chest
mounted IMU. Also, range measurement of the ToF sensor and zero velocity measurement
of the ZUPT system are the main measurements of the system, which are switchable by the
stance and still detection block. The proposed EKF model has 15 states, which consist of
the position error, velocity error, orientation error, and the bias of the gyroscope and the
accelerometer. The linearized system model of EKF is determined by the state vector xk as
presented in Equation (21).

xk= Fkxk−1+nk, xk =
[
δpk δvk δφk δba,k δbg,k

]T, (21)

where δpk, δvk, and δφk are the 3-axis error of position, velocity, and attitude. Also, δba,k
and δbg,k are defined as the biases of accelerometer and gyroscope, respectively. The
transition matrix, Fk is presented in Equation (22). The nk is the White Gaussian process
noise with covariance matrix Qk= E(n knk

T).

Fk =


I3 × 3
03×3
03×3
03×3
03×3

dt·I3×3
I3×3
03×3
03×3
03×3

03×3
−dt·Ak+1

I3×3
03×3
03×3

03×3
dt·Rn

s k+1
03×3
I3×3
03×3

03×3
03×3

dt·Rn
s k+1

03×3
I3×3

, (22)

where, Ak+1 is the skew symmetric form of the acceleration vector, and Rn
s k+1 is defined as

the body-to-navigation coordinate rotation matrix, as formulated in Equations (23) and (24).
The orientation is represented in the Euler format as the vector, roll, pitch, and yaw,[
ϕ Θ ψ

]−1.

Ak =

 0 −as
z,k as

y,k
as

z,k 0 −as
x,k

−as
y,k as

x,k 0

, (23)

Rn
s k+1 =

 cos(Θ) cos(ψ) sin(ϕ) sin(Θ) cos(ψ)− cos(ϕ) sin(ψ) cos(ϕ) sin(Θ) cos(ψ) + sin(ϕ) sin(ψ)
cos(Θ) sin(ψ) sin(ϕ) sin(Θ) sin(ψ) + cos(ϕ) cos(ψ) cos(ϕ) sin(Θ) sin(ψ)− sin(ϕ) cos(ψ)
− sin(Θ) sin(ϕ) cos(Θ) cos(ϕ) cos(Θ)

 (24)

The estimated states and covariances are updated in each time-step using the Equa-
tions (25)–(28). Where, Pk is the estimate covariance matrix and Kk is defined as Kalman
gain. Plus, the Qk and Rk are process and measurement covariance matrices, respectively.
The Hk is the measurement matrix which is completely discussed and formulated in the
next subsection.

P−k = FkPk−1FT
k+Qk, (25)

Kk = P−k HT
k (H kP−k HT

k+Rk)
−1, (26)

x̂ = xk+Kk (zk− Hkxk), (27)

Pk = (I− KkHk)P
−
k , (28)



Sensors 2021, 21, 3615 10 of 20

4.4. Measurement Model and ToF Distance Sensor Fusion

The measurement model is defined as zk= Hkxk+vk, in which zk is the measurement
vector and vk is the measurement noise with covariance matrix Rk= E(v kvk

T). This model
is based on the ZUPT and ToF conditions. Triple conditions are required to use the ZUPT
measurements. These conditions are investigated and pointed out in the stance and still
phase detection block. Between the detected stance points, there are many times in which
the system does not have any measurements. In fact, for a large amount of time, the
pedestrian is between two detected steps with no measurement for the EKF system. The
main purpose of this fusion architecture is to provide the measurement for these times
by using continuous outputs of the ToF distance sensor. Equation (29) shows the velocity
model of the ToF output signal, where Fs is defined as the sampling rate, dx(k) is the
distance output on the x-axis for the time step k, and vx(k ) is velocity of the sensor on the
x-axis for the time step k. Also, nx is the output noise of the ToF sensor considered as the
white Gaussian model. Figure 5 illustrates the transmitted and received signals of the ToF
range sensor while moving toward a target.

vx(k)= Fs·(dx(k)− dx(k− 1))+nx, (29)
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To obtain an accurate velocity measurement with the ToF distance sensor, it should be
guaranteed that the sensor is installed along the horizontal axis of other IMUs. In fact, this
misalignment caused by wrong installation can give the data propagated from other targets
which are not along the x-axis. Also, the probable noise in output of the ToF sensor has
been filtered. Changing the front objects and attitude variation of the ToF sensor can lead
to a random noise in output of distance and velocity. The designed filter can restrict the
output noise and provide the real measurements of the ToF sensor. Equations (30) and (31)
demonstrate the filter’s conditions.

