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Abstract: In unpredictable disaster scenarios, it is important to recognize the situation promptly and
take appropriate response actions. This study proposes a cloud computing-based data collection,
processing, and analysis process that employs a crowd-sensing application. Clustering algorithms are
used to define the major damage types, and hotspot analysis is applied to effectively filter critical data
from crowdsourced data. To verify the utility of the proposed process, it is applied to Icheon-si and
Anseong-si, both in Gyeonggi-do, which were affected by heavy rainfall in 2020. The results show
that the types of incident at the damaged site were effectively detected, and images reflecting the
damage situation could be classified using the application of the geospatial analysis technique. For
5 August 2020, which was close to the date of the event, the images were classified with a precision
of 100% at a threshold of 0.4. For 24–25 August 2020, the image classification precision exceeded 95%
at a threshold of 0.5, except for the mudslide mudflow in the Yul area. The location distribution of
the classified images showed a distribution similar to that of damaged regions in unmanned aerial
vehicle images.

Keywords: critical image identification; incident type definition; smartphone application;
emergency situation

1. Introduction

Mobile technology and social media are changing the way people communicate in
disaster situations, as well as in their daily lives [1]. Social media has emerged as a
useful technology that can support disaster management activities, including the rapid
detection of socially disruptive events and improvement of situational awareness [2,3].
On social media platforms, online users are classified as a new type of sensor, referred
to as human sensors, and the information collected from human sensors can be used to
identify crisis information specific to both individual residents and large geographic areas
during disasters [4]. Social sensing, which is a method of detecting incidents and analyzing
situations from data generated by human sensors, has the advantage of providing near-
real-time analysis of an event without burdening human resources engaged in disaster
risk management [5–8]. Social media platforms provide active communication channels in
emergencies, and as a result, first responders, decision makers, and the public can use this
information to gain insight into a given situation [9].

Posts on social media contain information about urgent situations, but most of them
are daily content. A number of studies have been conducted to extract valid information
related to emergency situations from the large number of social media posts. Recent
studies have detected emergency situations quickly through spatio-temporal analysis of
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posts [4,7,10] or have detected topics or disaster types from text and image contents to sup-
port appropriate rescue and response activities [11–17]. Disaster responders require both
temporal and spatial information about the location, severity, and scale of crisis situations;
in particular, location information is essential for understanding the impact of a disas-
ter [18,19]. However, social media users tend not to share their location owing to privacy
concerns, and less than 1% of posts on social media have geotag information [10,20,21]. To
overcome this, studies have been conducted to obtain the locations of events using textual
information mentioned in the content of posts. To extract incident and location information
from postings, Fan et al. [10] used the bidirectional encoder representations from trans-
formers (BERT) model for text classification and performed geographical mapping based
on the location information extracted from the text. In addition, Liu et al. [22] reported that
users at flood sites tended to tweet after moving to a safe place rather than posting directly
from the affected site. To overcome this problem, Wang et al. [23] and Liu et al. [22] applied
the optimal transport methodology, a domain adaptation technique, to relocate spatially
biased georeferenced tweets in historical flood areas. However, problems remain, such
as a lack of geotagged data, erroneous inferencing of the crisis location, and false alarms
inherent in the posted information [3,24,25].

Recently, crowd-sensing has attracted attention as a means of efficiently supporting
disaster management. Crowd-sensing collects information from specific applications or
platforms for disaster management purposes and can be used to provide useful information
about the impacts of extreme events [26]. In crowd-sensing applications, the desired sensors
and technologies can be applied, and precise location information can be collected from
specific sensors. Research has been conducted to propose a system architecture that
supports disaster management together with information and communication technology
(ICT) and cloud computing [24,27,28] and to develop smartphone applications that can
support a user-centered design and real-time updates [29,30]. However, verifying and
integrating the collected data is one of the issues to be addressed in order to obtain
valuable information [26].

When a large amount of data is collected, it is difficult for decision makers to check
all data, and to obtain valuable information, it is necessary to verify and integrate the
collected data [26]. However, research on data processing and the extraction of valid
information from crowdsourced data is insufficient. In the case of crowd-sensing data, a
significant amount of data may be collected in an area near an incident, and it is necessary
to perform a process of filtering the collected data, similar to that for data collected from
social media. However, crowd-sensing data require a technological approach to filtering
critical data from the numerous data collected at the emergency site, unlike social media,
which classifies emergency-related data from the data collected under normal conditions.

In this study, we propose a streamlined way to effectively, accurately, and promptly
recognize the situation when image data are collected from a smartphone during an emer-
gency. As a crowd-sensing application, a smartphone application was designed to collect
and share real-time information during a disaster. Videos and images are the most effec-
tive data sources for understanding disaster situations [31]. Images can provide specific
situational information for estimating risk, need, and damage [7]; thus, the smartphone
application was designed to collect video and mobile sensor data easily and to be avail-
able across a wide range of age groups. Data collected using the developed smartphone
application is processed in two steps based on cloud computing. First, an incident type is
detected through a clustering-based approach, and the critical images are classified using
spatial analysis techniques for each type of incident. The data collected using the proposed
smartphone application were processed and analyzed based on cloud computing. The pro-
posed approach is intended to provide information on the principal locations and images
of incidents through geospatial analysis to allow decision makers to effectively recognize
the situation in an emergency. To verify the effectiveness of the proposed methodology, it
was applied to the Icheon and Anseong regions of Gyeonggi-do, Korea, which suffered
damage during heavy rainfall in 2020.
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The rest of this manuscript is organized as follows. Section 2 provides an overview
of the recently developed related research. Section 3 describes the proposed streamline
for collecting crowdsourced data, detecting the event, and processing the collected data to
support disaster response activities. In Section 4, application of the proposed methodology
is explained, and the experimental results are derived using data collected for the actual
disaster-affected area. In Section 5, the research results are discussed, and Section 6
concludes the findings of the paper.

2. Related Works

Social sensing technology has been developed and widely applied to disaster scenarios
for situational awareness [7]. Research to analyze data collected from the public and
detect major events has mainly been conducted on social media data. In this section, we
investigated studies related to incident type detection, critical image identification, and
spatial analysis to extract disaster information.

