
sensors

Article

A Secure and Scalable Smart Home Gateway to Bridge
Technology Fragmentation

Ezequiel Simeoni 1,* , Eugenio Gaeta 1 , Rebeca I. García-Betances 1 , Dave Raggett 2,
Alejandro M. Medrano-Gil 1 , Diego F. Carvajal-Flores 1 , Giuseppe Fico 1 ,
María Fernanda Cabrera-Umpiérrez 1 and María Teresa Arredondo Waldmeyer 1

����������
�������

Citation: Simeoni, E.; Gaeta, E.;

García-Betances, R.I.; Raggett, D.;

Medrano-Gil A.M.; Carvajal-Flores

D.F.; Fico, G.; Cabrera-Umpiérrez,

M.F.; Arredondo Waldmeyer, M.T. A

Secure and Scalable Smart Home

Gateway to Bridge Technology

Fragmentation. Sensors 2021, 21, 3587.

https://doi.org/10.3390/s21113587

Academic Editors: Tiago M.

Fernández-Caramés and Paula

Fraga-Lamas

Received: 21 April 2021

Accepted: 17 May 2021

Published: 21 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Life Supporting Technologies (LifeSTech), ETSI Telecomunicaciones Universidad Politécnica de Madrid,
Av. Complutense s/n, 28040 Madrid, Spain; eugenio.gaeta@lst.tfo.upm.es (E.G.);
rgarcia@lst.tfo.upm.es (R.I.G.-B.); amedrano@lst.tfo.upm.es (A.M.M.-G.); dcarvajal@lst.tfo.upm.es (D.F.C.-F.);
gfico@lst.tfo.upm.es (G.F.); chiqui@lst.tfo.upm.es (M.F.C.-U.); mta@lst.tfo.upm.es (M.T.A.W.)

2 W3C/ERCIM, 2004, Route des Lucioles, Sophia Antipolis, 06410 Biot, France; dsr@w3.org
* Correspondence: esimeoni@lst.tfo.upm.es

Abstract: Internet of Things (IoT) technologies are already playing an important role in our daily
activities as we use them and rely on them to increase our abilities, connectivity, productivity and
quality of life. However, there are still obstacles to achieving a unique interface able to transfer
full control to users given the diversity of protocols, properties and specifications in the varied
IoT ecosystem. Particularly for the case of home automation systems, there is a high degree of
fragmentation that limits interoperability, increasing the complexity and costs of developments
and holding back their real potential of positively impacting users. In this article, we propose
implementing W3C’s Web of Things Standard supported by home automation ontologies, such as
SAREF and UniversAAL, to deploy the Living Lab Gateway that allows users to consume all IoT
devices from a smart home, including those physically wired and using KNX® technology. This
work, developed under the framework of the EC funded Plan4Act project, includes relevant features
such as security, authentication and authorization provision, dynamic configuration and injection of
devices, and devices abstraction and mapping into ontologies. Its deployment is explained in two
scenarios to show the achieved technology’s degree of integration, the code simplicity for developers
and the system’s scalability: one consisted of external hardware interfacing with the smart home,
and the other of the injection of a new sensing device. A test was executed providing metrics that
indicate that the Living Lab Gateway is competitive in terms of response performance.

Keywords: Internet of Things; smart environment; web of things; semantics; gateway; technol-
ogy fragmentation

1. Introduction

The Internet of Things (IoT) refers to the grouping and interconnection of devices
and objects through a network, where they can all be visible, interact and exchange data.
The objects or devices can be of a wide range of types, from sensors and mechanical devices
to everyday objects such as a refrigerator or a light bulb [1]. IoT technologies allow the
development of a wide diversity of products, useful in contexts such as cities, home or
health services [2]. One of the most common uses of IoT technology is home automation,
however, both consumers and developers suffer from issues related to the high degree of
technology fragmentation, given that it limits interoperability, increases development costs
holding back IoT’s true potential. A home automation system (HAS) is a set of networked
smart devices used to automate tasks in a home environment. In the last ten years, the HAS
market has grown significantly, therefore, to support smart home applications, a multitude
of technologies have been developed [3,4]. In essence, better user-friendly interfaces have
been adopted, such as voice command interaction using smart speakers (e.g., Amazon

Sensors 2021, 21, 3587. https://doi.org/10.3390/s21113587 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-4797-0875
https://orcid.org/0000-0001-9500-9283
https://orcid.org/0000-0003-0938-3565
https://orcid.org/0000-0003-0170-7975
https://orcid.org/0000-0002-9338-1708
https://orcid.org/0000-0003-1551-4613
https://orcid.org/0000-0001-9343-063X
https://orcid.org/0000-0003-3113-3976
https://www.mdpi.com/1424-8220/21/11/3587?type=check_update&version=1
https://doi.org/10.3390/s21113587
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21113587
https://www.mdpi.com/journal/sensors

Sensors 2021, 21, 3587 2 of 23

Echo) [5]. The advent of these devices has offered improvements in usability along with
applications for entertainment, news, and home shopping, although a unique tool that
performs as the “master control” and allows users to easily interact with all these devices
does not exist yet. To build products that address multiple proprietary ecosystems, as to
reach the critical market mass for return of investment, developers need to master the
many different technologies and approaches adopted by different companies [4]. This
fragmentation needs to be addressed as much of the potential will be in realising high
value services that combine heterogeneous sensors, actuators and multiple sources of
information. Moreover, fragmentation is underlined by a lack of interoperability across
proprietary technologies, and a profusion of incompatible specifications from different
standards development organisations [6]. The mitigation of the problems associated with
fragmentation require the use of standards to define how smart devices communicate and
interact with each other. In turn, these standards must be supported by a large community
of developers, to ensure that constant efforts are focused at increasing interoperability.
Thus, the World Wide Web Consortium (W3C) seeks to reduce the lack of interoperability
through an abstraction layer that reduces the effort needed by developers to cover multiple
systems and IoT standards. ‘Web of Things’ (WoT) [6] is W3C’s novel standard that
focuses on digital twins for physical and abstract things. According to the concept of
digital twins, each “thing” has a uniform resource identifier (URI) that is used to access
“Thing Descriptions”, expressed in terms of the Resource Description Framework (RDF) [7]
and serialised as JavaScript Object Notation for Linked Data (JSON-LD) [8]. Since the
appearance of the semantic web in recent years, the ontology concept has received great
attention. Basically, it conceptualizes and organizes semantic information of application
domains. In addition, its use extends to Service Oriented Computing (SOC) to facilitate
discovery and composition of smarter services [9]. Through semantic technologies it is
possible to have a higher level of interoperability and, by describing resources (i.e., data,
actuators, sensors, etc.) and devices with their conceptual meaning, also it is possible to
create abstract services which transcends their technical implementation.

The WoT greatly facilitates service composition by decoupling applications from
the details needed to access servers that expose things. For instance, one server might
expose things using the oneM2M standards [10], whilst another might instead use the
standards from the Open Connectivity Foundation (OCF) [11]. Both servers may use the
same underlying protocol, e.g., HTTP (Hypertext Transfer Protocol), but in incompatible
ways. The WoT further allows applications to access and reason with the metadata for
services using RDF as a common framework, independently of the underlying IoT systems,
allowing to expose the things included in the Thing Descriptor (TD), which is essentially
a list of all devices included. The TD is based on an interaction model that can support
diverse messaging paradigms and implements its own Interaction Patterns as the following:

• Properties are readable/writable data points.
• Actions are callable processes.
• Events are asynchronous interactions that enable to push data. This is how the WoT

copes with the network-facing APIs from most IoT Platforms.

In this way, the abstract layer is then capable of applying reasoning allowing for
smarter management, retrieval and combination of resources and services utilizing the
different implementations even if these are incompatible solutions. The system is embed-
ded with sufficient intelligence to find the most appropriate abstract service to invoke,
sometimes resulting in service composition to achieve the requested goal. These are
only the basics of Semantic Interoperability. However, the generic algorithms need to
rely on formal definitions of the different knowledge domains, these definitions are on-
tologies. Ontologies, such as Smart Appliances Reference (SAREF), provide the specific
knowledge required for smart environments, and thus can improve interoperability and
integration [9,12] addressing also the high degree of fragmentation [13] that we observe
nowadays in home automation.