σ =

√√√√ 1
N

N

∑
j=1

(vx(j)− µ)2 ≥ σth, (30)

µ =
1
N

N

∑
i=1

vx(i) (31)

where N is the size of window and σth is the standard deviation threshold. There-
fore, the measurement model for integration of ZUPT/ToF sensor is formulated in
Equations (32) and (33). In the ZUPT mode, the measurements are velocity error δvk,
and orientation error δφk defined as zZUPTk= [ δvk δφk

]−1. Further, in the ToF mode

the measurement of velocity error is defined for the x-axis as zToFk= [ δvxk δφk
]−1. The

velocity error in the ToF mode can be obtained from subtraction of the ToF measurement
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and velocity of the INS system. Moreover, HZUPT and HToF are the measurement matrices
for ZUPT and ToF modes, respectively.

HZUPT =

[
03×3
03×3

I3×3
03×3

03×3
I3×3

03×3
03×3

03×3
03×3

]
, (32)

HToF =

[
01×3
03×3

[1 0 0]
03×3

01×3
I3×3

01×3
03×3

01×3
03×3

]
, (33)

Figure 6 illustrates the calculated velocity from the ToF output with a sampling
frequency of 100 Hz, and the detected steps which are obtained from the stance and still
phase detection block. The velocity is derived from 150 s of walking and 15,000 samples.
From the above figure, it can clearly be seen that the ToF sensor in the x-axis has provided
the velocity measurement. This measurement will be utilized in the times between each
detected step, while there is no ZUPT measurement. Contribution of ToF and ZUPT
measurements supplies the continuous measurement for the EKF model. In Figure 6b, the
positive and negative velocity peaks represent the cases in which the pedestrian turned
to another corridor. In these cases, the pedestrian’s heading varied significantly. Further,
the measured range measured from the pedestrian to the in-front object increased notably,
from d1 to d2, as depicted in Figure 7.
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5. Experimental Evaluation
5.1. Hardware and Software Setup

This experiment was performed in the corridors of the ETS university by a pedestrian
volunteer with a normal walk. The normal walk was considered as the walking of an adult
with the average speed of less than 1.4 m/s [25]. The walking path is pre-defined and
marked on the building’s map. Further, it had been chosen to have both counter-clockwise
(CCW) and clockwise (CW) turns. To perform the highly accurate experiment, an integrated
hardware model was designed. The hardware platform consisted of dual nine degree of
freedom (DoF) MPU9250 module and a Terarange Evo 60 m ToF sensors. One of the IMUs
was mounted on the chest box, and the other one was on the right foot. The chest mounted
IMU was located on the designed platform, and to avoid noisy movement of walking, the
platform completely tightened to the pedestrian’s body. Table 2 shows the specifications of
utilized ToF sensors in the designed platform. The Raspberry Pi 4 was selected to record
the IMUs and ToF data at the same time.

Table 2. Specification of Evo 60 m Time of Flight (ToF) sensor [26].

Detection
Range

Update
Range Weight Interfaces Accuracy Field of

View

Up to 60 m Up to
240 Hz 9 g USB-2

I2C/UART

±4 cm in first
14 m and 1.5%

above 14 m
Approx. 2◦

Both the IMUs and the ToF sensor were used in a data range of 100 Hz. The full-scale
range of gyroscopes went up to 2000◦/s, and the accelerometer had the scale range of up
to ±16 g. The path was approximately 185 m long, and the duration of the experiment
was 150 s. The nine DoF data of IMUs was recorded on the Raspberry Pi with a serial
transfer, and baudrate of 115,200 bits per second. As the three-axis magnetometer output
of MPU9250 is not calibrated, at the first stage the magnetometer data was calibrated.
The measured magnetic field data was calibrated using KF-based algorithms, mentioned
in [27,28]. Finally, the recorded data of the IMUs and ToF sensor were used for post-
processing in the LASSENA laboratory with the MATLAB software. Figure 8 shows the
mounted hardware and sensors on the pedestrian’s body.
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5.2. Experimental Results

Two different scenarios have been designed to evaluate the performance of the pro-
posed indoor navigation system. The goal was to show the accuracy of the architecture
in short-term and long-term experiments. Also, the system’s proficiency was analyzed
with and without applying the corridor detection filter. In the first scenario, the trajectory
was an eight shape. This scenario evaluated the performance of the ToF-aided CDF/INS
in a short duration. Moreover, estimated IMU biases, velocity, and pedestrian’s attitude
are also discussed in this part. Subsequently, the second scenario focused on the system’s
resistance in longer durations. Further, performance of the system was analyzed without
the corridor detection filter. Finally, the result of this scenario has been compared with
another kind of Kalman-based estimator, namely Unscented Kalman Filter (UKF). Table 3
shows more details about the mentioned scenarios.

Table 3. Details of the experiments.