2.1. Incident-Type Definition

Textual information can be used to track the temporal patterns of keywords and
to cluster words into topics [32]. Pohl et al. [33] proposed a TF-IDF-based simple natu-
ral language processing step to optimize word selection and compared self-organizing
maps and agglomerative clustering for sub-event detection. Pohl et al. [11] proposed
a two-phase clustering algorithm using location and time information to automatically
identify sub-events occurring in emergency situations. Fan and Mostafavi [21] proposed a
graph-based event detection method to identify credible and non-ambiguous situational
information related to infrastructure disruptions in social media. The proposed method
detects credible situational information by analyzing the similarity between posts and
captures spatio-temporal patterns of critical infrastructure events. Fan et al. [10] classified
posts into humanitarian categories using the pre-trained BERT model and identified events
through graph-based clustering to automatically detect the evolution of disaster across
different locations.

2.2. Critical Image Identification

In addition to text features, the image figures are also crucial in identifying informative
posts [14]. Images can provide information about the severity of damage and the urgency
of relief needs of victims in disasters [7,34]. Alam et al. [35] proposed an image-processing
system called Image4Act, which was based on the visual geometry group-16 (VGG-16)
model, and sought to support relief efforts by collecting, removing noise from, and classify-
ing images posted on social media. Li et al. [36] proposed a method to create a damage
detection map based on the VGG-19 model and to measure its severity for images collected
from social media. Weber et al. [16] trained the Resnet-18 model to classify images collected
from social media into 43 types of incidents using a significant number of class-positive and
class-negative datasets, and it could automatically detect incidents from images collected
from social media. Feng et al. [37] estimated water level using the body part information of
a detected person after classifying the geotagged images related to a flood and then created
a flood severity map.

2.3. Spatial Analysis

Spatial analysis based on location information can be used to classify meaningful
data from the crowdsourced data being collected. Geotagged tweets reporting situational
information tend to represent the situation in a specific area, and a large number of
geotagged tweets posted in the same region indicates a greater severity of damage and
more negative disturbances [7]. This trend is based on the behavioral patterns of citizens
when a specific incident occurs, and it can be assumed that the basic patterns of data
collected from social media and through crowdsourcing in a disaster situation are similar.
Fan et al. [7] applied one of the hotspot analysis techniques, the kernel density approach,
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to better estimate the size of an event based on this assumption. Hotspot analysis has been
used to identify regions with severe damage through the spatial analysis of disasters such
as hurricanes, forest fires, and landslides [38–40]. In particular, among hotspot analysis
techniques, Getis-Ord Gi* can separately identify clustered and random patterns, which
enables the classification of valid data [40].

Many technologies have been developed to detect emergencies using text and images
included in posts from social media platforms. Data collected from disaster-related crowd-
sourcing platforms are often similar in types of data collected from social media platforms
such as text, image, and video, but there are differences in the distribution and frequency of
the collected data. Therefore, we proposed a process to analyze the data collected from the
disaster-related crowdsourcing platforms using an algorithm developed for social media.

3. Materials and Methods

In the event of an emergency, the rapid identification of the location and conditions at
a site is one of the most important factors determining situational awareness. To support
decision-making procedures in emergencies, a holistic process is proposed, from data
collection to providing information to decision makers. Figure 1 schematically shows
the approach proposed for promptly recognizing a situation using crowdsourced data
in an emergency. The method that is proposed for extracting critical information from
crowdsourced data is divided into four major steps.

Figure 1. Schematic process for automatic data collection and situation awareness.

The first step is real-time data collection using a smartphone application. To collect
crowd-sensing data efficiently, a smartphone application was developed. Information can
be collected in real time from the incident site using smartphones. The second step is event
identification. If more than a certain amount of data is aggregated, it can be considered
that an event has occurred. Therefore, an area for performing the analysis is set based on
the collected location information. The third step is the delineation of the main incident
type. Different types of major damage were detected using the aggregated data over the
analysis area. The final step is the identification of the principal image. For each type of
major damage, images that reflect the situation well are classified, and the location of major
damage is identified using the location information of the classified images. Based on the
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proposed methodology, prompt situation awareness can be achieved, and decision making
can be supported. Each step is explained in the following sections and subsections.

3.1. Data Collection Using Smartphone Application

This section introduces a smartphone application developed to collect crowdsourcing
data from the public and describes a streamlined way to collect data based on a cloud
server and provide it to decision makers.

3.1.1. Smartphone Application Development

Owing to the rapid increase in smartphone use and the development of related
applications, smartphone applications are widely used in the private sector as well as in
the public domain [41]. Recently, mobile crowd-sensing has attracted increasing attention
owing to its suitability for a new type of context-aware application and a wide range
of services [42]. Mobile crowd-sensing based on mobile devices enables the collection
of local spatial information and knowledge, and its dissemination to other users and
communities [42–44]. Accordingly, using smartphone applications, on-site information can
be crowdsourced through local people involved in evolving situations.

A smartphone application was developed for real-time information sharing of emer-
gency situations. Because the data collected along with the location information are shared
through the cloud server, the smartphone application can run only when the network and
global positioning system (GPS) are connected. When the application is run, the camera
screen is the main interface, and the sensor information collected through the application
can be checked. Smartphone sensors such as GPS receivers, accelerometers, gyroscopes,
and magnetometers are the main sources of data. Using the data collected from the smart-
phone, the location and direction from which the images were taken can be recovered, and
the locations of the images are then displayed on a web-based map.

3.1.2. Processing and Utilization of Collected Data

The proposed streamline using a smartphone application is shown in Figure 2. It
basically describes data flows, including data collection, data sharing, data analysis, web-
based visualization, and information delivery to decision makers. Data can be collected
by public officials who check and investigate the site when an incident occurs, volunteers
who report emergency situations and support rescue activities, and citizens in the vicinity
of the emergency situation. When a user notices a serious situation and takes images
of a dangerous spot using the developed app, those images along with the smartphone
sensor data are transmitted to the cloud server automatically. As the app is developed
for easy operation, it can be readily used by the private sector, such as local residents, as
well as public officials who are responsible for reporting and recording the situation at the
disaster site.

The patterns of data collected in normal situations and emergencies may be quite
different. While there are little or no data collected in normal situations, when an emergency
situation occurs the amount of data can rapidly increase in a short time. Depending on the
scale of the disaster and the number of citizens near the scene, the amount of data collected
may vary significantly, making the availability of a flexible data storage method essential.
Cloud computing technology can be a good solution owing to its flexible and distributed
resource allocation through the Internet environment [45]. In particular, when developing
an emergency management system, fast data transfer and effective resource utilization are
key factors for bridging the gap between technology and first responders [28].
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Figure 2. Cloud computing-based automatic situation awareness process using smartphone application.