Sensors 2021, 21, 3587 3 of 23

Additionally, when developing and deploying a HAS, a complex aspect to solve is
security, as it is critical for any interconnected digital asset manager. Private companies [14],
public bodies [15,16] and standardization and harmonization institutes (e.g., RFC 2196 Site
Security Handbook), have published recommendations aimed at improving the quality and
consistency of the cybersecurity across interconnected systems. Such recommendations are
addressed towards system managers, organization officers, service providers, infrastruc-
ture owners, product manufacturers, developers, and end users. Generally, these sets of
recommendations detail diverse aspects, but generally converge on similar rules and guide-
lines. They state that cybersecurity should be a continuous process, a self-improvement
procedure that excecises cybersecurity threats and measures evaluation.

1.1. Related Work

Similar solutions aimed at dealing with IoT devices and ecosystems’s interoperability
have already been deployed, but most of them lack the integration of coexisting systems,
such as home automation systems controlling physical installations.

A Raspberry Pi controller for wired devices presented in [17] implemented a gateway
allowing access to devices connected to a KNX® network in a Web-of-Things manner.
The complexity of the architecture and the cost of processing XSLT files makes this ap-
proach not applicable with such low computational resource. One clear limitation of this
proposition is that it depends on the a DNS server access, in most cases restricted by security
policies. Also, the security in this deployment does not contemplate user authentication.

The eWot [18] centralises the storage of all things descriptions (IoT Profiles). The IoT
devices managed by eWot comprise different APIs, formats, and models and interoperabil-
ity is addressed by a SPARQL-query-based mechanism to manage devices.

Another approach, the IoT-based Semantic Interoperability Model (IoT-SIM) [19],
tackles interoperability among healthcare IoT devices, through which physicians can
communicate with their patients and monitor their current health status. IoT devices and
their data are managed by Sensor Web Enablement (SWE) to manage and consume IoT
devices. Through this external service, heterogeneity between devices is addressed.

An interesting solution also implemented in Smart Homes [20] is a semantic model
for smart objects that implements ontologies and description logics, enabling intelligent
functions, reasoning over service data and interoperability. Also others have shown how to
provide a gateway that translates HTTP instructions from clients into KNX® instructions
to home devices [17].

Additionally, the Semantic Gateway as Service (SGS) [21] addresses interoperabil-
ity through gateway and Semantic Web enabled IoT architecture, allowing to exchange
messaging protocols (e.g., XMPP, CoAP, and MQTT). SGS architecture establishes exter-
nal connections with the gateway through the mentioned protocols and then it connects
via REST or pubsub to, for instance, a cloud service or other SGSs. Sensor data is anno-
tated using domain specific ontologies and converted to JSON format to comply with
RESTful protocols.

To the best of our knowledge, topics such as Security, Scalability and trust are not ad-
dressed as part of the challenge of overcoming technology fragmentation. Such features are
key elements to include when developing a home devices management system, especially
if multiple users are going to make use of it in diverse scenarios.

The motivation to develop the solution presented in this work raises from Horizon
2020 project Plan4Act (N◦ 732,266). In this project, the wireless transmission and real-time
decoding of rhesus macaques’ brain signals to convert them into smart home devices’
commands is pursued. In this context, it was requested a secure and trusted gateway that
listens to a monkey’s brain signals neural decoder and executes commands at the Smart
House. For time and effort saving, little to no effort of interfacing the experimental setting
with a domotic environment control system was required. Thus, in this work we propose
the Living Lab Gateway (from now on, LLG) that deals with the lack of interoperability and
the technologies fragmentation at web level. A scalable WoT interface for home automation

Sensors 2021, 21, 3587 4 of 23

services was built, where devices are semantically described through standard vocabularies
and ontologies, while providing security and trust features.

1.2. Basic Idea

The main purpose of our development is to provide a solution for interfacing with an
ecosystem of devices (in this case a Smart Home) that contains several different technologies.
In a nutshell, the LLG provides a secure access layer that offers an abstract description of
every device, which is independent from their internal denomination, physical location
and communication protocol. Thus, it offers a unified and simplified method to access and
consume these, reducing the coding effort for developers and allowing to easily populate
the ecosystem with new devices. Moreover, security and scalability design criteria were
considered when developing and deploying this solution. A key feature this development
includes is its adaptability to a wide range of technology domains, as it only takes to
include the ontologies under which these are defined into the device’s description in order
to make them available, simplifying the LLG’s re-purposing.

1.3. Contribution

In this work we contribute to mitigate technology fragmentation and provide better
accessibility to device manipulation for heterogeneous device ecosystems, even in a more
human-understandable format for non-expert developers. Moreover, we include novel WoT
standard and articulate it with semantic content to merge multiple technology domains
technology use through a unique tool. We also provide metrics and the corresponding
analysis regarding the LLG benefits and competitiveness.

The next sections are organized as follows: in Section 2 methodology and materials
are described. In Section 3, implementation results and tests are presented. In Section 4,
discussion, lessons learnt and future steps. Section 5, conclusions.

2. Materials and Methods

This section is addressing the materials and methods used in order to deploy and test
the LLG, implementing interoperability, seamless connectivity of heterogenous devices,
security, scalability, resilience, authentication and authorization.

2.1. Materials
2.1.1. Containers and Orchestration Technologies

Containers and orchestration technologies are used for the deployment of a scalable
and resilient infrastructure for the LLG. A container (e.g., Docker) is an isolated, closed,
and lightweight environment where a piece of software is running. It runs on the host
machine’s operating system providing a higher degree of flexibility compared to hypervi-
sion technologies (e.g., Virtual Machines). Due to this high degree of flexibility, containers
are the best option for microservices implementation. Moreover, when the objective is to
implement microservices-based architectures, we need complementary technologies that
provide more reliability, security, scalability, resource optimization and automation. These
are called orchestration technologies and Kubernetes (commonly referred to as “K8s”) [22]
was our choice in this work. K8s is an open-source platform for automating the deployment,
scaling, and containerized applications management, which distributes containers into
pods across multiple nodes that, ultimately, form clusters. Key elements of Kubernetes
are Kubernetes Pods, Kubernetes Nodes, Master node of kubernetes, Kubernetes cluster
and Load Balancers. In this paper we will describe how to provide an implementation that
maps these devices within a secure, adaptable, scalable and resilient infrastructure based
on semantics and WoT.

2.1.2. Smart House Living Lab

The Smart House Living lab (SHLL) is an automated environment where technological
solutions can be tested and validated with real users. It contains devices and appliances

Sensors 2021, 21, 3587 5 of 23

both IoT and wired, and it is a fully adaptable domotic empowered open space that can be
configured at runtime on the users‘ needs: one day it can represent a house, the day after a
ward of a hospital or an office. The Information Technology (IT) infrastructure available at
the Smart House Living Lab includes a KNX® twisted pair deployment which integrates
almost all the devices available at Living Lab such as doors, windows, blinds, sensors, air
conditioner and media devices. It is worth mentioning one device in particular: the Smart
Cabinet, which is an IoT condiment dispenser fully integrated to the SHLL developed at
UPM which is the Plan4Act’s neural decoder target.

2.1.3. MongoDB Database

MongoDB [23] is a general purpose, distributed, document-based database, that
supports different JSON documents: JSON, BSON, XML and BLOBs. Queries are JSON,
and thus easily composable, overcoming SQL queries. It uses a powerful query language
that enables field filtering and sorting, bringing solutions to more complex use-cases [24].
MongoDB is used to store the Thing Description generated for the devices installed in the
SHLL and to track their state changes in a consistent way, allowing scalability and better
performance in the management of data in JSON format.

2.1.4. Structured and Linked Data Format

JSON-LD (JSON for Linked Data) [8] is a media type that enables the above-mentioned
layer 3 style of the REST architectural style and data self-description. The support of JSON-
LD data linking in WoT allows the LLG to address standardization and interoperability
over different domains of interest. In our solution we address the Smart Home domains
translating the universAAL device ontology [25] with the standard SAREF ontology [26].
Structured and linked data format is used for describing the data and to link their meaning
with standard vocabularies and ontologies within the interfaces of the LLG.

