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Abstract: In multi-target tracking, the sequential Monte Carlo probability hypothesis density (SMC-
PHD) filter is a practical algorithm. Influenced by outliers under unknown heavy-tailed measurement
noise, the SMC-PHD filter suffers severe performance degradation. In this paper, a robust SMC-PHD
(RSMC-PHD) filter is proposed. In the proposed filter, Student-t distribution is introduced to describe
the unknown heavy-tailed measurement noise where the degrees of freedom (DOF) and the scale
matrix of the Student-t distribution are respectively modeled as a Gamma distribution and an inverse
Wishart distribution. Furthermore, the variational Bayesian (VB) technique is employed to infer
the unknown DOF and scale matrix parameters while the recursion estimation framework of the
RSMC-PHD filter is derived. In addition, considering that the introduced Student- t distribution
might lead to an overestimation of the target number, a strategy is applied to modify the updated
weight of each particle. Simulation results demonstrate that the proposed filter is effective with
unknown heavy-tailed measurement noise.

Keywords: multi-target tracking; SMC-PHD filter; student-t distribution; variational Bayesian

1. Introduction

Multi-target tracking (MTT) involves the estimate of target number and states from
noisy measurements [1]. Influenced by clutter and detection uncertainty, the traditional
MTT algorithms based on data association, such as joint probabilistic data association
(JPDA) [2] and multiple hypotheses tracking (MHT) [3], are burdened with high com-
putation complexity with the increase of target number and clutter number. Under the
framework of finite set statistics (FISST), multi-target states and measurements are modeled
as random finite sets (RFS) to avoid data association. Unfortunately, the MTT approaches
based on RFS are still computationally intractable because of the multiple integrals. To
obtain a computational tractable solution, the probability hypothesis density (PHD) fil-
ter [4] which propagates the first order moment approximation of multi-target posterior
density is proposed and realizes the estimate of multi-target number and states. The two
main implementations of the PHD filter are the Gaussian mixture PHD (GM-PHD) filter [5]
and the sequential Monte Carle PHD (SMC-PHD) [6]. In recent years, the PHD filter has
generated substantial interest in visual tracking [7], radar tracking [8], etc.

However, the above algorithms only achieve good performance with the known
Gaussian measurement noise variance. When the measurement noise variance is unknown
and inconsistent with the true variance, the performance of these algorithms decreases.
In [9], Sarkka considers the unknown measurement noise variance problem under the linear
Gaussian system and models noise variance as an inverse Gamma (IG) distribution. Then,
the joint estimate of target state and noise variance is obtained by variational Bayesian
(VB) technique. Since the inverse Gamma distribution is only suitable for the situation
where the noise variance is diagonal, the inverse Wishart (IW) distribution is further used
to model the full noise variance [10,11]. Following this, the VB technique was introduced
into the PHD filter [12–14] for MTT.

Sensors 2021, 21, 3611. https://doi.org/10.3390/s21113611 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-9649-6834
https://www.mdpi.com/article/10.3390/s21113611?type=check_update&version=1
https://doi.org/10.3390/s21113611
https://doi.org/10.3390/s21113611
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21113611
https://www.mdpi.com/journal/sensors


Sensors 2021, 21, 3611 2 of 19

In some applications, the measurement noise might be non-Gaussian. For example,
due to the electromagnetic interference and the sensor’s unreliability, the measurement
model is usually accompanied with outliers and the measurement noise can be treated as
non-Gaussian noise with a heavy-tailed probability density function [15]. The outliers will
result in the performance degradation of conventional tracking algorithms. In [15], the
combination of a Laplacian distribution and a Gaussian distribution is used to describe
the heavy-tailed measurement noise. In [16,17], the heavy-tailed measurement noise is
characterized as a mixture of two Gaussian distributions. Due to the advantage of the
heavy-tailed characteristic, Student-t distribution was widely used to deal with outliers
in [18–20]. However, the relevant parameters of Student-t distribution need to be known
in these applications. Similar to [9–14], the VB technique was employed in the situation
where the Student-t distribution parameters are unknown in [21–24]. The joint estimate
of target and unknown parameters is obtained in a linear system. However, the above
approaches work worse in a nonlinear system. The nonlinear transformation algorithms,
such as extended Kalman filter (EKF) and unscented Kalman filter (UKF), can be used to
cope with the nonlinear system to some extent. Unfortunately, the EKF depends on the
nature of nonlinearities and the UKF relies on the Gaussian characteristic of the system.
They often give an unreliable estimate if the nonlinearities are severe or the system is
non-Gaussian, which leads to target missing.

With heavy-tailed measurement noise, the robust PHD filter in a nonlinear system has
been much less studied than that in a linear system. Compared with nonlinear transfor-
mations, the particle filter is more suitable for practical applications because it can deal
with nonlinear and non-Gaussian dynamics. Motivated by [23], we extend the Student-t
distribution into SMC-PHD filter and propose a robust SMC-PHD (RSMC-PHD) filter with
unknown heavy-tailed measurement noise. In the proposed filter, the Student-t distri-
bution where the degrees of freedom (DOF) and the scale matrix are both unknown is
used to model the measurement noise. The Gamma distribution and IW distribution are
respectively used to model the DOF and the scale matrix. Then, the augmented state of
the target involves the target state, DOF, and the scale matrix. Further, the target state is
estimated by particle approximations and the DOF and the scale matrix are updated by the
VB technique within the SMC-PHD filter framework. In addition, considering the problem
that the introduced Student-t distribution might lead to an overestimation of the target
number, we apply a strategy to modify the updated weight of each particle. Simulation
results show that the proposed RSMC-PHD filter can achieve higher estimate accuracy
than the compared filter under unknown heavy-tailed measurement noise.