Cloud computing is a large-scale distributed computing architecture that provides
storage and computing services to public institutions and individuals over the Internet [46].
The public cloud is the most common type of cloud computing deployment and includes
services such as Amazon’s Amazon Web Services (AWS) and Microsoft’s Azure. Through
public cloud services, users can allocate and use as many cloud resources as they require,
with unlimited scalability and low cost [28].

Microsoft’s Azure cloud service was used in this study. The image data collected
from the smartphone application are stored in Azure Blob Storage, which is an object
storage solution for the cloud and is optimized to store massive amounts of unstructured
data [47]. The collected sensor data are stored in the Azure Structured Query Language
(SQL) Database, which provides the necessary SQL databases and fills them with tables
and data [47]. Data collected by users can be stored on cloud servers and analyzed based
on cloud computing using data collected at specific spatial units. Algorithms to analyze
the data within the cloud server are described in detail in Sections 3.2–3.4. The results of
the analysis are visualized on a web-based map and shared with disaster management
agencies, central governments, and local governments to support prompt and appropriate
decision making.

3.2. Event Identification

To efficiently perform situational awareness based on crowdsourced data, it is critical
to set a criterion for recognition as an event by using the pattern of data collected in an
emergency situation. To achieve a balance between information redundancy and mapping
accuracy when analyzing social media data, previous studies used methods such as merg-
ing collection data based on the distance between location information extracted from posts
and performing analysis by generating polygonal grids based on spatial regions [4,10]. In
the case of social media, where activities are conducted periodically, event sensing through
the comparative analysis with usual sensing patterns may be a solution. However, in
this study, a disaster-related smartphone application was developed, and an analysis was
performed based on the data collected. In cities, a large amount of data can be collected
because many people are concentrated in localized areas, while in the suburbs, even if a
disaster occurs, the amount of data collected may be small because the number of residents
in the affected area is small. Therefore, the density of data collected when an event occurs is
related to the number of people living in the area, which can have significant implications
in event detection.
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The penetration rate of smartphones in Korea was approximately 95% in 2018, the
highest level worldwide, and the penetration rate of smartphones for users over the age of
50 has reached 91% [48]. With the widespread use of smartphones, information collected by
the private sector is extremely useful in various fields, and when it is difficult for reporters
to quickly move to a scene, such as after traffic accidents or disasters, there have been cases
when they used videos or images directly recorded with the smartphones of citizens [49].
In the United States, the news network CNN launched iReport in 2006 as a portal through
which citizens can voluntarily post and receive information on emergency events, and the
number of videos and photos posted exceeded 200,000 in two years [50]. YTN, which is a
Korean news broadcasting channel, started operating MJ (Mobile Journalist) in 2015, and in
2016, the number of reported items using mobile and online portals reached 30,000 [49]. As
such, the following methodology was proposed under the assumption that most citizens
own smartphones and that reporting activities are frequent.

In Korea, the output area (OA) is used as the minimum unit boundary for statistical
information by Statistics Korea. Population is applied as a basic factor when setting
the OA, and the OA is optimally set to 500 people (minimum 300 people, maximum
1000 people) [51]. Assuming that approximately 10 people in an OA each take about five
images, more than 50 data can be collected, and more than 50 data collections per OA are
proposed as an analysis performance criterion to recognize that an incident has occurred.
Depending on the magnitude and location of the event, crowdsourced data can be collected
in a single OA or across multiple OAs. Therefore, it is necessary to establish criteria for
performing an analysis by merging data corresponding to the same event. The OA has
different spatial sizes in cities and suburbs, and it can be set to be very small in areas with
high population densities, such as apartment complexes. The extent to which the collected
data can represent the corresponding OA can be expressed in the form of a buffer. When
setting the buffer of the collected data, it can be set in proportion to the area of the OA
containing the data. The size of the buffer zone is set based on the location information of
the collected data, and the data where the generated buffers overlap are merged. Based
on this criterion, it can be determined whether an emergency situation has occurred in
a specific area and whether there is a need to continuously monitor the situation after
event detection.

3.3. Definition of Major Incident Type

In social media, as many users share images and textual information about a given
incident site in real time over various regions, it is possible to acquire an overwhelming
amount of data compared to other means. Thus, existing studies focus on developing algo-
rithms for classifying disaster-related data and filtering unnecessary data. Recently, deep
learning-based computer vision methodologies have been expanding into various fields
with excellent performance. However, most machine-learning technologies are limited in
their ability to precisely detect and filter related images representing real-time situations
and damage [7]. In addition, disaster sites can be described in different ways depending on
the magnitude of the damage, regional characteristics, and weather conditions; moreover,
in the case of multiple types of damage, it can be difficult to clearly classify a site using
simple classes. To address this uncertainty, an incident type is defined using images col-
lected for a set area, and a process of filtering data using spatial analysis according to each
type of incident is proposed, as shown in Figure 3. Contents on data filtering using spatial
analysis are described in Section 3.4.



Sensors 2021, 21, 3562 8 of 24

Figure 3. Process of data processing for detecting damage types and image filtering.

3.3.1. Incident Detection Algorithm

As discussed above, several algorithms have been developed for extracting disaster
information from images, but most of the research has been conducted to classify disaster-
related images from images uploaded daily to a social network. Related studies have
divided major incidents into five or six categories (e.g., earthquakes, fires, and floods) with
limited types [52–54]. However, depending on the risk factors and local characteristics,
damage caused by major incidents can be interpreted from various viewpoints. In addition,
when a disaster occurs, various types of incidents can occur in the form of complex
situations. Therefore, to accurately understand the damage situation, a category-based
analysis that considers sufficient incident types should be performed.

Weber et al. [16] reported that existing incident datasets are not sufficient to perform
incident detection in terms of both the number of images and categories. To overcome
this, a larger, more complex, and diverse incident dataset was constructed by labeling
446,684 positive images and 697,464 negative images for 43 incident categories [16]. To
perform training using this dataset, a convolutional neural network (CNN) with two
task-specific output layers was used, with Resnet-18 [55] used as the backbone. To solve
the classification problem for negative images by approaching the detection method, a
class-negative loss was introduced. Class-negative loss is a modification of the existing
binary cross-entropy loss, and a weight vector is added to toggle the loss using a partial
label consisting of the class-positive and class-negative labels [16]. As such, Weber et al. [16]
proposed a powerful model that can detect accidents in the wild using a large, complete,
and diverse dataset that classifies the output into 43 incidents and 49 places, and includes
the confidence score for each classified result.