2.1.5. Web of Things

The WoT [6] is the standard that has been adopted in order to describe the interfaces
that allow client to interact with the devices of the Living Lab. The Thing Description
(TD) is a central WoT element and consists of 5 important elements: semantic metadata,
an interaction model (properties, actions and events which were already described), a se-
mantic schema, a security schema and web linking features to establish relations between
Things. They are also serialized to JSON-LD by default and allows semantics to be machine-
understandable and confers better usability for developers [27].

In this work, the WoT is used to add semantic meaning to the KNX® devices that
are installed in the lab. Each service and device within the SHLL is defined as “Things”
and are mapped on a Thing Description, compliant with WoT. Each Thing has a URI that
is used to access descriptions of things expressed in terms of RDF (Resource Description
Framework) and serialised as JSON-LD. Thing descriptions include:

• The interaction model exposed to client applications in terms of properties, actions and
events, along with the associated data models and metadata, such as units of measure.

• Semantic descriptions of the types of things and the context in which they are situated,
e.g., a temperature sensor for a given room in a house, expressed using the ontologies
agreed between the suppliers and consumers of services.

• Communications metadata that describes how the client platform can access things
exposed by a server platform.

• Security metadata describing the requirements for a secure access to the thing.

2.1.6. Microservices

A microservice [28] supports interoperability through message-based communication
and a microservice architecture is based on scalable and evolvable software systems. Most
valuable assets of microservices are their speed, safety and scalability. The aim of the
microservice architecture was to replace monolithic applications with systems composed

Sensors 2021, 21, 3587 6 of 23

of multiple exchangeable components [29]. In order to implement a reliable infrastructure
for the LLG, on the top of containerization and orchestration technology, an architectural
pattern was designed for the infrastructure to be fault-tolerant and to allow scalability.
Such pattern is the microservice based infrastructure.

2.1.7. Three-Tier Architecture

As well as for the infrastructure, the LLG solution needs certain degrees of flexibility
and separability, achieved by grouping components in layers. The LLG architecture follows
a three-tier pattern. The topological distribution of an application modules can change
depending on the system requirements. The above-mentioned tiers are logical layers,
and can be described as follows: a Presentation Tier, a Middle Tier and a Data Tier. The
presentation tier (i.e., user services layer) provides access to traditional application and
Web-based applications and presents data, allowing its manipulation and new data entry.
The middle tier is the business services or logic layer. Its components can be allocated
on a server machine and are designed to keep data structure consistency across diverse
databases. Not being of exclusive use for a specific client, middle-tier components can be
used by all applications and move around different locations depending on each instance.
The data tier, or data services layer, interacts specifically with data, acting as database
access manager and it consists of data access components to enable resource sharing [30].

2.1.8. REST Interfaces

The interaction between the LLG service layer and third parties is provided through
REpresentational State Transfer (REST), which is a web-based architecture. A key com-
ponent to be defined when talking about REST is the concept of resources (e.g., a device).
Different representations of this device are created (by the server) on demand, allowing
clients to ask for a representation of a Device. This representation can be served to clients
in the format they requested (JSON, for instance) even though internally it may be stored
in a different format. On the other hand, methods in REST are invariant (in terms of
behaviour across devices), and the HTTP specification defines which methods that can be
used (e.g., GET to retrieve a resource and POST to create one). The use of standard textual
formats brings flexibility related to the use of resources, being XML and JSON formats the
most popular of those running on HTTP [31].

In a hypermedia format, hypermedia controls represent protocol information. A hy-
permedia control includes the address of a linked resource, together with some semantic
markup. In the context of the current resource representation, the semantic markup in-
dicates the meaning of the linked resource. The acronym “hypermedia as the engine of
application state” (HATEOAS) [31] describes the main principles of the REST architec-
tural style.

2.1.9. Stateless Oriented Services

LLG services can be understood in isolation. There is no stored knowledge of or
reference to past transactions. Each transaction is made as if from scratch for the first time
in a stateless manner. Both RESTful and Hybrid RESTful service rely on HTTP. This means
that they are missing a security. In order to maintain the confidentiality and integrity
of resource representations is quite recommended to use TLS [32] and make resources
accessible over a server configured to serve requests only using HTTPS.

With HTTPS (HTTP over TLS) we are solving confidentiality and integrity but we
are still missing another fundamental aspect of security that is authentication. Users or
services interact with the application in what is called a session, defined as the series of
interactions they perform during the interaction period. A stateless application [33] is
defined as an application that is agnostic or has no record of previous interactions with
clients or their outcomes. They can scale horizontally since any request can be serviced
by any resource (e.g., EC2 instances, Google cloud functions, AWS Lambda functions).
A stateless service implies a stateless authentication, thus, at server side, the state of a user

Sensors 2021, 21, 3587 7 of 23

is not maintained, and the server is completely unaware of who sends the request. We can
achieve the stateless authentication by using JWT (JSON Web Token), which is an example
of a token-based approach [34]. An advantage of token based approach is that not even ID
data from previous sessions are needed, so they are not stored.

2.2. Methods

The LLG was implemented and tested in different modalities aiming to cover all
features and functions of our solution. Its main functionalities and features were tested in
two different scenarios.

2.2.1. Implementation Scenarios

Scenario 1 (addressing Plan4Act project’s needs) is the remote control of living lab
devices by a hardware embedded classifier of neural data extracted from monkeys in real
time. This is Plan4Act project’s Demo 1 and comprises a variant in which the house control
can be executed remotely from an interface located in an experimental protocol employing
Rhesus macaques. This scenario is illustrated in Figure 1 below:

Figure 1. Living Lab Gateway solution for Plan4Act’s demo 1.

In this scenario, a Field Programmable Gate Array controller (where the mentioned
neural controller is embedded) commandedthe SHLL devices (both IoT and KNX® devices)
through the LLG. Sequences of commands are sent by the controller in two modalities:
sequential mode and proactive mode. The first, consists in emitting commands one by one
(e.g., open the main door and, once this action is done, turn the lights on). On the other
hand, the latter comprises sets of commands into a unique one, executing all actions in one
step to produce a time gain. Time gain associated to proactive control is the main Plan4Act
project’s goal (e.g., open the main door, turn the lights on and open the bathroom door at
the same time).

On the other hand, in scenario 2, an external air quality management system is injected
into the SHLL ecosystem (i.e., added to the Thing Descriptor) and operates the Smart
House devices (e.g., doors, windows and smoke extractor) whenever a high concentration
of air pollutants is detected [35]. In this case, our solution was tested against technology
fragmentation by introducing a novel device (the air quality sensor) based on a proprietary
interface is exposing a preset API.

The LLG’s feature demonstration in each scenario described above can be summarized
as follows:

• The infrastructure deployment is explained and tested under Scenario 1 conditions.
• Scenario 1 allowed to test the interaction protocol for users‘authentication and autho-

rization to access devices (security, authentication and authorization features).
• In Scenario 1, devices abstraction and mapping into ontologies were demonstrated,

going from datapoints to Things and, finally, to ontologies.

Sensors 2021, 21, 3587 8 of 23

• In Scenario 2, dynamic configuration and injection of devices is demonstrated. The pro-
cedure to add novel devices and include them into the environment of home devices
is shown.

2.2.2. Response Time Comparison Test

In order to evaluate the LLG’s performance, we tested the round-trip time that elapsed
to change the Smart Cabinet’s status (one of the SHLL’s devices) by executing a direct HTTP
request and also through the LLG. The Smart Cabinet is one of the elements developed
during Plan4Act project and the authors have access to the firmware code, which simplifies
its use for testing.

The objective is to perform a paired test comparison to find out whether the mean
response time elapsed by the LLG is not significantly different of the elapsed by a direct
request. For this test, the following parameters will be considered:

1. Local execution time, being this the time the Smart Cabinet needs since it receives a
request until the command is executed (measurement taken via firmware).