This paper is organized as follows. Section 2 gives a brief overview of the tracking
model, measurement noise model, PHD filter, and SMC-PHD filter. Section 3 presents the
detailed implementation of the proposed filter. Section 4 evaluates the performance of the
proposed filter under two scenarios. Finally, Section 5 displays the conclusions.

2. Background
2.1. Tracking Model and Measurement Noise Model

Consider a state space system given by

xk = f (xk−1) + wk (1)

zk = h(xk) + εk (2)

where xk is referred to as the target state and zk is referred to as the measurement at time
k. wk is the process noise assumed to be Gaussian white noise with covariance matrix Qk.
f (·) and h(·) are the dynamic motion model function and measurement model function,
respectively. εk is the measurement noise.

The target dynamic motion model function is given by

f (xk|xk−1 ) = N (xk; f (xk−1), Qk) (3)
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where N (x; x̂, P) denotes a Gaussian probability density function with mean x̂ and covari-
ance matrix P. Assume the measurement noise has a heavy tail and can be described by a
Student-t distribution as [18]

p(εk) = St(εk; 0d, Rk, νk)

=
Γ
(

νk+d
2

)
Γ(

νk
2 )

1

(νkπ)
d
2

1

|Rk |
1
2

(
1 + 1

νk
εT

k Rk
−1εk

)− νk+d
2 (4)

where St(·) denotes the Student-t distribution, 0d denotes d dimension zeros vector, d is
the dimension of zk, νk denotes DOF, Rk is a symmetric, positive defined d× d covariance
matrix and Γ(·) denotes the Gamma function. Different from the Gaussian distribution,
the Student-t distribution has a thicker tail away from the mean value. When νk → ∞ , the
Student-t distribution is equivalent to a Gaussian distribution. The probability density
function in Equation (4) can be also formulated as a mixture of Gamma distribution and
Gaussian distribution denoted as [25]

St(εk; 0, Rk, νk) =

∞∫
0

N (εk; 0, Rk/uk)G
(

uk;
νk
2

,
νk
2

)
duk (5)

where G(·) denotes the gamma distribution, uk is an auxiliary variable. The likelihood of
the measurement can be written as

gk(zk|xk, Rk, νk ) = St(zk; h(xk), Rk, νk) (6)

According to Equation (5), we can obtain

gk(zk|xk, Rk, µk ) = N (zk; h(xk), Rk/uk) (7)

where uk is distributed as
p(uk|νk ) = G(uk; νk/2, νk/2) (8)

In this paper, the DOF νk and scale matrix Rk are both unknown. Considering the
conjugate prior to Gaussian distribution with unknown variance is the IW distribution, we
model Rk as the IW distribution. Similarly, the Gamma distribution is assumed to be the
conjugate prior to the DOF νk. Then the joint probability density of Rk, uk, and νk can be
expressed as

p(Rk, uk, νk) = IW(Rk; υk, Vk)G(uk; νk/2, νk/2)
×G(νk; αk, βk)

(9)

where IW(·) denotes the IW distribution, υk, Vk are the sufficient statistics of Rk, αk and βk
are the sufficient statistics of νk.

2.2. PHD Filter

Assume that Xk =
{

x1
k , · · · , xNk

k

}
is the multi-target states set and Zk =

{
z1

k , · · · , zMk
k

}
is the measurements set at time k. xn

k is referred to as the nth target state and zm
k is referred

to as the mth measurement. Nk and Mk are the number of targets and measurements,
respectively. Then the Bayesian filter recursion can be expressed as

pk|k−1(Xk|Z1:k−1 ) =
∫

f (Xk|Xk−1 )pk−1(Xk−1|Z1:k−1 )µsdXk−1 (10)

pk(Xk|Z1:k ) =
gk(Zk|Xk )pk|k−1(Xk|Z1:k−1 )∫

gk(Zk|Xk )pk|k−1(Xk|Z1:k−1 )µsdXk
(11)

where gk(·) is the likelihood function. pk|k−1(·) and pk(·) denote multi-target predicted
density and multi-target posterior density, respectively. µs is the reference measure.
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The recursion Equations (10) and (11) involve multiple integrals, which are computa-
tionally intractable. To alleviate the computational intractability, the PHD filter provides
a sub-optimal solution by propagating the first-order statistical moment of the multiple
posterior densities. Without the spawning targets, the predicted and updated equations of
the PHD filter are given by [5]

Dk|k−1(xk) =
∫

pS,k f (xk|xk−1 )Dk−1(xk−1)dxk−1 + γk(xk) (12)

Dk(xk) = (1− pD,k)Dk|k−1(xk) + ∑
z∈Zk

pD,kgk(z|xk )Dk|k−1(xk)

κk(z) +
∫

pD,kgk(z|xk )Dk|k−1(xk)dxk
(13)

where Dk|k−1(xk) and Dk|k(xk) are the predicted intensity and posterior intensity, respec-
tively. γk(xk) is the birth targets intensity, pS,k is the target survival probability, pD,k is the
detection probability. κk(z) = λc(z) is the clutter intensity with average clutter number λ
and spatial distribution c(z).