In this study, the pre-trained model built by Weber et al. [16] was used, and based
on this, the major types of incident were defined and principal images were selected.
Weber et al. [16] analyzed the incident classification accuracy using a test set with positive
labels, and found that the top-1 accuracy was 77.3% and the top-5 accuracy was 95.9%.
Therefore, the incident type (with confidence score) was extracted up to the 5th rank for
each image, and it was used as an element to proceed with clustering.

3.3.2. Clustering Approach

An emergency situation may not necessarily be related to one large accident, and
many side events in different regions at different times may occur in a large-scale crisis [11].
Pohl et al. [11] detected sub-events using a clustering method that does not require labeling
because people use different terms to describe crises that have their own characteristics
such as area of occurrence, scalability, and impact. The data configured for clustering is
composed of the top-5 incident types and confidence scores for each incident. In this study,
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the top-5 incident types and confidence scores were extracted from each image, and the
four clustering algorithms were used to detect the types of incidents in the analysis area.

K-means clustering algorithm has been used to detect topics in social media data
owing to its efficiency and easy implementation [13,56,57]. The K-means clustering is an
unsupervised clustering algorithm that finds groups in data. Given the observations, n
observations are partitioned into k(≤n) clusters by minimizing the within-cluster sum
of squares, which is defined as the sum of the distances of each point in the cluster for
k centers.

Pohl et al. [33] used self-organizing map and agglomerative clustering for sub-event
detection from social media data and applied it to datasets with four different character-
istics, confirming that both algorithms identified important sub-events. Agglomerative
clustering is hierarchical clustering, and the most similar clusters are merged based on the
distance measure at each step [58]. In the initial stage, each input is set as an individual
cluster, and the process of merging similar clusters ends when the specified number of
clusters is obtained and returns the cluster [58]. A self-organizing map is an artificial
neural network based on an unsupervised learning method, and it does not require prior
knowledge of data distribution. The self-organizing map reduces the dimensionality of
multi-dimension feature vectors and performs clustering at the same time [11]. Visualizing
complex non-linear multivariate data in a two-dimensional space brings the advantage
that the pattern of the data can be clearly expressed.

In K-means clustering and agglomerative clustering, which require the designation of
the number of clusters in advance, the number of clusters was designated as five. After
performing the clustering, there are still various incident types mixed in each cluster.
Therefore, it is necessary to define the types of incidents reflected by each cluster. When
each of the top-5 incident types extracted from each image was referred to as content, the
content with a confidence score lower than 0.5 for all contents was removed. By calculating
the number of incident types remaining for each cluster, the incident type with the highest
frequency is defined as the incident type corresponding to the cluster. At this time, if there
is a cluster designated as the same incident type, it is considered as one cluster.

Tweets, including credible situation information, tend to be retweeted repeatedly by
other users in a short period of time [7,10], and the reliability of contextual information
can be determined based on the similarity of content between tweets posted by different
users [59]. Fan and Mostafavi [21] proposed a graph-based event detection method to
identify reliable and unambiguous situational information about a specific incident from
social media, and a graph-based clustering methodology was used to identify critical
tweets [7,10]. Graph-based clustering examines the distance between each data and builds
semantic graphs based on their similarities. Distance is measured using cosine similarity.
After calculating the sum of the weights connected by each node in the configured graph,
giant components are detected and identified as credible and critical posts. As in the case
of applying the aforementioned clustering method, when a graph is constructed using the
data used in this study, each node includes the top-5 incident types. Therefore, as before,
all contents with a confidence score lower than 0.5 were removed. For remaining content,
the sum of the weights calculated at the node containing each content was considered as
the score of each content. When the sum of the content scores according to incident type
was calculated, the highest incident type was detected up to the top 5.

3.3.3. Categories of Incident Types

The model proposed by Weber et al. [16] includes 43 incident categories, including
non-emergency categories such as under construction, dirty contaminated, and traffic jam.
Because the purpose of this study is to recognize emergencies promptly, the categories pro-
posed by Weber et al. [16] were re-categorized to detect major incident types corresponding
to emergencies.

The ultimate goal of classifying images according to damage type is to enable the
authorities to direct appropriate resources for each situation [52], and Mouzannar et al. [52]
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and Amin et al. [53] divided damage into five categories based on this goal in order to
classify the data collected from social media: (1) infrastructural damage, (2) damage to
natural landscape, (3) fire damage, (4) flood damage, and (5) human damage. In the case
of human damage, it provides important information that requires prompt response, but
we did not consider it because the purpose of our study was to classify principal images
based on geospatial analyses, and to transmit information about the location of heavily
damaged areas. In order to support decision makers in performing appropriate response
activities, the 43 incident categories of Weber et al. [16] were re-categorized based on the
categories proposed by Mouzannar et al. [52], and the re-categorization result is listed
in Table 1. Among the incident types extracted through analysis, only the incident type
corresponding to “main” was selected.

Table 1. Re-categorization of incident types.

Category [52,53]
Incident Type [16]

Main Subsidiary

Infrastructural damage Collapsed, Earthquake, Damaged Blocked, Sinkhole

Damage to natural landscape Landslide, Mudslide mudflow,
Rockslide rockfall

Dirty contaminated, Under
construction, Drought

Fire damage Wildfire, On fire, Fire whirl, With smoke Burned

Flood damage Flooded Tropical cyclone, Heavy rainfall, Tornado,
Hailstorm, Storm surge, Derecho, Fog

Other damage Snow-slide avalanche, Volcanic eruption,
Nuclear explosion

Ice storm, Snow covered, Dust sandstorm,
Thunderstorm, Dust devil, Traffic jam, Oil
spill, Ship boat accident, Airplane accident,
Car accident, Train accident, Bus accident,
Bicycle accident, Motorcycle accident, Van

accident, Truck accident

3.4. Image Filtering Based on Geospatial Analysis

When the amount of data is not large, information pertaining to the emergency
situation can be provided based on the confidence score for the detected incident type.
However, when the amount of collected data increases to several hundred data or more,
the decision maker cannot check all images, and the analysis using the incident detection
algorithm can lead to different results depending on the local conditions. Therefore, key
situational information that can support efficient decision-making should be filtered and
provided to decision makers. The key objective of this procedure is to identify the major
affected areas and to classify the principal images to support efficient decision making.