2. Local network execution, a direct HTTP interface with the device that is accessible on
the local network;

3. Secure remote execution, using the LLG to send command to the devices.

2.2.3. Cybersecurity Model

For our cybersecurity model and self auditing method we have selected the STRIDE
and DREAD models as basis [36]. We will first Identify the assets that need protection
from cyber-attacks, being this list of assets extracted directly from the architecture elements
(see Figure 2). Once the List of assets are identified, the STRIDE model will be applied to
identify the threats. The STRIDE model identifies 6 classes of threats: Spoofing, Tampering,
Repudiation, Information disclosure, Denial of service, and Elevation of Privilege. Once
Threats have been identified, the next step is to analyse the Risk they represent, and for
this we use the DREAD model. DREAD model identifies indicators to assess the threat
impact: Damage Potential, Reproducibility, Exploitability, Affected users, Discoverability.
We classify each Thread identified with a score on each indicator as Low (L), Medium
(M), or High (H) in terms of its impact on our system and/or each threat’s probability of
occurrence. Finally, based on the identified threats and their risk analysis, we propose and
mitigation actions. These actions can be organizational, physical, hardware, software or
networking measures. For threats with lower risks we also note that in case the counter-
measures fail the risks can be accepted.

Figure 2. Living Lab Gateway Architecture.

Sensors 2021, 21, 3587 9 of 23

3. Results

In this section, the implementation of the LLG’s service infrastructure is addressed, this
is, the microservices architecture based on a RESTful approach, security and authentication
for stateless service.

The LLG has a three-layer infrastructure. The first layer represents the physical KNX®

infrastructure that connects all the devices. The second layer is a critical point of access
because it maps the KNX® datapoints into IP datagrams and it does not provide security,
yet its access is blocked by a firewall when the connection is made from inside the Lab.
In order to provide access from outside the lab a whitelist is set up allowing communication
only from the LLG at the third layer. Layers 1 and 2 are in the same living lab installation
while layer 3 is in the cloud. The Calimero Library [37] provides a discovery feature that
is used for scanning KNX® servers and datapoints, a feature that is used by the LLG to
populate a MongoDB database.

As shown in Figure 3 below, the physical KNX® infrastructure and the KNX®-IP
bridge are installed on the SHLL, while the LLG relies on a cloud infrastructure. This
layer is deployed using container and orchestrator technologies. Two Docker containers
and a cloud file system are orchestrated within a Kubernetes cluster. The first Docker
container is mapped on a cloud load balancer Kubernetes service that manages a Java
backend application, while a MongoDB Docker container, connected with a network file
system on the cloud provider, manages the data representing the devices’ WoT interfaces.
This configuration of the Kubernetes cluster allows a high availability and reliability for
(a) the entry point service (the Java backend application); (b) the WoT interfaces of the
devices (the MongoDB container); and (c) decoupling between hardware and software
components of the SHLL.

Figure 3. Three layer Architecture description.

A more detailed description of the implementation is shown in Figure 2, where the
complete information flow, actors and technologies are depicted.

3.1. Dynamic ConfiGuration and Injection of Devices

The LLG provides a functionality that builds automatically a Thing Description (TD)
either through an API (collecting a list of devices from a database or allowing the injection
of new devices) or by listening to the KNX®’s bus, thus creating the internal database of
the available devices of the LLG. The database can be privately edited in order to add also
additional information to the devices such as description, name, properties, data types and
so on. However, this functionality is not publicly available in the main TD of the living lab.
This feature allows to modify a device on demand, enabling the user to change the current
configuration of the lab. For instance, if it is needed to arrange the SHLL configuration to
represent an office, it would be possible to redefine the door as office door, the living room
as meeting room and so on. Through Calimero library, it is also possible to “listen” when
a new datapoint is added to KNX® BUS or when a value of a datapoint is written on the

Sensors 2021, 21, 3587 10 of 23

BUS. The LLG is constantly checking on these events and maintains consistency between
the MongoDB database and the current state of KNX® devices. Moreover, it supports
some functionalities similar to Amazon Alexa or Google Home, as new devices can be
connected through third party APIs. Thus, it is possible to inject other non-KNX® devices
in a common infrastructure. A key endpoint that is used to populate the list of devices with
external IoT devices is /add endpoint. This feature requires the user to perform an HTTP
PUT request including the JSON Schema in the code snippet shown in Figure 4 below.

Figure 4. Required JSON for Device addition to TD.

This request will add a TD of the device into the local database, including its properties
and interactions, as defined by the information provided and making it accessible from
the devices list. An example of the application of this feature is found in [35], which
also provides more details regarding interfacing simplicity with the SHLL and LLG tests
event log.

3.2. Providing Security, Authentication and Authorization

Following the STRIDE method, we identified the assets that need to be protected.
In almost all instances, these are derived from he architecture, e.g., the Thing Description,
the LLG itself, the physical devices and, even for completeness, we included important
infrastructure assets such as the SHLL’s infrastructure. After all, if attackers is able to open
the laboratory door, then they would have breached the SHLL and everything in it.

Table 1 summarizes the threats identified in each of the STRIDE model’s classes.
For some assets, their associated cybersecurity threats are entirely dependent on other
assets, and we declare these threats as implemented “through” the critical asset. This
aides in applying the STRIDE method, as these possible vulnerabilities are contextualized
exclusively to the asset itself, and therefore staying focused on the asset under analysis
each time, while also being complete in the analysis.

Table 1. STRIDE analysis on the assets to be protected, in order to find the potential threats.

Asset S T R I D E

SHLL Unauthorized physical access, disaster, through the Physical Devices

Physical Devices Unauthorized physical access, disaster, through the KNX® Gateway

KNX® Gateway Through VLAN

VLAN Unauthorized physical access, disaster.

Thing Description through LLG through
server through DB N/A N/A Through LLG

DB

DB
misconfiguration

or DB
vulnerability

program
verification

violation

DB
vulnerability N/A

Request
flooding on

VLAN

ssh vulnerability
and through VLAN

Server
OS

Misconfiguration,
OS vulnerability

Non
authorized

physical
access, OS

vulnerability

Log removal,
SO

vulnerability
N/A OS vulnera-

bility

SO or ssh
vulnerability and
through VLAN

Sensors 2021, 21, 3587 11 of 23

Table 1. Cont.

Asset S T R I D E

Public access TLS vulnerability Firewall mis-
configuration

TLS
vulnerability

TLS
vulnerability

Network
flooding TLS vulnerability

LLG Social
engineering

program
verification

violation Limitted logs
through

Public access
Resiliance
violaiton

N/A (only one
role)

Once the threats are identified, their DREAD classification is determined, and for
each given threat, a mitigation action is assigned. Table 2 shows this analysis. As it can
be seen, most actions correspond with a organizational process placed to avoid the threat,
for example placing physical barriers, performing reviews, backups and updates.

Table 2. DREAD Classification for each Identified cybersecurity threat.

Attack Vector D R E A D Mitigation Action

Unauthorized
physical access H L L H L Physical security (locked rooms,

alarms, etc.)

Disaster H L L H L Off-site backups, Accepted risks

DB misconfiguration H M L M M Configuration review by
Operation manager

DB vulnerability H H L H L Frequent software updates,
Accepted risk

Program verification
violation H L L H L Signed binaries

Request flooding
on VLAN L L L H L

Controlled Network management
(Firewall, VPN, private VLAN),

Accepted risk

ssh vulnerability and
through VLAN H L L H L

Frequent software updates,
Controlled Network management

(Firewall, VPN, private VLAN),
Accepted risk

OS misconfiguration L L L H M Configuration review by
Operation manager

OS vulnerability H L L H L Frequent software updates,
Accepted risk

Log removal L H L L L Frequent backups, Accepted risk

TLS vulnerability M L L L L Frequent dependencies/software
updates, Accepted risk

Firewall
misconfiguration M L L H M Configuration review by

Operation manager

Social engineering H L M L L Only experienced users, Accepted
Risk

Limitted logs L M L H L Accepted Risk

Resiliance violaiton M M L H L Kubernetes with replication factor
3, Accepted risk

The mitigation action of Controlled Network management, is defined using the Open
Systems Interconnection (OSI) reference model [38].

Sensors 2021, 21, 3587 12 of 23

At Data link layer (OSI layer 2) the Virtual Machine (where the LLG is running in
containerized form) is connected to the SHLL’s physical network infrastructure through a
Virtual Local Area Network (VLAN) following the IEEE 802.1Q specification.