Experiment Trajectory Number of Laps Total Distance Duration

Scenario 1 8 shape 1 136 m 150 s
Scenario 2 Rectangular 5 630 m 11 min

5.2.1. First Scenario—Eight Shape

After recording the ToF distance measurements and data of dual IMUs installed on
the chest and foot, the EKF-based positioning method was implemented. The parameters
of corridor detection filter were determined to obtain the most precise heading estimation
in each straight walk. The window size and the heading threshold value were adjusted to
5◦ and 50◦, respectively. Furthermore, Figure 9 illustrates the effect of different heading
threshold values on the final estimated heading. Further, Figure 10 demonstrates the
estimated roll and pitch angles during a 150 s experiment. In the results, it has been shown
that by adjusting the proper ψth, the corridor detection filter was able to keep the heading
smoothly constant in each detected straightway.
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All of the defined states in the positioning system were estimated after the calibration.
It should be mentioned that the obtained attitude is a result of the final dead reckoning
system using measurements of an IMU which was mounted on the chest. The attitude
obtained from the chest measurements outperformed the common foot-mounted INS
due to its stability during a normal walk. As can be seen from Figure 10, the peaks and
fractures in the roll and pitch angles imply the turn points in the eight-shape trajectory.
Figure 11 shows the estimated 2D velocity of the pedestrian during the experiment after
the calibration. Moreover, Figure 12 illustrates the estimated bias of the foot-mounted
accelerometer and gyroscope.

As mentioned before, the location of the experiment was corridors of the ETS uni-
versity. We selected an eight-shape scenario which had seven 90-degree turn points. This
scenario can profoundly evaluate the heading estimation and performance of the proposed
algorithm in 2D positioning. Since there is only single y-axis ToF sensors in this project,
and the proposed Corridor Detection Filter (CDF) has not been designed for the multi-floor
buildings, a 2D assessment was chosen for the following experiment. Figure 13a shows
the selected trajectory with the points marked from 0 to 8. The pedestrian started from the
point 0 and finished the route at the point 8, respectively, on a random walk.
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entire trajectory.

Further, Figure 13b illustrates the results of the estimated position on the x- and y-
axis for the dead reckoning INS/CDF method with and without the ToF measurement
augmentation. We used a map of the building to obtain the reference key points of the
trajectory, which are marked with the yellow points in the Figure 13b. The impact of
utilizing the ToF distance measurements is clearly explicit. Although using the CDF system
can bound the heading drift after each turn point, measurements of the ToF sensor in its
vision area were deemed to be a key measurement for the EKF-based online calibrator.

Figure 14 represents the x- and y-axis errors of the estimated 2D position compared to
the true GPS reference. The figure compares the INS/CDF with and without the ToF sensor
measurements during the 150 s experiment. We used the GPS true position to initialize the
system in both methods. As can be seen, the x-axis error started from 0 and culminated to
about 25 m; further, the y-axis error reached 10 m after 150 s. The position error increased
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and accelerated more on the x-axis. At the end of this part, we will present more details
about the error analysis of the proposed method compared to stand-alone INS positioning.
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5.2.2. Second Scenario—Rectangular Trajectory

All the hardware and software configurations are same as in the first scenario. Inertial
and magnetic data of the foot- and chest-mounted IMU were recorded, as well as the
measurements of the ToF sensor. The attitude results of the system are demonstrated
in Figures 15 and 16. In this experiment, in order to prepare and initialize the system,
the walking had been started after 100 s. Figure 17 also shows the positioning result of
the system using the proposed ToF-aided EKF system. Performance of the system using
the UKF detector has also been shown in this figure. It can be clearly seen that the EKF
estimator showed more accurate results during the entire experiment.
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Figure 17. (a): The reference map for trajectory of the second scenario, (b): the comparison of 2D positioning results for
ToF-aided INS/EKF and INS/UKF methods.

The absolute maximum error of the EKF is about 7.3 m, while this amount for the UKF
is decreased to 5.12 m. Although the RMS errors of both utilized Kalman filters are almost
the same, the ToF-aided INS/EKF showed more accurate results during the entire path.
Figure 18 shows the comparison of the absolute 2D error of the discussed systems. Finally,
the explicit summary of both experiments is listed in Tables 4 and 5.
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Table 4. The RMSE and the end-to-end 2D position error for scenario 1.

Method RMSE End-to-End Error

Stand-alone INS 221.12 m 375.34 m
INS/CDF 15.2474 m 28.15 m

ToF-aided INS/CDF 1.7501 m 3.1867 m

Table 5. The RMSE and the end-to-end 2D position error for scenario 2.