The Getis-Ord Gi* [60] methodology was used to identify the locations of hot spots.
Gi* has the advantage of being able to test statistical significance by calculating the z-score,
and it is very useful because it serves as an indicator of local spatial autocorrelation [61].
This method evaluates the degree to which features with similarly high or low values exist
around each feature [62]. In the heat map obtained as a result of the analysis, statistically
significant spatial clusters can be identified for both hot spots (with high cell values) and
cold spots (with low cell values). Getis-Ord Gi* can be calculated using Equation (1).

G∗
i =

∑n
j=1 wijxi − X ∑n

j=1 wij

S

√
n ∑n

j=1 w2
ij−
(

∑n
j=1 wij

)2

n−1

(1)

where S is the standard deviation, wij is the value of the spatial weight matrix, n is the total
number of samples, xi is the attribute value of object j, and X is the average value of the
space unit. i and j refer to the units of space of an individual entity. For each incident type
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analyzed above, hot spot analysis was performed, and the attribute value of each point
was assigned a confidence score for the incident type extracted from the image.

4. Case Study of Heavy Rainfall in 2020 in the Korean Peninsula
4.1. Study Area and Dataset

In Korea, the rainy season in the summer of 2020 lasted for a total of 54 days, starting on
24 June and ending on 16 August in the central region, ranking as the longest rainy season
since 1973, when meteorological observations were expanded nationwide [63]. An average
of 858 mm of precipitation occurred across Korea, excluding Jeju Island, which accounted
for about 66% of the annual average of 1299.7 mm [63]. It caused severe flood damage
across the country, and in August, 38 cities and 36 towns were declared special disaster
areas as a result of heavy rainfall [63]. To verify the proposed processes, the study areas
were chosen considering the accessibility of data acquisition as the key factor. The study
areas were Sangyang-ri, Yul-myeon, Icheon-si (Yul), Hwabong-ri, Iljuk-myeon, Anseong-
si (Iljuk), and Jangwon-ri, Juksan-myeon, Anseong-si (Juksan) located in Gyeonggi-do,
among the areas affected by the heavy rainfall on 2 August 2020.

Some sections of the bank of the Sanyang Reservoir in Yul-myeon collapsed and
the Sanyangcheon Stream overflowed; as a result, the entire Sanyang 1-ri village located
under the reservoir was submerged, and more than 10 households flooded [64]. In Iljuk-
myeon, the soil that was shifted by a landslide hit a poultry farm and a house, leading to a
casualty [65]. In Jangwon village in Juksan-myeon, the foundation of the mountain behind
the village was weakened and the soil was swept away, resulting in seven households
being damaged or buried [66].

Data were collected using a smartphone application at the affected area on 5 August
and 24–25 August after the accident. On 5 August rainfall continued, and the debris was
being cleaned up, but the damage remained. During 24–25 August, the rainy season
was over, the disaster waste had been cleaned up to some extent, and restoration was in
progress. The mobile devices used for data collection were Galaxy S7 Edge, Galaxy S8 Plus,
and Galaxy S9 manufactured by Samsung.

The smartphone application data used for the analysis included 1473 images from
Yul, 638 images from Juksan, and 468 images from Iljuk. The data collected on 5 August
provided extensive data on the affected areas, and the data collected during 24–25 August
were largely from major damaged and surrounding areas. The data collected per region
are shown in Table 2, and the distribution of the collected data is shown in Figure 4. The
background maps in Figure 4 are aerial orthoimages obtained from the National Geographic
Information Institute. In addition, during 24–25 August, FireFly6PRO (BirdsEyeView
Aerobotics, NH, USA) equipped with SONY ILCE-6000 (Sony, Tokyo, Japan) was used to
acquire unmanned aerial vehicle (UAV) images of the study area. To compare the results of
the analysis with the actual location of the damaged area, a UAV-based orthoimage was
generated using Agisoft Metashape software, and was used as a background map to verify
the analysis results.

Table 2. Experiment dataset.

Study Area Census Output Area (km2)
Amount of Collected Data

5 August 24–25 August

Yul 7.5314 500 973
Iljuk 5.2513 434 204

Juksan 3.9827 - 567
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Figure 4. Smartphone application data acquired from study area: (a) Yul, (b) Iljuk, and (c) Juksan. The coordinates refer to
WGS84 (EPSG: 4326).

4.2. Result of Incident-Type Definition

Analyses were performed according to the data collection date and region, and an
incident detection algorithm [16] was used to extract incident types and confidence scores
for up to five ranks for each image. When considering the incident types extracted for the
top-1 incident type, for the data collected on 5 August and 24 in Yul, 20 and 25 incident
types were extracted, respectively, and for the data collected on 5 August and 25 in Iljuk,
14 and 21 incident types were extracted, respectively. For the data collected on 25 August
in Juksan, 17 incident types were detected. Out of 43 incident types, 31 incident types were
detected for the five cases.

Weber et al. [16] filtered images with confidence scores of 0.5 and 0.9 for Flickr and
Twitter images, respectively, and the same criteria were applied to the images collected
from our study area. Figure 5 shows the number of images with a confidence score of
0.5 or higher for the top-1 incident type of the collected images. Although many images
are included for the incident types related to the real damage situation, there is a limit to
specifying the damage types. For the top-1 incident type with a confidence score of over
0.9, mudslide mudflow (5 August, Yul), burned (5 August, Iljuk; 25 August, Juksan), and
under construction (24 August, Yul; 25 August, Juksan) were detected, but these results
were insufficient to reflect the entire disaster scenario. The information extracted from each
image does not compensate for the uncertainty of the machine-learning technique, and an
additional filtering procedure is necessary to extract accurate information.

Figure 5. Number of images with confidence score over 0.5 for top-1 incident.
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The top-5 incident types detected from images were set as keywords for data, and a
clustering approach was applied. Four clustering methods were used: K-means clustering,
agglomerative clustering, self-organizing map, and graph-based clustering. Table 3 shows
the incident types extracted according to each clustering approach.