At Network level (OSI layer 3) the LLG’s VM is configured with dual network; one
subnet is used to access the livinglab devices, each with its own IP address; another subnet
makes the LLG present in a De-Militarized Zone (DMZ) network, which is populated with
other protected servers. A Virtual Private Network (VPN) can be used for management
access of the nodes in both networks, the subnetwork of the VPN is independent from the
other two therefore it is routed for access.

At Transport Level (OSI layer 4) the VM that hosts the LLG’s software stack is protected
with an firewall, only port 443 is opened for public HTTPS connection. At this point all
LLG’s services are directly available only in the DMZ or VLAN locally in the data center,
or the SHLL. The containerization platform offers additional protection by providing
local area network, and the associated routing, for the LLG’s micro-service architecture.
At Session Level (OSI layer 5) incoming and outgoing connections are based on the HTTPS
protocol, i.e., HTTP over TLS which includes valid certificates provided by Let’s Encrypt
service [39] through the ACME protocol. This ensures communication uses state-of-the-
art confidential point to point encryption. The transmitted information is only readable
between each public client and the LLC’s endpoint.

In the LLG’s software stack, The application level (OSI layer 7) the passwords are
stored at the database as hashed strings encrypted with sha256 algorithm (i.e., 256 bits
Secure Hash Algorithm) following Linux system’s password shadow approach [40]. Fur-
thermore, password fields are escaped and validated, avoiding unwanted string injection in
MongoDB queries. Additionally. Moreover, authentication and authorization mechanisms
implemented are based on JSON Web Token (JWT) standard. A client, before starting
any interaction with the devices, must be authenticated and at each service call, needs to
provide the access token in the message header which is approved for authorization, being
token maximum lifetime 24 h.

Figure 5 shows the sequence diagram on how to interact with the smart gateway in
order to be able to access the devices of the SHLL. The LLG provides a Thing Descriptor
(TD) to the clients (e.g., Alice), the TD describes 2 endpoints: the /auth endpoint that a
client needs to use in order to get credentials in JWT format [34] (the OAuth 2.0 authoriza-
tion server role), and the /things endpoint that lists the accessible devices (the resource
server role in OAuth 2.0 specification [41]) to the client, for which the JWT bearer header
is required.

Figure 6 shows the code snippet where the TD of the Lab is presented. As it can
be appreciated, human readability is one of WoT Description’s key features, and several
aspects can be inferred by looking at the snippet:

• A Thing that is the “Smart Home Living Lab” that supports 2 security access defini-
tions. The first one, is an open access (nosec_sc), the second one (bearer_sc) is a bearer
authentication based on JWT. The default access way is the bearer authentication.

• This “Smart Home Living Lab” has a property “devices” that is a Thing and an action
that is “login”.

• The device property is read only, protected behind bearer authentication based on
JWT and only accessible with an HTTP GET request to the relative path /things.

• The login action is an open access functionality that includes an input and an output
object. The input is a JSON object formed by two string properties: a username and
a password. The output is a JSON object formed by one string property, JWT. This
functionality is accessible with an HTTP POST request to the relative path /auth
where the body of the request is the input object while the expected result is the
output object.

Sensors 2021, 21, 3587 13 of 23

Figure 5. Authorization and Authentication with LLG.

Figure 6. Living Lab Gateway Thing Descriptor.

The TD describes the SHLL’s devices discovery process, specifying a communication
with the LLG requiring the use of a token to access the JSON-LD device descriptions. These
JSON-LD also speciy the WoT context vocabulary definition [42] and the security schema
required to access and manage each device, i.e., the same JWT needs to be presented and
validated before every request is processed.

Sensors 2021, 21, 3587 14 of 23

3.3. From Datapoints to Things to Ontologies

The LLG provides semantic interoperability with standard vocabularies and ontologies
formatted as JSON-LD contexts. Using Calimero Library enables users to change the value
associated to a KNX® datapoint address on the KNX® infrastructure. Calimero library
already provides a certain level of abstraction, yet it lacks the association between the KNX®

group address and the device’s definition. In previous work [17] it was already provided a
mapping of KNX® datapoints on URI following a RESTful Richardson Maturity Model level
1 [43] so, in our approach, we aim at providing a compliance with a RESTful Richardson
Maturity Model level 3 HATEOAS (Hypermedia as Engine of Application State).

As described in Section 2.1.7, in a Level 3 API (three-tier pattern) a resource not only
describes the available actions to execute, but also describes the data itself. Certainly, prop-
erty names such as “title” or “author” have no meaning to a computer, however, by using
a shared vocabulary such as the one defined by Schema.org, machine-understandable
meaning can be associated to data. Thus, when using self-descriptive data, it is possible
to automate the interactions between systems with no human assistance. The process
description to define context sensitive data mappings to bridge between two contexts
with JSON-LD is shown in Figure 7, representing the JSON-LD that includes two con-
texts (+C1, +C2). If we remove the contexts (−C) we have just a JSON, but when we
add different contexts (e.g., +C1 for SAREF, +C2 for universAAL) we can map data on
different ontologies.

Figure 7. JSON-LD contexts mapping into context C1 and context C2.

Taking an example from from the Smart House, Figure 8 describes the TD displayed by
LLG of a on/off device (bathroom light) linked to SAREF and universAAL device ontology,
as implemented:

Figure 8. Thing description including SAREF and uAAL ontologies.

This TD is describing the device named “Bathroom Light switch” as a Thing but
also as a SAREF light and universAAL switch. It also has a property named “on” that is

Sensors 2021, 21, 3587 15 of 23

accessible through a bearer security schema and that is readable with an HTTP GET to
the path /1/properties/on and writable with a HTTP PUT to the path /1/properties/on,
sending the following data content: {“on”:true} or {“on”:false}.

3.4. Infrastructure and Deployment

The SHLL infrastructure is a premises components (KNX®-BUS and IP-KNX®) and
cloud components hybrid deployment. This section describes how the LLG has been
deployed in the cloud by using the Kubernetes engine, ensuring a reliable management of
external requests of interaction with the SHLL.

The LLG is formed by a java application and a database in MongoDB, packaged in
Docker images, which run in containers. The containers are then grouped in the same
logical pod using kubernetes engine.

The MongoDB database container, deployed in the Kubernetes pod, uses persistent
volumes and persistent volume claims to store data, being those independent of pod
life-cycles and able to retain data by restarting, reprogramming, and even deleting pods.
Additionally, the database requires a Persistent Volume to store data, while the Persistent
Volume Claims make requests for storage, allowing a user to consume abstract storage
resources with varying performance properties, delegating the management reliability,
availability, bandwidth and other variables to the cloud provider.

The following Kubernetes manifest shown in Figure 9 (used to create, modify and
delete Kubernetes resources) describes single-instance MongoDB Deployment. The Mon-
goDB container mounts the Persistent Volume at /var/lib/mongodb and then claims the
provider for it.

Figure 9. Kubernetes Manifest.

Figure 10 shows a manifest which describes the single-instance java Deployment.
The java app will access the database deployment within the same pod and it is defined as
a Service. The important point in the deployment of the java application is that the service
is associated with a Load Balancer that delegates to the cloud provider the management of
the availability of the service across different instance replicas of the servers.

By using Persistent Volume, Persistent Volume Claim and Load Balancer, LLG’s
scalability, fault tolerance and availability is granted by the cloud provider that manages
the Kubernetes cluster where the pod (that is instantiating the LLG) is running.

Sensors 2021, 21, 3587 16 of 23

Figure 10. Single-instance JAVA deployment.

Figure 11 illustrates the Scenario 1 tests performed at the Smart House Living Lab.
In this case, an early version of the Field Programmable Gate Array controller is using
the LLG to control different KNX® devices (main door, lights and windows), executing
activation sequences (as required by the Plan4Act project experiment). It also shows the
interaction with an IoT device (the Smart Cabinet) to also perform movement sequences,
such as switching compartments with different to show cooking ingredients.

Figure 11. Field Programmable Gate Array controlling KNX® devices (upper image) and an IoT
device (lower image) via LLG.

Table 3 shows all cases tested with LLG and the results reported to the European Commission.