2.3. SMC-PHD Filter

Assume that the multi-target posterior intensity can be denoted by weighted particles
set at time k − 1, i.e., Dk−1(xk−1|Z1:k−1 ) = ∑

Lk−1
i=1 ω

(i)
k−1δ(xk−1 − x(i)k−1). Lk−1 denotes the

particle number at time k− 1, x(i)k−1 is the ith particle state and ω
(i)
k−1 is the corresponding

weight. Then, the SMC-PHD filter can be summarized by the following steps.
Step 1 Prediction

x(i)k ∼
{

qk(·
∣∣∣x(i)k−1, Zk ), i = 1, . . . , Lk−1

pk(·|Zk ), i = Lk−1 + 1, . . . , Lk−1 + Jk
(14)

ω
(i)
k|k−1 ∼


ω
(i)
k−1

pS,k fk|k−1(x
(i)
k

∣∣∣x(i)k−1 )

qk(x
(i)
k

∣∣∣x(i)k−1,Zk )
, i = 1, . . . , Lk−1

1
Jk

γk(x
(i)
k )

pk(x
(i)
k |Zk )

, i = Lk−1 + 1, . . . , Lk−1 + Jk

(15)

Dk|k−1(xk|Z1:k−1 ) =
Lk−1+Jk

∑
i=1

ω
(i)
k|k−1δ(xk − x(i)k ) (16)

where qk

(
·
∣∣∣x(i)k−1, Zk

)
is the proposal density of survival targets and pk(·|Zk ) is the proposal

density of birth targets. Jk is the particles number of birth targets.
Step 2 Update

ω
(i)
k = (1− pD,k)ω

(i)
k|k−1 + ∑

z∈Zk

pD,kgk(z
∣∣∣x(i)k )

κk(z) + Ck(z)
ω
(i)
k|k−1 (17)

Ck(z) =
Lk−1+Jk

∑
j=1

pD,kgk(z
∣∣∣x(i)k )ω

(i)
k|k−1 (18)

Dk(xk|Z1:k ) =
Lk−1+Jk

∑
i=1

ω
(i)
k δ(xk − x(i)k ) (19)

Step 3 Resampling

Target number is estimated by N̂k = ceil
(

∑
Lk−1+Jk
i=1 ω

(i)
k

)
, and resample

{
x(i)k , ω

(i)
k

}Lk−1+Jk

i=1
.

ceil(x) denotes the smallest integer more than x, Lk = Nparticle · N̂k, Nparticle is the number
of particles per expected target.
Step 4 State extraction
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Extract the target states Xk =
{

x̂1
k , · · · , x̂N̂k

k

}
from the resampling particles set, where

x̂1
k , · · · , x̂N̂k

k denote the estimated target states.

3. The Robust SMC-PHD Filter
3.1. VB Approximation

The aforementioned SMC-PHD filter performs well under Gaussian measurement
noise. However, the outliers in measurements will have a negative effect on the SMC-
PHD filter. To solve the problem, the Student-t distribution is introduced to model the
heavy-tailed measurement noise. Since the parameters of the Student-t distribution are
unknown, the joint posterior probability density of target state xk, scale matrix Rk, auxiliary
variable uk, and DOF νk need to be estimated. Therefore, the augmented target state can be
expressed as

..
xk = (xk, Rk, uk, νk) (20)

Since there is no explicit analytical solution existing for the joint posterior density
p(

..
xk|Z1:k ), we utilize the VB inference [9] to obtain the approximate solution. As for an

approximate method, VB inference is widely used in searching for a factored approximate
posterior density as follows

p(
..
xk|Z1:k ) = p(xk, Rk, uk, νk|Z1:k )

≈ q(
..
xk|Z1:k ) , qx(xk)qR(Rk)qu(uk)qv(νk)

(21)

where q(
..
xk|Z1:k ) is the approximate joint posterior density, qx(·), qR(·), qu(·),and qν(·) are

the approximate posterior densities. Equation (21) has the implicit assumption that the
target state and the Student-t distribution parameters are independent. By minimizing the
Kullback–Leibler (KL) divergence between p(

..
xk|Z1:k ) and q(

..
xk|Z1:k ), the estimate q̂x(xk),

q̂R(Rk), q̂u(uk), and q̂ν(νk) can be easily obtained by

{q̂x, q̂R, q̂u, q̂ν} = argmin
qx,qR,qu ,qν

KL
[
q(
{ ..

xk
}
|Z1:k )

∥∥p(
{ ..

xk
}
|Z1:k )

]
(22)

where KL(q(x)|p(x) ) ,
∫

q(x) log
(

q(x)
p(x)

)
dx. The optimal solution of Equation (22) can be

obtained by [9,21,26]

ln q̂(φ) = E..
x(−φ)

k

[
ln p

( ..
xk, Zk|Z1:k−1

)]
+ cφ (23)

where φ denotes an arbitrary element in
..
xk, E[·] denotes the expectation,

..
x(−φ)

k denotes the
elements set in

..
xk except for φ, and cφ is an irrelevant constant for element φ.

3.2. The Update of Unknown Student-t Distribution Parameters

Based on the assumption that the target state is independent of the Student-t dis-
tribution parameters, the joint posterior density of the augmented target state can be
factorized as

p(
..
xk|Z1:k ) = p(Rk, uk, νk|Z1:k )p(xk|Z1:k ) (24)

where the unknown Student-t distribution parameters are integrated out. Based on (24), the
target state can be estimated by particle samples and the Student-t distribution parameters
can be updated by the VB approximation method.