Table 3. Result of incident detection through clustering approaches. Blue indicates the filtered results by Table 1.

Study Area
(Date) Cluster K-Means

Clustering
Agglomerative

Clustering
Self-Organizing

Map
Graph-Based

Clustering

Yul
(5 August)

1 Mudslide mudflow Mudslide mudflow Landslide Landslide
2 Landslide Landslide Mudslide mudflow Mudslide mudflow
3 Dirty contaminated Dirty contaminated Dirty contaminated Dirty contaminated
4 Collapsed Collapsed Collapsed Collapsed
5 Sinkhole Drought Flooded Flooded

Iljuk
(5 August)

1 Landslide Landslide Landslide Landslide
2 Mudslide mudflow Mudslide mudflow Mudslide mudflow Mudslide mudflow
3 Burned Burned Burned Earthquake
4 Earthquake Earthquake Earthquake Burned
5 Dirty contaminated Dirty contaminated Dirty contaminated -

Yul
(24 August)

1 Dirty contaminated Dirty contaminated Dirty contaminated Dirty contaminated
2 Under construction Under construction Under construction Under construction
3 Landslide Landslide Landslide Landslide
4 Drought Drought Drought Drought
5 Sinkhole Mudslide mudflow Mudslide mudflow Mudslide mudflow

Iljuk
(25 August)

1 Landslide Landslide Landslide Landslide
2 Mudslide mudflow Mudslide mudflow Mudslide mudflow Mudslide mudflow
3 Dirty contaminated Dirty contaminated Dirty contaminated Burned
4 Drought Drought Burned Dirty contaminated
5 Burned - Drought Drought

Juksan
(25 August)

1 Landslide Landslide Landslide Landslide
2 Under construction Under construction Under construction Under construction
3 Drought Drought Dirty contaminated Drought
4 Burned Burned Burned Burned
5 Dirty contaminated - - Dirty contaminated

In most cases, landslides were identified as the most important cluster. In the images
collected on 5 August, mudslide mudflow was detected as a major cluster as the soil that
was swept away owing to continuous rainfall was not cleaned up. However, in the case of
the images from 24–25 August, a large portion of the dirt that was pushed down was in the
process of being cleaned up, and dirty contaminated and drought were detected as some
dirt remained in a dry state. In the case of Iljuk on 5 August, earthquake was detected as
an accident in which a poultry farm and house collapsed. In the case of Yul and Juksan,
which were damaged villages, under construction was detected as a type of incident as
restoration activities were being carried out during 24–25 August.

In order to extract incident types related to emergency situations, the results of ex-
tracting only the incident types corresponding to “main” in Table 1 are indicated in blue
in Table 3. It can be found that not only incidents such as dirty contaminated, under
construction, drought not related to emergencies, but also incidents of burned and sinkhole
not related to the study area are excluded.

Comparing according to the clustering method, flooded was not detected when K-
means and agglomerative clustering algorithms were applied to Yul data on 5 August. For
Yul on 24 August, Mudslide mudflow was not detected only when K-means clustering was
applied. Incident types that vary depending on the clustering method can be said to be a
type related to the field situation, although it is ambiguous to be considered as the main
type. Except for these two cases, the same incident types were detected, and analysis was
performed on all finally detected types.
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4.3. Result of Principal Image Classification

All of the images included in the incidents in the 1st to 5th priority, in which each
defined incident was detected from the images, were targeted, and the main event location
and principal images were identified through spatial analysis for incident sets for each case.
In the hot spot analysis, the location information was used as the sensor data collected
from the smartphone application, and the attribute value used the confidence score for the
incident to be analyzed. The hotspot analysis results for the landslide incident for Yul and
Iljuk on 5 August are shown in Figure 6. Analysis results are analyzed as “hotspot,” which
has concentrated high values, and “coldspot,” which has concentrated low values; images
which were included in a clustering of hotspots with confidence intervals of 90%, 95%, and
99% were targeted.

Figure 6. Hotspot analysis on landslide incident using 5 August data: (a) Yul and (b) Iljuk. The coordinates refer to WGS84
(EPSG: 4326).

Given that there are images representing various degrees of severity, providing images
reflecting the serious situation to support decision-making can contribute to appropriate
response activities by authorities. The evaluation was performed based on the severity
of the event in which the final classified images were included. Ground truth data were
created by manually classifying the level of damage in the collected images into five
categories: very heavy, heavy, moderate, slight, and none. A threshold value was applied
to the confidence score of the images extracted through hotspot analysis, and the degree
of severity of the classified images was analyzed according to the change in the threshold
value. The severity of the images classified according to the change in the threshold
value was compared for the results with and without hotspot analysis; these are shown in
Tables 4 and 5, respectively.

In both cases, the number of classified images decreased as the threshold increased,
and a number of images with categories corresponding to moderate, slight, and none
were excluded. With respect to the number of classified images, a smaller number of
images were classified when hotspot analysis was performed, and images were effectively
filtered according to the severity of the classified images. However, in the case of the
earthquake in Iljuk on 5 August, based on hotspot analysis, the spatial distribution of
images corresponding to the incident was insignificant, and related images were not
classified. In the case of Iljuk, both the collapse of the structure and damage to the sediment
flow resulted from the landslide, and these damages were included in the collected images.
When multiple damage types are included in one image, it is difficult to predict which
damage type the incident detection algorithm will interpret as having more weight. For the
result of the earthquake incident without hotspot analysis, the number of images detected
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with a confidence score above 0.5 is very small, which indicates that the images were
analyzed with an emphasis on landslide damage in the model.

To evaluate the precision of the classified images, those classified as very heavy and
heavy were regarded as true, and the ratio of the images corresponding to true among the
classified images was calculated. The results of analyzing the image classification precision
according to the change in the threshold are shown in Figures 7 and 8. From the 5 August
dataset, without hotspot analysis, the true proportion tends to be irregular, while with
hotspot analysis, except for the aforementioned earthquake in Iljuk, all images with a
confidence score above 0.5 were classified as having incurred serious damage.

Table 4. Number of images classified by analysis (5 August dataset).