Sensors 2021, 21, 3587 17 of 23

Table 3. List of test cases verifying interface between Plan4act’s FPGA controller and smart devices.
KNX® devices involved are: A-Main door; B-main lights; C-Bathroom door; D-Sliding window. IoT
device: Smart Cabinet, being B1 or B2 commands for choosing upper or lower compartment, and C1
or C2 for choosing left one or right one.

Description Target Status

Proactive control for sequence A-B-C Smart House Pass
Proactive control for sequence A-B-D Smart House Pass
Proactive control for sequence B1-C1 Smart Cabinet Pass
Proactive control for sequence B1-C2 Smart Cabinet Pass
Proactive control for sequence B2-C1 Smart Cabinet Pass
Proactive control for sequence B2-C2 Smart Cabinet Pass

Sequential control for sequence A-B-C Smart House Pass
Sequential control for sequence A-B-D Smart House Pass
Sequential control for sequence B1-C1 Smart Cabinet Pass
Sequential control for sequence B1-C2 Smart Cabinet Pass
Sequential control for sequence B2-C1 Smart Cabinet Pass
Sequential control for sequence B2-C2 Smart Cabinet Pass

3.5. Response Time Comparison Test Results

Aiming to find out whether the LLG performance in response latency was comparable
to direct HTTP loop, a paired test comparison was executed, creating Direct_connection and
LLG_connection variables. The reason behind this choice was the local network’s bandwidth
variability (induced by traffic). For this experiment, 500 response time samples were drawn
in pairs (one of each method) and a paired t-test was performed, considering the null
hypothesis as H0: µLLG − µD = 0 (as testing the difference between paired variables is
equivalent to testing µLLG = µD) and alternate H1: µLLG − µD 6= 0.

A priori, a resemblance between distribution plots can be observed in Figure 12 but
scatter plots present a vast amount of values laying far away from the trending region.

Figure 12. Direct_connection and LLG_connection scatter plots comparison.

Sensors 2021, 21, 3587 18 of 23

High variability induced by variable traffic load in our network can be appreciated in
the boxplot diagrams shown in Figure 13, but this variability was mitigated by statistically
removing outliers (z− score > 3).

Figure 13. Dataset comparison (N = 500). Response time including outliers (left) and statistically
removed outliers (right).

Moreover, the apparent resemblance between distribution of both variables can be
appreciated in Figure 14.

Figure 14. Direct_connection and LLG_connection distribution comparison.

Finally, to find out whether similarity between both variable’s means, the t-test value
were calculated for α = 0.05. Particularly, H0 can be rejected if | t0 >| tα/2,n−1 | (two-
tailed test). For this test, the computed value for t-test statistic is t0 = 1.09638, being
| tα/2,n−1 |= 1.960, thus the null hypothesis cannot be rejected. Additionally, p-value
computation resulted p= 0.2734, confirming that we cannot reject the null hypothesis at
the chosen level of significance. Other metrics worth reporting are the mean response
time for each group: µLLG = 243.45 ms; µD = 234.35 ms. Also, to include a reference of the
time consumed specifically by the communication protocol, the internal Smart Cabinet
processing mean time was measured, resulting the mean time elapsed to process a request’s
incoming characters and emmiting a response, µSC = 37 ms.

Finally, we can conclude that the mean response time is the same, either by using direct
requests or passing through the LLG, confirming that our solution can be competitive as it
does not add significant delay to the operation, yet including all above-mentioned benefits.

Sensors 2021, 21, 3587 19 of 23

4. Discussion

The presented solution proposes versatility and flexibility for devices management in
the home automation domain, as new devices can be injected and consequently operated
through the LLG, as long as they have a thing description specifying the binding proto-
col over HTTP. An interesting feature to consider adding for a more automated device
management (especially to populate the IoT devices list) could be the use of solutions for
automated IoT onboarding, such as AIDE mechanism [44], which could help recognizing
and auto-configuring surrounding devices avoiding manual mapping between devices
and their digital twins.

A key LLG feature is the high level of abstraction provided attributed to the ontological
data model which allows new device types to be easily adapted to the system, using
the specification of JSON-LD Context. This is an example of semantic interoperability,
where entities using difference reference models can interact due to semantic mapping
and inference.

The proposed solution is extensible and scalable by design, as it can be extrapolated to
other environments with the help of WoT standard, supposing no limitation in the amount
or complexity of devices and services contained in the Things Descriptor. The deployment
through Kubernetes system provides the LLG with capabilities such as scalability and
traffic management. Although these capabilities are not required for our Smart House
Living Lab, they may be fundamental for high performance demanding implementation
such as smart buildings or campuses. As described above, interaction test were performed
to measure the LLG’s incidence in response time against direct HTTP commands, and it
was proven that the measured difference is actually not significant, even more considering
the features offered by it.

Interestingly, the properties conferred by WOT standard allow the composition of
more complex and powerful services by combining each device’s properties, data and
available interactions, thus re-orienting and adding value to those elements and resources,
revamping their original purpose with no extra costs.

Another interesting feature successfully implemented is the inclusion of universAAL
devices ontology. It might not be as popular as other ontologies on the domain, for this
reason we have mapped also the SAREF ontology, which has more support from the
community and the European commission. However, both ontologies complement each
other, where universAAL has deeper taxonomy of home automation sensors and actuators,
SAREF focuses more on the process, adding extra versatility to the solution in terms of
device description and usability.

The proposed approach in this article differs from the presented examples in several
aspects. Compared to eWot, our solution uses JSON-LD instead of RDF for a more human
readable description to describe all resources, relying on ontologies to describe the context
to translate each one into a machine-understandable format.

Also our proposal does not use Software web enablement, as IoT-SIM, but rather
implements a Secure, trustable and scalable API to deal with devices description, data
and interoperability.

Regarding the model presented by the authors in [20], we consider that our solution
provides a substantial simplification to resolve what they call User request description and
User request resolutions (aimed at retrieving data or information of an entity or interacting
with it), as our solution is based on the standard and extensively used HTTP protocol.

A key point in which the presented solution may be improved is its security. Even
though high security standards implementation was not Plan4Act’s scope, user authenti-
cation and authorization was anyway ensured in order to protect important assets such
as the SHLL and the devices. In fact, much of the security, scalability and trust features
depend on the local deployment infrastructure, i.e., Controlled Network Management.
The authentication and authorization proposed is embedded in the solution, allowing
for the portability as-is to other compatible deployment. However, in the current state of
art, security typically relies on other micro-services, while our approach makes authen-

Sensors 2021, 21, 3587 20 of 23

tication and authorization extensible by default, allowing for single sign on system or a
more granular resources’ authorization. The OAuth 2.0 model enables the distribution of
these services through different providers, effectively allowing externalization of security
to other micro-services. In this line, using existing security management systems such
as Keycloak could be explored. Keycloack already has a plethora of interesting features
such as federated authentication, easily integrating single sign on systems or using other
identity providers such as social networks and even being able to combine them. Arbitrary,
but compatible with the standard, authentication and cybersecurity schemes can be used
through this externalization. It would also manage, with a great granularity degrees,
the authorization levels for each of the resources, and even doing so in a dynamic way
(automatically assigning privileges to injected devices or changing them on run-time).

The evolution of the system could be extended to other domains. For instance, the LLG
is primed to generate resources which could be used in machine learning and analytics
engines to generate interesting and innovative services. In this sense, other more complex
scenarios such as industries (e.g., to improve the process efficiency and safety conditions),
smart cities (e.g., to optimize public service management)and healthcare systems could
be the next challenges to be addressed, being the last one of high impact due to the
straightforward inclusion of FHIR HL-7 [45], an ontology dedicated to healthcare records,
images, wearable technology data and healthcare professional’s use. It could be possible
to integrate sensible patient data with our solution and provide the means to foster better
and faster diagnostics and healthier recommendations. As discussed above, for such
implementations, especially those related to industry and healthcare given that they are
a usual target for cyber attacks, more robust and sophisticated solutions such as those
presented in [46,47] could be considered to be included in future upgrades. Moreover,
by applying SRTIDE and DREAD methodology we found that our LLG has vulnerabilities
(social engineering attacks), yet they constitute acceptable risks and can be mitigated by
implementing modern authentication techniques such as the strong factor authentication
mentioned. However, for the LLG it was decided not to use them, because in the WoT
TD SecuritySchema object model, strong factor authentication is still not modelled. This
implies that including strong factor authentication in our Thing Description would be at
the expense of interoperability which is the main focus of our work.