In this subsection, we derive the update of Student-t distribution parameters for each

particle. At time k, let
..
xk =

{ ..
x(i)k }N

i=1 =
{

x(i)k , R(i)
k , u(i)

k , ν
(i)
k }

N
i=1 is the augmented target

state where R(i)
k , u(i)

k , ν
(i)
k are the Student-t distribution parameters with respect to the ith
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particle, and N is the number of particles. Assume the predicted density of
..
x(i)k at time k

can be expressed as

p(
..
x(i)k |Z1:k−1 ) = ω

(i)
k|k−1δ(xk − x(i)k )IW(R(i)

k ; υ
(i)
k|k−1, V(i)

k|k−1)

×G
(

u(i)
k ; ν

(i)
k
2 , ν

(i)
k
2

)
G(ν

(i)
k ; α

(i)
k|k−1, β

(i)
k|k−1)

(25)

where υ
(i)
k|k−1, V(i)

k|k−1, α
(i)
k|k−1 and β

(i)
k|k−1 are the predicted sufficient statistics with respect to

R(i)
k and ν

(i)
k . Then the joint density of p(

..
x(i)k , zk|Z1:k−1 ) can be expressed as

p(
..
x(i)k , zk|Z1:k−1 ) = ω

(i)
k|k−1δ(xk − x(i)k )N

(
zk; h(x(i)k ), R(i)

k

u(i)
k

)
×IW(R(i)

k ; υ
(i)
k|k−1, V(i)

k|k−1)G
(

u(i)
k ; ν

(i)
k
2 , ν

(i)
k
2

)
×G(ν

(i)
k ; α

(i)
k|k−1, β

(i)
k|k−1)

(26)

where zk is the measurement with respect to the target represented by particle x(i)k . Based

on Equation (26), ln p(
..
x(i)k , zk|Z1:k−1 ) can be expressed as

ln p(
..
x(i)k , zk|Z1:k−1 ) = − 1

2 ln
∣∣∣R(i)

k

∣∣∣+ d
2 ln u(i)

k −
u(i)

k
2 tr

(
(R(i)

k )
−1

Ξ
(i)
k

)
−

υ
(i)
k|k−1

2 ln
∣∣∣R(i)

k

∣∣∣
− 1

2 tr
(
(R(i)

k )
−1

V(i)
k|k−1

)
+

ν
(i)
k
2 ln ν

(i)
k
2 − ln Γ( ν

(i)
k
2 ) + (

ν
(i)
k
2 − 1) ln u(i)

k

− ν
(i)
k
2 u(i)

k + (α
(i)
k|k−1 − 1) ln ν

(i)
k − β

(i)
k|k−1ν

(i)
k + c ..

x(i)k

(27)

where Ξ
(i)
k = (zk − h(x(i)k ))(zk − h(x(i)k ))

T
denotes the innovation covariance matrix. tr(·)

denotes the trace operation. c ..
x(i)k

denotes an irrelevant constant for variables x(i)k , R(i)
k , u(i)

k ,

and ν
(i)
k .

Letting φ = R(i)
k and using Equation (27) in Equation (23), we can obtain

ln q̂(R(i)
k ) = −

υ
(i)
k|k−1 + 1

2
ln
∣∣∣R(i)

k

∣∣∣− 1
2

{
tr
(
(R(i)

k )
−1[

V(i)
k|k−1 + u(i)

k Ξ
(i)
k

])}
+ c

R(i)
k

(28)

The posterior distribution q̂(R(i)
k ) of R(i)

k is an IW distribution, i.e.,

q̂(R(i)
k ) = IW(R(i)

k ; υ
(i)
k , V(i)

k ) (29)

with parameters
υ
(i)
k = υ

(i)
k|k−1 + 1 (30)

V(i)
k = V(i)

k|k−1 + E[u(i)
k ]Ξ

(i)
k (31)

Letting φ = ν
(i)
k and using Equation (27) in Equation (23), we can obtain

ln q̂(ν(i)k ) =
ν
(i)
k
2 ln ν

(i)
k
2 − ln Γ( ν

(i)
k
2 ) +

ν
(i)
k
2 ln u(i)

k

− ν
(i)
k
2 u(i)

k + (α
(i)
k|k−1 − 1) ln ν

(i)
k − β

(i)
k|k−1ν

(i)
k + c

ν
(i)
k

(32)
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Using Stirling’s approximation in [27]

ln Γ(
ν
(i)
k
2

) ≈
ν
(i)
k − 1

2
ln

ν
(i)
k
2
−

ν
(i)
k
2

(33)

And ln q̂(ν(i)k ) can be expressed as

ln q̂(ν(i)k ) = (α
(i)
k|k−1 +

1
2 − 1) ln ν

(i)
k

−(β
(i)
k|k−1 −

1
2 (1 + E[ln u(i)

k ]− E[u(i)
k ]))ν

(i)
k

(34)

The posterior distribution q̂(ν(i)k ) of ν
(i)
k is a Gamma distribution, i.e.,

q̂(ν(i)k ) = G(ν
(i)
k ; α

(i)
k , β

(i)
k ) (35)

with parameters

α
(i)
k = α

(i)
k|k−1 +

1
2

(36)

β
(i)
k = β

(i)
k|k−1 −

1
2
(1 + E[ln u(i)

k ]− E[u(i)
k ]) (37)

Letting φ = u(i)
k and using Equation (27) in Equation (23), we can obtain

ln q̂(u(i)
k ) = (

ν
(i)
k + d

2
− 1) ln u(i)

k −
1
2
[ν

(i)
k + tr

(
(R(i)

k )
−1

Ξ
(i)
k

)
]u(i)

k + c
u(i)

k
(38)

The posterior distribution q̂(u(i)
k ) of u(i)

k is a Gamma distribution, i.e.,

q̂(u(i)
k ) = G(u(i)

k ;
ν
(i)
k + d

2
,

1
2
[ν

(i)
k + tr

(
(R(i)

k )
−1

Ξ
(i)
k

)
]) (39)

Then we can obtain
E[u(i)

k ] = a(i)k /b(i)k (40)

E[ln u(i)
k ] = ϕ(a(i)k )− ln b(i)k (41)

where a(i)k =
E[ν(i)k ]+d

2 , b(i)k = 1
2

{
E[ν(i)k ] + tr

(
(R(i)

k )
−1

Ξ
(i)
k

)}
. Since the parameters in

Equations (30), (31), (36), (37), (40) and (41) are coupled, it can be solved iteratively by the
fixed point method in [21].