Incident Threshold
Without Hotspot Analysis With Hotspot Analysis

Very Heavy Heavy Moderate Slight None Very Heavy Heavy Moderate Slight None

Yul-
Landslide

0.1 175 75 11 15 1 74 46 1 3 1
0.3 84 42 4 4 0 47 30 0 1 0
0.5 46 20 2 0 0 31 17 0 0 0
0.7 10 5 1 0 0 10 5 0 0 0
0.9 0 0 0 0 0 0 0 0 0 0

Yul-
Mudslide
mudflow

0.1 218 44 5 8 0 110 20 0 1 0
0.3 112 19 0 3 0 69 10 0 0 0
0.5 56 13 0 1 0 39 9 0 0 0
0.7 20 4 0 1 0 16 3 0 0 0
0.9 2 0 0 0 0 2 0 0 0 0

Yul-
Flooded

0.1 46 18 6 5 1 16 7 1 1 0
0.3 7 7 0 0 0 3 6 0 0 0
0.5 2 3 0 0 0 1 3 0 0 0
0.7 0 0 0 0 0 0 0 0 0 0
0.9 0 0 0 0 0 0 0 0 0 0

Yul-
Collapsed

0.1 17 25 0 1 0 6 19 0 1 0
0.3 9 8 0 0 0 4 8 0 0 0
0.5 2 3 0 0 0 1 3 0 0 0
0.7 2 0 0 0 0 1 0 0 0 0
0.9 0 0 0 0 0 0 0 0 0 0

Iljuk-
Landslide

0.1 300 34 6 0 0 59 0 2 0 0
0.3 222 12 1 0 0 52 0 0 0 0
0.5 129 7 1 0 0 39 0 0 0 0
0.7 31 3 0 0 0 13 0 0 0 0
0.9 0 0 0 0 0 0 0 0 0 0

Iljuk-
Mudslide
mudflow

0.1 242 19 3 1 0 83 6 0 1 0
0.3 82 9 0 0 0 35 5 0 0 0
0.5 27 5 0 0 0 10 2 0 0 0
0.7 3 0 0 0 0 0 0 0 0 0
0.9 0 0 0 0 0 0 0 0 0 0

Iljuk-
Earthquake

0.1 64 5 0 1 0 0 0 0 0 0
0.3 26 3 0 1 0 0 0 0 0 0
0.5 12 0 0 0 0 0 0 0 0 0
0.7 1 0 0 0 0 0 0 0 0 0
0.9 0 0 0 0 0 0 0 0 0 0
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Table 5. Number of images classified by analysis (24–25 August dataset).

Incident Threshold
Without Hotspot Analysis With Hotspot Analysis

Very Heavy Heavy Moderate Slight None Very Heavy Heavy Moderate Slight None

Yul-
Landslide

0.1 93 90 59 24 4 49 41 11 11 2
0.3 40 38 22 5 0 30 24 5 2 0
0.5 15 19 6 0 0 15 15 1 0 0
0.7 1 5 0 0 0 1 5 0 0 0
0.9 0 0 0 0 0 0 0 0 0 0

Yul-
Mudslide
mudflow

0.1 56 37 51 7 0 13 7 20 1 0
0.3 11 12 15 1 0 4 3 12 1 0
0.5 3 4 4 1 0 1 1 4 1 0
0.7 1 2 1 0 0 0 1 1 0 0
0.9 0 0 0 0 0 0 0 0 0 0

Iljuk-
Landslide

0.1 50 70 4 1 3 44 49 1 0 0
0.3 38 44 2 0 0 33 34 1 0 0
0.5 15 20 0 0 0 12 17 0 0 0
0.7 3 1 0 0 0 2 0 0 0 0
0.9 0 0 0 0 0 0 0 0 0 0

Iljuk-
Mudslide
mudflow

0.1 23 18 3 0 1 20 6 1 0 0
0.3 8 8 1 0 0 7 4 0 0 0
0.5 3 2 0 0 0 3 0 0 0 0
0.7 0 0 0 0 0 0 0 0 0 0
0.9 0 0 0 0 0 0 0 0 0 0

Juksan-
Landslide

0.1 261 54 18 4 2 50 0 0 0 0
0.3 170 25 6 1 1 50 0 0 0 0
0.5 106 5 1 0 0 50 0 0 0 0
0.7 64 0 0 0 0 50 0 0 0 0
0.9 0 0 0 0 0 0 0 0 0 0

Figure 7. Evaluation of principal image classification using 5 August dataset: (a) result without hotspot analysis and
(b) result with hotspot analysis.



Sensors 2021, 21, 3562 17 of 24

Figure 8. Evaluation of principal image classification using 24–25 August dataset: (a) result without hotspot analysis and
(b) result with hotspot analysis.

For the 24–25 August dataset, the precision tends to increase in a relatively stable
manner as the threshold changes, except for the mudslide mudflow in the Yul region.
Restoration was in progress at the time the data were collected, and a high confidence
score was detected for some disorganized dirt piles. Except for this case, the confidence
score-based image classification appears to be significant for analysis of the 5 August
dataset. Using hotspot analysis, the classification precision was improved by up to 11.77%
in the landslide case in Yul, but decreased by 29.76% in the mudslide mudflow case in Yul.

4.4. Result of Identification of Major Damaged Location

To determine whether the classified images are located in the area where the major
damage occurred, the UAV orthoimages generated from the images taken on 24–25 Au-
gust were used as a reference map and compared. After analyzing the precision of the
classified images according to the threshold, it was confirmed that a significant number of
non-damaged images were excluded when the threshold was 0.5. Therefore, the spatial
distribution was analyzed using images filtered with a confidence score above 0.5.

The analysis results of the data collected on 5 August are shown in Figure 9. The
distribution of results according to the incidents shows a relatively clearly separated
distribution trend in the case with hotspot analysis. However, for the case without hotspot
analysis, various incidents are mixed spatially, making it difficult to determine the region
mainly affected by each incident. The results of the Yul region were analyzed as landslides
in the area where the upper part and the bank collapsed around the Sanyang Reservoir,
and it was observed to be similar to the damage type of the landslide due to the collapse of
soil. In the middle part, the incident type was determined to be mudslide mudflow, and
soil covered the village as water escaped from the Sanyang Reservoir.