Method RMSE End-to-End Error

ToF-aided INS/EKF 1.8369 m 3.3172 m
ToF-aided INS/UKF 2.3456 m 4.1225 m
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6. Discussion

There are various points which should be discussed to clarify the proposed method
and its practical performance. First, the ToF sensor provides the range measurements in
only one axis, which is the direction of walking; however, to have two-dimensional distance
and velocity measurements, there is a lack of measurement in the other axis. Nevertheless,
due to the presence of the Corridor Detection Filter (CDF), this deficiency was somewhat
compensated. Second, to bound the heading drift in the straightaways, the threshold
parameters of the CDF should be tuned efficiently. Further, the EKF parameters, such as
process noise and measurement noise covariance matrices, should be adjusted effectively.
Third, the initialization can also severely affect the final estimated states, although in
this research we assumed that the initial position of the volunteer is well-known by the
GPS. Fourth, we chose the single-floor eight-shape trajectory, which means that the z-
axis has not been investigated in our method. Selection of this trajectory is because of
the sensor fusion architecture, which is designed to present more errorless results in 2D.
In this architecture, the ToF distance measurement contributes only to the y-axis. After
performing the corridor detection filter, the common dead reckoning INS could estimate
the heading more accurately at each turn point; refer to Figure 13. However, as proved in
the first scenario, the ToF range measurements have had an important impact on restricting
the position error. The end-to-end error in the INS/CDF mode was 28.15 m, which is
improved to 3.1867 m after applying the proposed ToF-aided INS/CDF method. Likewise,
RMSE of the entire experiment had been decreased from 15.2474 m to a mere 1.7501 m.
In addition, the proposed system showed accurate performance for both UKF and EKF
nonlinear estimators. Finally, this method could make a significant advancement in the 2D
position error. It also showed a considerable effect on decreasing the heading and position
divergence. The resistance and stability of the method is tested in the second scenario,
while the pedestrian’s position was estimated for about 10 min. The system could show the
acceptable performance in both scenarios, and with two different kinds of Kalman filter.

7. Conclusions

We have presented an innovative multi-sensor fusion approach for ToF sensor and
dual IMU sensors mounted on the chest and the foot. The goal is calibration of foot-
mounted indoor positioning systems using range measurements of a ToF distance sensor
and MEMS-based IMUs. Various measurements are contributed to provide an accurate
INS error estimation. The 9-DoF IMU installed on the chest provides an accurate attitude
and heading estimation. Moreover, the INS was implemented using the 6-DoF IMU, fixed
on the right foot of the volunteer. The stance and still detection system accounted for
step detection using the ZUPT method. Furthermore, an EKF system is responsible for
estimating the error states, namely: attitude error, position error, velocity error, as well
as gyroscope and accelerometer biases. The main contribution of this paper is providing
the consistent velocity measurements using ZUPT/ToF integration. In this case, the ZUPT
enables the zero velocity measurements when the steps are detected and its binary value is
one. On the opposite side, the ToF sensor provides the velocity measurements for the times
that the ZUPT is not enabled. Finally, two experiments were performed to validate the
proficiency of the proposed method. In the first experiment, the pedestrian walked in an
eight-shape trajectory for 150 s. This experiment evaluated the short-term accuracy of the
CDF/INS system. After, for medium-term examination, a rectangular path was selected.
In this scenario, the method was tested for 11 min in order to validate its resilience. As
a result, the proposed method showed a meaningful positioning accuracy improvement
compared to the stand-alone INS and INS/CDF methods. The system was tested with
two kinds of Kalman estimators, namely EKF and UKF, to show its compatibility. The
end-to-end error reached about 3 m and the RMSE was decreased to less than 2 m for the
entire trajectory.

The presented method can be applied to any indoor corridor spaces as an auxiliary
augmentation for many kinds of low-cost indoor positioning systems. Although the sensor
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type and its technical features such as data update frequency, range resolution, detection
range etc. can influence the performance, the designed system can provide the velocity
measurement from any in-front object. In the future, we will investigate the real-time imple-
mentation and on-board calibration of foot-mounted dead reckoning INS, using dual ToF
and other vision-aided sensors. Further, the presented fusion architecture can be applied
for low-cost indoor localization of ground and unmanned robots in corridor and building
environments. Our future purpose is reaching this accuracy for multi-floor trajectories, as
well as improving the performance of this system for long-term experiments. Less power
consumption, bounding the heading drift, and restricting the position divergence are the
main challenges in real-time implementation. Apart from this, the initialization techniques,
attitude determination system, and the corridor detection model are our next research
topics. Moreover, due to the non-linearity of the state–space model, the high-order EKF
models can improve the accuracy of online calibration. Using the Hessian matrix in second
order EKF (SOEKF) models can partially increase the positioning accuracy.
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