Among the challenges (and lessons learnt), it is worth mentioning that when this
development started, it was based on early WoT versions, which were being updated
almost on a monthly basis, forcing our team to constantly update the code to cope with
it and delaying our progress at the initial phase. Another significant challenge was the
Kubernetes’ deployment. In terms of performance, Kubernetes system is optimal but it
is very complex to deploy and may result in one of the most burdening overhead efforts.
This fact for sure left room for improvements and we are exploring other systems such as
Open Shift to simplify LLG’s deployment, as the knowledge and experience demanded to
achieve a Kubernetes resilient deployment is considerable. On the other hand, in terms of
validation, it would have been useful to quantitatively and qualitatively measure user’s
experience while interfacing with LLG. Even though the validation phase was not in
Plan4Act project’s scope, these metrics could help us to support the LLG’s true impact and
help us determine the next steps. Finally, the integration of the mentioned technologies was
a straightforward process for the SHLL, but this may not be always the case. Within our
team, experts in ontologies (particularly SAREF and uAAL) had made previous progress
and the SHLL devices were already described and little effort had to be made to develop
and populate the Thing Descriptor.

5. Conclusions

Our results show that it was possible to access, consume and even add new devices
(IoT) to the existing ones listed on KNX® by using the LLG. This means that, at gateway
level, there is no difference among KNX® based devices and, to take our example of the air

Sensors 2021, 21, 3587 21 of 23

pollution sensor, they are presented through a common interface that is transparent to any
client that want to use them.

It was possible to successfully expose the interaction model to clients’ applications in
terms of properties, actions, and events, along with the associated data models and meta-
data, such as units of measure. Semantic descriptions of things were also achieved within
the Thing Description, as it describes each device and their context of operation by imple-
menting the standard ontologies, making this content usable and machine-understandable.

Communications metadata was also included in the Thing Descriptor, which describes
how the client platform can access things, supporting the implemented protocols and
standards. Moreover, security metadata was added to the description, stating what is
needed for secure access to a thing. In this case, the Security schema (JSON Web Token
Bearer) to be used in order to access to specific content that exposes how to access and
interact with the Smart House resources.

Given the different deployment settings at the SHLL and the results presented, it is
possible to state that the LLG achieved the expected results for device management and is
viable to be implemented as a Smart Home resources management system, to overcome
technology fragmentation in a scalable, trustable, and secure.

Author Contributions: Investigation: E.S.; Conceptualization, E.S., R.I.G.-B. and E.G.; methodology,
R.I.G.-B., E.S. and E.G.; Software, E.S. and A.M.M.-G.; Writting, E.S., D.R., D.F.C.-F.; Review and
editing, G.F., M.T.A.W. and M.F.C.-U. All authors have read and agreed to the published version of
the manuscript.

Funding: The deployment of the Living Lab Gateway was funded by European Union Horizon 2020
research and innovation program under the grant agreement PLAN4ACT No 732266.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Acknowledgments: Additionally, this article includes an implementation done under research and
innovation program under the Marie Skłodowska-Curie grant agreement ACROSSING No. 676157.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ariza, J.; Garcés, K.; Cardozo, N.; Sánchez, J.P.R.; Vargas, F.J. IoT architecture for adaptation to transient devices. J. Parallel

Distrib. Comput. 2021, 148, 14–30. [CrossRef]
2. Macharro-Cano, I.; Paredes-Valverde, M.A.; Alor-Hernández, G.; del Pilar Salas-Zárate, M.; Segura-Ozuna, M.G.;

Sánchez-Cervantes, J.L. PESSHIoT: Smart Platform for Monitoring and Controlling Smart Home Devices and Sensors.
In Proceedings of the International Conference on Technologies and Innovation, Guayaquil, Ecuador, 2–5 December 2019.

3. Farooq, M.O.; Pesch, D.; Wheelock, I. Home Automation System Coordinator Replacement With One-Touch Network Recommis-
sioning. IEEE Consum. Electron. Mag. 2020, 9, 57–65. [CrossRef]

4. Lee, K.; Caytiles, R.D.; Lee, S. A Study of the Architectural Design of Smart Homes based on. Int. J. Control Autom. 2016, 6,
261–266. [CrossRef]

5. Amazon.com. Amazon Alexa [En LíNea]. Available online: https://developer.amazon.com/es-ES/alexa (accessed on
8 December 2020).

6. W3C. WoT. Available online: https://www.w3.org/WoT/ (accessed on 15 October 2020).
7. Resource Description Framework (RDF). Available online: https://www.w3.org/RDF/ (accessed on 5 July 2020).
8. JSON-LD. Available online: https://w3c.github.io/json-ld-syntax/ (accessed on 20 November 2018).
9. Xu, J.; Lee, Y.-H.; Tsai, W.-T.; Li, W.; Son, Y.-S.; Park, J.-H.; Moon, K.-D. Ontology-Based Smart Home Solution and Service Compo-

sition. In Proceedings of the International Conference on Embedded Software and Systems, Hangzhou, China, 25–27 May 2009;
pp. 297–304. [CrossRef]

10. OneM2M, the IoT Standard. Available online: https://www.onem2m.org/ (accessed on 3 May 2021).
11. Open Connectivity Foundation. Available online: https://openconnectivity.org/ (accessed on 3 May 2021).
12. Berat Sezer, O.; Zafer Can, S.; Dogdu, E. Development of a smart home ontology and the implementation of a semantic sensor

network simulator: An Internet of Things approach. In Proceedings of the International Conference on Collaboration Technologies
and Systems (CTS), Atlanta, GA, USA, 1–5 June 2015; pp. 12–18. [CrossRef]

13. Lobaccaro, G.; Carlucci, S.; Löfström, E. A review of systems and technologies for smart homes and smart grids. Energies 2016,
9, 348. [CrossRef]

http://doi.org/10.1016/j.jpdc.2020.09.012
http://dx.doi.org/10.1109/MCE.2020.3002483
http://dx.doi.org/10.14257/ijca.2013.6.6.25
https://developer.amazon.com/es-ES/alexa
https://www.w3.org/WoT/
https://www.w3.org/RDF/
https://w3c.github.io/json-ld-syntax/
http://dx.doi.org/10.1109/ICESS.2009.60
https://www.onem2m.org/
https://openconnectivity.org/
http://dx.doi.org/10.1109/CTS.2015.7210389
http://dx.doi.org/10.3390/en9050348

Sensors 2021, 21, 3587 22 of 23

14. Security Recommendations in Azure Security Center. Available online: https://docs.microsoft.com/en-us/azure/security-
center/security-center-recommendations (accessed on 8 May 2021).

15. ENISA Good Practices for IoT and Smart Infrastructures Tool. Available online: https://www.enisa.europa.eu/topics/iot-and-
smart-infrastructures/iot/good-practices-for-iot-and-smart-infrastructures-tool (accessed on 14 May 2021).

16. IOT Security Compliance Framework. Available online: https://www.iotsecurityfoundation.org/best-practice-guidelines/
(accessed on 14 May 2021).

17. Bovet, G.; Hennebert, J. A web-of-things gateway for knx networks. In Proceedings of the Smart SysTech. European Conference
on Smart Objects, Systems and Technologies, Erlangen, Germany, 11–12 June 2013; pp. 1–8

18. Cimmino, A.; Poveda-Villalón, M.; García-Castro, R. ewot: A semantic interoperability approach for heterogeneous iot ecosystems
based on the web of things. Sensors 2020, 20, 822. [CrossRef] [PubMed]

19. Jabbar, S.; Ullah, F.; Khalid, S.; Khan, M.; Han, K. Semantic interoperability in heterogeneous IoT infrastructure for healthcare.
Wirel. Commun. Mob. Comput. 2017, 2017, 9731806. [CrossRef]

20. Yachir, A.; Djamaa, B.; Mecheti, A.; Amirat, Y.; Aissani, M. A comprehensive semantic model for smart object description and
request resolution in the internet of things. Procedia Comput. Sci. 2016, 83, 147–154. [CrossRef]

21. Desai, P.; Sheth, A.; Anantharam, P. Semantic gateway as a service architecture for iot interoperability. In Proceedings of the 2015
IEEE International Conference on Mobile Services, New York, NY, USA, 27 June–2 July 2015; pp. 313–319.