3.3. The Implementation of RSMC-PHD Filter

In this subsection, we introduce the Student-t distribution into the SMC-PHD filter
and present an implementation of the robust SMC-PHD filter with unknown heavy-tailed
measurement noise. Assume that the multi-target posterior intensity is represented by a

weighted particles set
{

ω
(i)
k−1, x(i)k−1, R(i)

k−1, u(i)
k−1, ν

(i)
k−1

}Lk−1

i=1
at time k− 1, i.e.,

Dk−1(
..
xk−1|Z1:k−1 ) =

Lk−1

∑
i=1

ω
(i)
k−1δ(xk−1 − x(i)k−1)IW(R(i)

k−1; υ
(i)
k−1, V(i)

k−1)

×G
(

u(i)
k ;

ν
(i)
k−1
2 ,

ν
(i)
k−1
2

)
G(ν

(i)
k−1; α

(i)
k−1, β

(i)
k−1)

(42)
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Assume Rk, uk, and νk are independent and the predicted intensity at time k can be
expressed as

Dk|k−1(
..
xk|Z1:k−1 ) =

Lk−1+Jk

∑
i=1

ω
(i)
k|k−1δ(xk − x(i)k )G

(
u(i)

k ; ν
(i)
k
2 , ν

(i)
k
2

)
×IW(R(i)

k ; υ
(i)
k|k−1, V(i)

k|k−1)G(ν
(i)
k ; α

(i)
k|k−1, β

(i)
k|k−1)

(43)

where ω
(i)
k|k−1 and x(i)k are given in Equations (14) and (15). There are Lk−1 particles for

survival targets and Jk particles for birth targets. Generally, the dynamic of measurement
noise is unknown and we use the similar heuristic dynamic in [9] for the predicted sufficient
statistics. For the particles of survival targets i = 1, 2, . . . , Lk−1, the predicted sufficient
statistics are given by

υ
(i)
k|k−1 = ρ(υ

(i)
k−1 − d− 1) + d + 1, V(i)

k|k−1 = ρV(i)
k−1 (44)

α
(i)
k|k−1 = ρα

(i)
k−1, β

(i)
k|k−1 = ρβ

(i)
k−1 (45)

where ρ ∈ (0, 1] is the decreasing factor. For the particles of birth targets i = Lk−1 +
1, Lk−1 + 2, . . . , Lk−1 + Jk, the predicted sufficient statistics are given by

υ
(i)
k|k−1 = υ

(i)
γ,k, V(i)

k|k−1 = V(i)
γ,k (46)

α
(i)
k|k−1 = ρα

(i)
k−1, β

(i)
k|k−1 = ρβ

(i)
k−1 (47)

where υ
(i)
γ,k, V(i)

γ,k, α
(i)
γ,k and β

(i)
γ,k are sufficient statistics with respect to the birth targets.

The posterior intensity can be expressed as

Dk(
..
xk|Z1:k ) =

Lk−1+Jk

∑
i=1

ω
(i)
k δ(xk − x(i)k )G

(
u(i)

k ; ν
(i)
k
2 , ν

(i)
k
2

)
×IW(R(i)

k ; υ
(i)
k , V(i)

k )G(ν
(i)
k ; α

(i)
k , β

(i)
k )

(48)

where ω
(i)
k is given in (17). It is worth mentioning that the likelihood function is

gk(z
∣∣ ..xk ) = St(z; h(x(i)k ), R(i)

k , ν
(i)
k

)
. Then, the sufficient statistics υ

(i)
k , V(i)

k , α
(i)
k , and β

(i)
k

are updated by
R(i)(j)

k = V(i)(j−1)
k /(υ(i)k − d− 1) (49)

R̃
(i)(j)
k = R(i)(j)

k /u(i)(j−1)
k (50)

γ
(i)(j)
k = tr(Ξ(i)

k /R̃
(i)(j)
k ) (51)

a(i)(j)
k = (ν

(i)(j−1)
k + d)/2 (52)

b(i)(j)
k = (ν

(i)(j−1)
k + γ

(i)(j)
k )/2 (53)

u(i)(j)
k = a(i)(j)

k /b(i)(j)
k (54)

β
(i)(j)
k = β

(i)
k|k−1 −

1
2
−

ϕ(a(i)(j)
k )− ln(b(i)(j)

k )

2
+

u(i)(j)
k
2

(55)

V(i)(j)
k = V(i)

k|k−1 + Ξ
(i)
k u(i)(j)

k (56)

ν
(i)(j)
k = α

(i)
k /β

(i)(j)
k (57)
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where (·)(i)(j) denotes the update of parameter (·)(i) at the jth iteration. The initial values
are given by V(i)(0)

k = V(i)
k|k−1, υ

(i)
k = υ

(i)
k|k−1 + 1, α

(i)
k = α

(i)
k|k−1 + 1/2, β

(i)(0)
k = β

(i)
k|k−1,

ν
(i)(0)
k =α

(i)
k /β

(i)(0)
k .