From the result of the Iljuk, landslides were analyzed in the upper, middle, and lower
areas where landslide damage occurred, and mudslide mudflow was analyzed in the
middle area. The entire range of the actual landslide occurrence is included in cases both
with and without hotspot analysis, but when hotspot analysis was performed, the number
of images that were classified was much lower than half. When hotspot analysis was
not performed, images corresponding to the earthquake were included; however, in the
hotspot analysis, a significant hotspot could not be analyzed. From the result without
hotspot analysis, it can be seen that landslide and mudslide mudflow are mixed in the
area where the earthquake was detected. The number of earthquake-detected data was
244, of which approximately 70% or more had confidence scores less than 0.1. Owing to
the concurrent occurrence of landslide and mudslide mudflow, the confidence score for
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earthquakes was relatively low; accordingly, it was considered that a significant hotspot
analysis result was not obtained.

Figure 9. Distribution of results based on analysis of 5 August dataset: (a) results without hotspot
analysis in Yul, (b) results with hotspot analysis in Yul, (c) results without hotspot analysis in Iljuk,
and (d) results with hotspot analysis in Iljuk. The coordinates refer to WGS84 (EPSG: 4326).

The results obtained from the data collected on 24–25 August are shown in Figure 10.
As with the results from the data collected on 5 August, when hotspot analysis was
performed, it was confirmed that the main locations were separated according to the
types of incident. For the detected incident types, landslide and mudslide mudflow,
distribution patterns similar to the results for the 5 August dataset were obtained for the
same regions. In the case of Juksan, the upper part of the area where the landslide occurred
was identified as a severely damaged region both in the cases with and without hotspot
analysis. However, the middle part of the damage was not detected in the result obtained
with hotspot analysis, unlike in the result without hotspot analysis. The central region was
not considered a hotspot because the slope was not steep, and the soil flowing down from
the mountain was organized. In the images collected on 24–25 August, where restoration
work was in progress, even the damaged site was classified as dirty contaminated and
under construction. This is because there had been changes in the condition of the site,
such as the drying of the soil, as images were collected nearly one month after the accident.
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Figure 10. Distribution of results based on analysis of 24–25 August dataset: (a) results without
hotspot analysis in Yul, (b) results with hotspot analysis in Yul, (c) results without hotspot analysis in
Iljuk, (d) results with hotspot analysis in Iljuk, (e) results without hotspot analysis in Juksan, and
(f) results with hotspot analysis in Juksan. The coordinates refer to WGS84 (EPSG: 4326).

5. Discussion

In this study, a process for identifying major damage locations and principal images
was proposed to support decision-making processes of disaster responders using image
and sensor data acquired from smartphone applications. To verify the proposed process,
an analysis was performed on data collected from Icheon-si and Anseong-si, which are in
Gyeonggi-do, Korea, and which were damaged by heavy rainfall in 2020. Analysis was
performed on the image and sensor data collected using the smartphone application devel-
oped in this study on 5 August, immediately after the accident, and during 24–25 August,
when restoration activities were underway.

From the analysis results, when self-organizing map and graph-based clustering were
used, incident types that better reflect on-site conditions were detected from the data
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collected on 5 August and during 24–25. In the case of data collected during 24–25 August,
reliable filtering results were shown for most cases, even when filtering was performed
based only on the confidence score. In addition, a more efficient filtering performance
was observed after hotspot analysis. On 5 August, rainfall was ongoing at the study area,
and the site was in a complicated state owing to collapse, flooding, and soil flow. For
data collected in the field, filtering data only using the threshold of the confidence score
are insufficient, and when the proposed methodology was applied, effective filtering was
observed. A machine-learning-based approach can derive different results depending
on the scene in an image. In addition, multiple damage types and aggravated weather
conditions can complicate the scene and affect the analysis results. In general, disaster sites
are not neat or simple, and the quality of crowdsourced data is unpredictable. Therefore,
even if a crowd-sensing application is used in an emergency situation, it is necessary to
filter the collected data to support decision-making.

The distributions of the data collected on 5 August and that collected on 24–25 August
are different, but similar results were shown for major damaged areas. For data collected
on 5 August and 24–25 August, there are differences in some types of incident such as
collapsed, flooded, and earthquake because there are differences in the data collection
environment and distribution of the collected data. However, for the critical incident
types of landslide and mudslide mudflows, the damage locations were estimated in a
similar manner. In addition, these results showed similar patterns when compared with
the UAV orthoimages.

An example of the final images that were classified based on the collected data on
5 August is shown in Figure 11. Using the magnetometer and the gravity value collected
from the mobile device, the azimuth value of the direction the camera is looking at can be
estimated, with which the direction the camera is looking at on the map can be visualized.
Examples show that images with significant damage were extracted from the classification.

Figure 11. Example images from results analyzed with 5 August dataset: (a) Yul and (b) Iljuk. The coordinates refer to
WGS84 (EPSG: 4326).

This study aimed to deliver rapid situational information based on data collected
during an emergency. It was verified that the proposed process can be used to effec-
tively identify major damage locations from the classification of principal images from
crowdsourced data in such situations. Smart devices are equipped with various sensors,
such as gyroscopes, accelerometers, magnetometers, and GPS receivers. Accordingly, it is
possible to improve the quantity and quality of data collected from the general public to
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support an emergency situation by using a crowd-sensing application. Therefore, in the
future, research using various sensors to precisely analyze dynamic emergency situations
should be conducted. Moreover, in crowd-sensing, the ability to grasp the user’s interest
and motivation are treated as a major issue, and based on the proposed process, it is
expected that users’ attention can be attracted by sharing analyzed collected information
and participating in response activities, not just by reporting.

6. Conclusions

In recent years, the use of crowdsourced data has increased to enable the sharing
of emergency situations and to support rapid response activities. However, research on
extracting information through data processing and analysis based on data collected by
focusing on emergency sites is insufficient. Therefore, we proposed a cloud computing-
based data collection, processing, and analysis process that is based on crowd-sensing
applications. To verify the suitability of the proposed process, an analysis was performed
at three sites in Yul-myeon, Icheon-si and Iljuk-myeon and Juksan-myeon, Anseong-si,
Gyeonggi-do, which were severely damaged by heavy rainfall in 2020. Based on the pro-
posed methodology, of the numerous images collected, images reflecting serious damage
situations could be effectively classified. In particular, for images collected immediately
after a disaster, the existing deep learning-based classification was not stable, and the
critical images were filtered through the proposed streamline. In addition, it was verified
that locations of actual damage can be identified by making comparisons with UAV or-
thoimages. In the future, it is believed that it is necessary to apply images collected in
actual accidents to better represent diverse types of incident, and it is expected that the
proposed approach will support efficient decision-making in urgent situations.
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