22. Kubernetes. Available online: https://kubernetes.io/es/ (accessed on 18 April 2020).
23. MongoDB. Available online: https://www.mongodb.com/ (accessed on 18 April 2020).
24. Győrödi, C.; Győrödi, R.; Pecherle, G.; Olah, A. A comparative study: MongoDB vs. MySQL. In Proceedings of the 13th

International Conference on Engineering of Modern Electric Systems (EMES)-IEEE, Oradea, Romania, 11–12 June 2015; pp. 1–6.
25. UniversAAL Device Ontology. Available online: https://github.com/universAAL/ontology/wiki/Devices (accessed on

10 November 2018).
26. SAREF Ontology. Available online: http://ontology.tno.nl/saref/ (accessed on 10 November 2018).
27. Web of Things (WoT) Thing Description. Available online: https://www.w3.org/TR/wot-thing-description/ (accessed on

16 April 2020).
28. Newman, S. Building Microservices: Designing Fine-Grained Systems; O’Reilly Media, Inc.: Newton, MA, USA, 2015.
29. Lewis, J.; Fowler, M. Microservices, a Definition of This New Architectural Term. March 2014. Available online: https:

//martinfowler.com/articles/microservices.html (accessed on 18 April 2020).
30. Using a Three Layer Architecture Model. Available online: https://docs.microsoft.com/en-us/windows/win32/cossdk/using-

a-three-tier-architecture-model (accessed on 15 September 2020).
31. Webber, J.; Parastatidis, S.; Robinson, I. REST in Practice: Hypermedia and Systems Architecture; O’Reilly Media, Inc.: Newton, MA,

USA, 2010.
32. HTTP over TLS. Available online: https://tools.ietf.org/html/rfc2818 (accessed on 15 June 2020).
33. Architecting for the Cloud AWS Best Practices February 2016. Available online: https://d0.awsstatic.com/whitepapers/AWS_

Cloud_Best_Practices.pdf (accessed on 7 December 2017).
34. JSON Web Token (JWT). Available online: https://tools.ietf.org/html/rfc7519 (accessed on 15 June 2020).
35. Teriús-Padrón, J.G.; Simeoni, E.; García-Betances, R.I.; Liappas, N.; Gaeta, E.; Cabrera-Umpiérrez, M.F.; Waldmeyer, M.T.A.

Autonomus air Quality Management System Based on Web of Things Standard Architecture. In Proceedings of the 2019
IEEE SmartWorld, Ubiquitous Intelligence and Computing, Advanced and Trusted Computing, Scalable Computing
and Communications, Cloud and Big Data Computing, Internet of People and Smart City Innovation–IEEE (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI), Leicester, UK, 19–23 August 2019; pp. 184–189.

36. Hernan, S.; Lambert, S.; Ostwald, T.; Shostack, A. Threat modeling-uncover security design flaws using the stride approach.
MSDN Magazine-Louisville, 16 October 2006; pp. 68–75.

37. Calimero 2.0 Library. Available online: https://sourceforge.net/p/calimero/wiki/Home/ (accessed on 18 April 2020).
38. Zimmermann, H. OSI reference model-the ISO model of architecture for open systems interconnection. IEEE Trans. Commun.

1980, 28, 425–432 [CrossRef]
39. Let’s Encrypt. Available online: https://letsencrypt.org/es/ (accessed on 18 April 2020).
40. Computer Networking Notes: /etc/shadow File in Linux Explained with Examples. Available online: https://www.

computernetworkingnotes.com/rhce-study-guide/etc-shadow-file-in-linux-explained-with-examples.html (accessed on
14 May 2021).

41. The OAuth 2.0 Authorization Framework. Available online: https://tools.ietf.org/html/rfc6749 (accessed on 15 June 2020).
42. Available online: https://www.w3.org/2019/wot/td/v1 (accessed on 15 June 2020).
43. Mehta, B. RESTful Java Patterns and Best Practices; Packt Publishing Ltd.: Birmingham, UK, 2014.
44. Zhang, H.; Uddin, M.; Hao, F.; Mukherjee, S.; Mohapatra, P. AIDE: Augmented Onboarding of IoT Devices at Ease. In Proceedings

of the 20th International Workshop on Mobile Computing Systems and Applications, Santa Cruz, CA, USA, 27–28 February 2019;
pp. 123–128.

45. FHIR HL-7. Available online: https://www.hl7.org/fhir/ (accessed on 18 April 2020).

https://docs.microsoft.com/en-us/azure/security-center/security-center-recommendations
https://docs.microsoft.com/en-us/azure/security-center/security-center-recommendations
https://www.enisa.europa.eu/topics/iot-and-smart-infrastructures/iot/good-practices-for-iot-and-smart-infrastructures-tool
https://www.enisa.europa.eu/topics/iot-and-smart-infrastructures/iot/good-practices-for-iot-and-smart-infrastructures-tool
https://www.iotsecurityfoundation.org/best-practice-guidelines/
http://dx.doi.org/10.3390/s20030822
http://www.ncbi.nlm.nih.gov/pubmed/32033027
http://dx.doi.org/10.1155/2017/9731806
http://dx.doi.org/10.1016/j.procs.2016.04.110
https://kubernetes.io/es/
https://www.mongodb.com/
https://github.com/universAAL/ontology/wiki/Devices
http://ontology.tno.nl/saref/
https://www.w3.org/TR/wot-thing-description/
https://martinfowler.com/articles/microservices.html
https://martinfowler.com/articles/microservices.html
https://docs.microsoft.com/en-us/windows/win32/cossdk/using-a-three-tier-architecture-model
https://docs.microsoft.com/en-us/windows/win32/cossdk/using-a-three-tier-architecture-model
https://tools.ietf.org/html/rfc2818
https://d0.awsstatic.com/whitepapers/AWS_Cloud_Best_Practices.pdf
https://d0.awsstatic.com/whitepapers/AWS_Cloud_Best_Practices.pdf
https://tools.ietf.org/html/rfc7519
https://sourceforge.net/p/calimero/wiki/Home/
http://dx.doi.org/10.1109/TCOM.1980.1094702
https://letsencrypt.org/es/
https://www.computernetworkingnotes.com/rhce-study-guide/etc-shadow-file-in-linux-explained-with-examples.html
https://www.computernetworkingnotes.com/rhce-study-guide/etc-shadow-file-in-linux-explained-with-examples.html
https://tools.ietf.org/html/rfc6749
https://www.w3.org/2019/wot/td/v1
https://www.hl7.org/fhir/

Sensors 2021, 21, 3587 23 of 23

46. Qiu, S.; Wang, D.; Xu, G.; Kumari, S. Practical and provably secure three-factor authentication protocol based on extended
chaotic-maps for mobile lightweight devices. IEEE Trans. Dependable Secur. Comput. 2020. [CrossRef]

47. Jiang, Q.; Zhang, N.; Ni, J.; Ma, J.; Ma, X.; ; Choo, K.K.R. Unified biometric privacy preserving three-factor authentication and key
agreement for cloud-assisted autonomous vehicles. IEEE Trans. Veh. Technol. 2020, 69, 9390–9401. [CrossRef]

http://dx.doi.org/10.1109/TDSC.2020.3022797
http://dx.doi.org/10.1109/TVT.2020.2971254

	Introduction
	Related Work
	Basic Idea
	Contribution

	Materials and Methods
	Materials
	Containers and Orchestration Technologies
	Smart House Living Lab
	MongoDB Database
	Structured and Linked Data Format
	Web of Things
	Microservices
	Three-Tier Architecture
	REST Interfaces
	Stateless Oriented Services

	Methods
	Implementation Scenarios
	Response Time Comparison Test
	Cybersecurity Model

	Results
	Dynamic ConﬁGuration and Injection of Devices
	Providing Security, Authentication and Authorization
	From Datapoints to Things to Ontologies
	Infrastructure and Deployment
	Response Time Comparison Test Results

	Discussion
	Conclusions
	References