It should be noted that the innovation covariance matrix
Ξ
(i)
k = (zk − h(x(i)k ))(zk − h(x(i)k ))

T
for particle x(i)k is needed in each iteration. Since

there is no explicit association between measurements and targets, the measurement
origin is ambiguous. Considering the fact that the measurement with larger likelihood
value is more likely generated by a potential target, we choose the measurement with the
largest likelihood value to calculate the innovation covariance matrix as follows

Ξ
(i)
k = (zl

k − h(x(i)k ))(zl
k − h(x(i)k ))

T
(58)

where l = argmax
p∈I

gp
k (

..
x(i)k ), I = {1, . . . , |Zk|}. gp

k (
..
x(i)k ) is the normalized likelihood function

value given by

gp
k (

..
x(i)k ) =

pD,kgk(z
p
k

∣∣∣ ..x(i)k )

κk(z
p
k ) + Ck(z

p
k )

(59)

Ck(z
p
k ) =

Lk−1+Jk

∑
j=1

pD,kgk(z
p
k

∣∣∣ ..x(i)k )ω
(i)
k|k−1 (60)

3.4. The Modification of Particles Weight

The estimate of target number relies on the updated weights of particles in the SMC-
PHD filter. In our paper, the weight is updated by Equation (17) for each particle. The
likelihood function is gk(z

∣∣ ..xk ) = St(z; h(x(i)k ), R(i)
k , ν

(i)
k

)
, and the updated weight of the ith

particle is given by

ω
(i)
k = (1− pD,k)ω

(i)
k|k−1 +

|Zk |

∑
p=1

gp
k (

..
x(i)k )ω

(i)
k|k−1 ∝ St(zp

k ; h(x(i)k ), R(i)
k , ν

(i)
k ) (61)

Figure 1 gives the illustration of the measurement likelihood function. We can see that
the Student-t distribution has a heavy-tailed characteristic and it can deal with outliers
well by increasing the weights of outliers. However, the weight of clutter will increase at
the same time. Hence, some clutter may be regarded as target-generated measurements,
resulting in the overestimate of the target number at the current time.

To solve this problem, a strategy is adopted to modify the updated weight in this
subsection. In the PHD filter, one target can produce at most one measurement and only
one measurement can be attributed to one target per time step [4], named as the ‘one-to-one’

assumption. For each particle, the normalized measurement likelihood value gp
k (

..
x(i)k ) can

be obtained by Equations (59) and (60). Let J =
{

p = 1, . . . , |Zk|
∣∣∣gp

k (
..
x(i)k ) ≥ σ

}
, σ is a

preset threshold. If |J| ≥ 2, it indicates there might be multiple measurements associated

with particle x(i)k . In this case, the gp
k (

..
x(i)k ) is modified as

g̃p
k (

..
x(i)k ) =

{
gp

k (
..
x(i)k ), p = l or p /∈ J

gq
k(

..
x(i)k ), p 6= l & p ∈ J

(62)

where q = argmin
p∈I

gp
k (

..
x(i)k ), & is a logic and operation and or is a logic or operation. In

our paper, the measurement with the largest normalized likelihood value is regarded
as the corresponding measurement generated from the target corresponding to particle
x(i)k , and other measurements are regarded as clutter. The proposed strategy retains the
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maximum likelihood value and penalizes the other larger likelihood value to hold the
‘one-to-one’ assumption.

Then the modified weight can be expressed as

ω
(i)
k = (1− pD,k)ω

(i)
k|k−1 +

|Zk |

∑
p=1

g̃p
k (

..
x(i)k )ω

(i)
k|k−1 (63)

The robust SMC-PHD filter is summarized in Algorithm 1.

Remark 1: Although the heavy-tailed characteristic of the Student-t distribution can deal with
outliers, the target might still miss when the weights of outliers are lower than the extracted
threshold and the target number would be underestimated. In our paper, the weight modification of
the particles is mainly aimed to deal with the target number overestimate problem caused by clutter
at the current time.

Algorithm 1. The robust SMC-PHD filter.

Step 1 Prediction
for i = 1, 2, . . . , Lk−1

x(i)k ∼ qk(·
∣∣∣x(i)k−1, Zk ), ω

(i)
k|k−1 ∼ ω

(i)
k−1

pS,k fk|k−1(x
(i)
k

∣∣∣x(i)k−1 )

qk(x
(i)
k

∣∣∣x(i)k−1,Zk )

υ
(i)
k|k−1 = ρ(υ

(i)
k−1 − d− 1) + d + 1, V(i)

k|k−1 = ρV(i)
k−1

α
(i)
k|k−1 = ρα

(i)
k−1, β

(i)
k|k−1 = ρβ

(i)
k−1

end for
for i = Lk−1 + 1, Lk−1 + 2, . . . , Lk−1 + Jk

x(i)k ∼ pk(·|Zk ), ω
(i)
k|k−1 ∼

1
Jk

γk(x
(i)
k )

pk(x
(i)
k |Zk )

υ
(i)
k|k−1 = υ

(i)
γ,k, V(i)

k|k−1 = V(i)
γ,k

α
(i)
k|k−1 = α

(i)
γ,k, β

(i)
k|k−1 = β

(i)
γ,k

end for

Step 2 Update
For i = 1, 2, . . . , Lk−1 + Jk

R(i)
k = V(i)

k|k−1/(υ(i)k|k−1 − d− 1), ν
(i)
k = α

(i)
k|k−1/β

(i)
k|k−1

gk(z
∣∣∣ ..x(i)k ) = St(z; h(x(i)k ), R(i)

k , ν
(i)
k

)
gp

k (
..
x(i)k ) =

pD,k gk(z
p
k

∣∣∣ ..x(i)k )

κk(z
p
k )+Ck(z

p
k )

Ck(z
p
k ) =

Lk−1+Jk

∑
j=1

pD,kgk(z
p
k

∣∣∣ ..x(i)k )ω
(i)
k|k−1

I = {1, . . . , |Zk|}, J =
{

p = 1, . . . , |Zk|
∣∣∣gp

k (
..
x(i)k ) ≥ σ

}
l = argmax

p∈I
gp

k (
..
x(i)k ), q = argmin

p∈I
gp

k (
..
x(i)k )

g̃p
k (

..
x(i)k ) =

{
gp

k (
..
x(i)k ), p = l or p /∈ J

gq
k(

..
x(i)k ), p 6= l & p ∈ J

ω
(i)
k = (1− pD,k)ω

(i)
k|k−1 +

|Zk |
∑

p=1
g̃p

k (
..
x(i)k )ω

(i)
k|k−1

Perform iteration initialization, set the iteration number τ, and update the parameters of
measurement noise by Equations (49)–(60).
end for

Step 3 Resampling
Step 4 State extraction
Step 3 and step 4 are the same as that in the standard SMC-PHD filter.
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4. Simulation Results

To reveal the performance of the proposed robust SMC-PHD (RSMC-PHD) filter, we
compare the Gaussian (Normal) Gamma inverse Wishart Gamma PHD (NGIWG-PHD)
filter [23] and the SMC-PHD filter [6] with the proposed filter. For each simulation, 100
Monte Carlo trials are performed. The target number and optimal sub-pattern assignment
(OSPA) [28] distance are chosen as the metric, where the parameters of OSPA are p = 2
and c = 100.

4.1. The Choice of Threshold σ

In Section 3.4, threshold σ is utilized to distinguish the target-generated measurements
from clutter. In the SMC-PHD filter, the underlying target relies on the updated weight of
each particle, and the likelihood value in Equation (59) can directly reflect the contribution
of a given measurement or clutter to the underlying target. In most cases, the target-
generated measurements usually have the largest likelihood value for each particle. If
σ is larger, some clutter might be still regarded as target-generated measurements, and
the overestimate of the target number cannot be solved. By contrast, if σ is smaller, the
likelihood values of some clutter which contribute a small proportion to the updated weight
will be modified. However, this modification will have no obvious effect on the updated
weight of the particle except for unnecessary complexity. As we all know, Nparticle is the
number of particles for each expected target in the SMC-PHD filter and it is used to extract
the weighted particles to approximate the posterior intensity. To some extent, 1/Nparticle
can approximately reflect the average contribution of each particle for an underlying target.
Therefore, we choose σ = 1/Nparticle as the threshold.

4.2. Linear Scenario

The target state of each target is xk = [xk,
.
xk, yk,

.
yk]

T , consisting of the position [xk, yk]
T

and velocity [
.
xk,

.
yk]

T . The target motion model is given by

xk = Fxk−1 + Gwk (64)

where

F =


1 ∆ 0 0
0 1 0 0
0 0 1 ∆
0 0 0 1

 (65)
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G =

[
∆ 1 0 0
0 0 ∆ 1

]T

(66)

wk ∼ N (·; 02, Qk), Qk = diag([σ2
w, σ2

w]
T
), σw = 5 m/s2 is the standard deviation of the

process noise, ∆ = 1 s is the sampling period.
The observation model is formulated by

zk = Hxk + εk (67)

where

H =

[
1 0 0 0
0 0 1 0

]
(68)

The heavy-tailed measurement noise corrupted by outliers is represented as [21,23]

εk ∼
{
N (εk; 02, R0) 1− η
N (εk; 02, Rn) η

(69)

where η denotes the probability of the measurement noise outlier. R0 = diag([102, 102]
T
)

is the nominal noise variance, and Rn = 20R0.
The model of the birth target is a Poisson RFS with intensity

γk(x) =
3

∑
j=1

0.1N (x; m(j)
γ , Pγ) (70)

where m(1)
γ = [1200, 0,−400, 0]T , m(2)

γ = [600, 0, 700, 0]T , m(3)
γ = [600, 0,−300, 0]T ,Pγ =

diag([100, 100, 100, 100]T). The survival probability is pS,k = 0.99 and the detection proba-
bility is pD,k = 0.98. The surveillance region is [0, 2000] m× [−1000, 1000] m. The clutter
is uniformly distributed over the surveillance region, and the average clutter number is
λ = 10. For the particles of birth targets, V(i)

γ,k = diag([102, 102]
T
), υ

(i)
γ,k = 4, α

(i)
γ,k = 3,

β
(i)
γ,k = 1. The number of iteration is τ= 5, the decreasing factor is ρ = 0.98, and the

particles number is Nparticle = 800.
The trajectories of the targets are shown in Figure 2, where circles are the beginning

positions and triangles are the ending positions.
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To illustrate the performance of the proposed filter under the Gaussian measurement
noise, η is set to 0. Figures 3 and 4 show the estimate of target number and OSPA distance of
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the three filters, respectively. From Figure 3, we can see that all the filters achieve unbiased
estimate of the target number and have a comparable estimate accuracy under Gaussian
measurement noise. This is because the SMC-PHD filter utilizes the true measurement
noise covariance. For the NGIWG-PHD filter and the RSMC-PHD filter, the DOF and scale
matrix of the Student-t distribution can be adjusted automatically and the target tracking
under Gaussian measurement noise realized. Figure 4 shows the OSPA distance of the
three filters. Obviously, all the filters have an approximate OSPA distance.
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To verify the multi-tracking performance under heavy-tailed measurement noise, η is
set to 0.2. The remaining parameters are the same as above.

Figures 5 and 6 show the estimate of target number and OSPA distance of the three
filters, respectively. Under heavy-tailed measurement noise, the SMC-PHD filter will
diverge because the assumed measurement noise is not matched with the true measurement
noise. For the NGIWG-PHD filter and the RSMC-PHD filter, the two filters will produce a
weight which is non-negligible for filter update when there are outliers in measurements.
Thus, the estimate accuracy of the target number of the NGIWG-PHD filter and the RSMC-
PHD filter is higher than that of the SMC-PHD filter. From Figure 6, it can be observed that
the RSMC-PHD filter has the best performance on OSPA distance.
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1 1

1 ˆMAE
CM T

j j
k k

j kC

N N
M T = =
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1 1

1AOSPA OSPA
CM T

j
k

j kCM T = =

=   (72)

where CM  is the number of Monte Carle trials, T  is the simulation tracking time, j
kN

and ˆ j
kN  are the true and the estimated target numbers at time k in the jth Monte Carle 

trial, OSPA j
k  is the corresponding OSPA distance. 
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To verify the validity of the weight modification method, we compare the proposed
RSMC-PHD filter with the proposed robust SMC-PHD filter without weight modification
(RSMC-PHD(M1)). Figures 7 and 8 show the mean absolute error (MAE) of the target
number and the average OSPA (AOSPA) distance for the RSMC-PHD(M1) filter and the
RSMC-PHD filter under different clutter number. The MAE of the target number and
AOSPA are given by

MAEnumber =
1

MCT

MC

∑
j=1

T

∑
k=1

∣∣∣N j
k − N̂ j

k

∣∣∣ (71)

AOSPA =
1

MCT

MC

∑
j=1

T

∑
k=1

OSPAj
k (72)

where MC is the number of Monte Carle trials, T is the simulation tracking time, N j
k and N̂ j

k

are the true and the estimated target numbers at time k in the jth Monte Carle trial, OSPAj
k

is the corresponding OSPA distance.
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Figure 8. The estimate of AOSPA.

Figure 7 illustrates that the MAE estimate of target number for the RSMC-PHD filter
is lower than that of the RSMC-PHD(M1) filter. The more the clutter number, the higher is
the probability that the clutter is regarded as the target-generated measurement, resulting
in an overestimate of the target number at the current time. From Figure 8, it can be seen
that the RSMC-PHD filter also outperforms the RSMC-PHD(M1) filter on AOSPA distance.

4.3. Nonlinear Scenario

To further evaluate the performance of the proposed filter, we consider a nonlinear
scenario. For the NGIWG-PHD filter, EKF is used to handle nonlinearity.

The target state transition function is given by

xk = Fctxk−1 + Gctwk (73)

where

Fct =


1 sin ω∆/ω 0 −(1− cos ω∆)/ω 0
0 cos ω∆ 0 −(1− cos ω∆)/ω 0
0 (1− cos ω∆)/ω 1 sin ω∆/ω 0
0 sin ω∆/ω 0 cos ω∆ 0
0 0 0 0 1

 (74)

Gct =

 ∆2/2 ∆ 0 0 0
0 0 ∆2/2 ∆ 0
0 0 0 0 1

T

(75)

The target state is xk = [xk,
.
xk, yk,

.
yk, ω]

T , ω is the turn rate, wk ∼ N (·; 02, Qk), Qk =

diag([σ2
x , σ2

y , σ2
ω ]

T
), σx = σy = 5 m/s2, σω= 5(π /180) rad/s, ∆ = 1 s.
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The observation model is formulated by

zk =

[ √
x2

k + y2
k

arctan(yk/xk)

]
+ εk (76)

Assume the nominal measurement noise variance is R0 = diag([102, (π/180 )2]
T
),

and the true measurement noise is represented as (69) with Rn = 20R0 and η = 0.2.
The model of birth target is a Poisson RFS with intensity

γk(x) =
3

∑
j=1

0.02N (x; m(j)
γ , Pγ) (77)

where Pγ = diag([900, 900, 900, 900, (6× π /180)2]
T
), m(1)

γ = [−400, 0, 600, 0, 0]T , m(2)
γ =

[−250, 0, 250, 0, 0]T , and m(3)
γ = [250, 0, 450, 0, 0]T . The surveillance region is [0, π]rad×

[0, 1500]m. The clutter is uniformly distributed over the surveillance region and the average

clutter number is λ = 10. For the particles of birth targets,V(i)
γ,k = diag([102, (π/180 )2]

T
),

υ
(i)
γ,k = 4, α

(i)
γ,k = 3, β

(i)
γ,k = 1. The remaining parameters are the same as that in Section 4.2.

The trajectories of the targets are shown in Figure 9, where circles are the beginning
positions and triangles are the ending positions.
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Figures 10 and 11 show the estimate of target number and OSPA distance for the two
filters, respectively. It indicates that the NGIWG-PHD filter performs worse in the non-
linear system. This is because the NGIWG-PHD filter uses EKF to linearize the nonlinear
model, and the estimate error of the target state will become large. Under the influence of
heavy-tailed measurement noise, the target will miss and the target number will be under-
estimated. On the contrary, the RSMC-PHD filter is not subject to nonlinear constraint, and
has a better performance in the nonlinear system.
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5. Conclusions

In this paper, a robust SMC-PHD filter with unknown heavy-tailed measurement noise
is proposed. The proposed filter uses the Student-t distribution to model the unknown
measurement noise. The IW distribution is used to model the unknown scale matrix
parameter. Meanwhile, the Gamma distribution is used to model the unknown DOF
parameter. Then, the unknown noise parameters are updated by the VB technique within
the SMC-PHD filter framework. In addition, a strategy is applied to solve the overestimate
of the target number induced by the Student-t distribution. Simulation results under the
linear system and nonlinear system show that the proposed filter has a better performance
than the compared filters with the unknown heavy-tailed measurement noise, especially in
a nonlinear system.
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