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Abstract: The estimation of player positions is key for performance analysis in sport. In this
paper, we focus on image-based, single-angle, player position estimation in padel. Unlike tennis,
the primary camera view in professional padel videos follows a de facto standard, consisting of
a high-angle shot at about 7.6 m above the court floor. This camera angle reduces the occlusion
impact of the mesh that stands over the glass walls, and offers a convenient view for judging
the depth of the ball and the player positions and poses. We evaluate and compare the accuracy
of state-of-the-art computer vision methods on a large set of images from both amateur videos
and publicly available videos from the major international padel circuit. The methods we analyze
include object detection, image segmentation and pose estimation techniques, all of them based
on deep convolutional neural networks. We report accuracy and average precision with respect
to manually-annotated video frames. The best results are obtained by top-down pose estimation
methods, which offer a detection rate of 99.8% and a RMSE below 5 and 12 cm for horizontal /vertical
court-space coordinates (deviations from predicted and ground-truth player positions). These results
demonstrate the suitability of pose estimation methods based on deep convolutional neural networks
for estimating player positions from single-angle padel videos. Immediate applications of this
work include the player and team analysis of the large collection of publicly available videos from
international circuits, as well as an inexpensive method to get player positional data in amateur
padel clubs.

Keywords: sports science; racket sports; deep learning; pose estimation; player tracking; tracking data

1. Introduction

In the last few years there has been an increasing interest in player tracking tech-
niques [1] as well as in video analysis for sports [2]. Recent advances in computer vision
techniques, especially in object detection, segmentation, and pose estimation methods, have
opened new opportunities for image-based performance and tactical and biomechanical
analyses in sport. In this paper we focus on player positions in padel, a modern racquet
sport born in the 1970s with a relevant growth in the number of players [3]. The dimensions
of the court (smaller than tennis ones) and the presence of walls surrounding the court,
which facilitate returning the ball, allow padel to be practiced by people of any physical
condition [3].

The use of computer vision techniques in related racquet sports (such as tennis) has
been extensively studied for tasks such as player tracking [4-6], ball tracking [7-10],
content-based retrieval [11,12], virtual replays [7], and automatic annotation [13].
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However, unlike major racquet sports , padel matches exhibit distinctive features
which hinder major computer vision tasks such as player tracking. It is almost exclusively
played in doubles, which increases the risk of interplayer occlusion in low-angle and
moderately high-angle shots, and the playing field is enclosed by walls: glass walls might
show reflected people from the public, side glass walls might reflect the players themselves,
metal mesh panels over the glass walls partially occlude a part of the field, and other
structural elements connecting the glass panels also occlude some parts of the court.

The occlusion of the mesh panel and structural elements is particularly important,
and the de facto camera angle for padel broadcasting is chosen to minimize the impact of
such occlusion. In the standard setting (Figure 1), the image-space projection of the mesh
panel spans the region from the bottom part of the net to near the opposite service line,
which is achieved by placing the camera at about 7.6 m from the floor, and 15.5 m from the
glass panels. We have observed that most professional padel videos are recorded following
this camera angle.

Figure 1. Optimal camera placement for padel: if the main camera (shown in green) is placed at
the intersection of lines PP’ and QQ’, the mesh over the front wall (highlighted in pink) occludes
the portion of the court between the net and the opposite service line. Notice that, for this camera
position, the segment PQ (on the mesh) and the segment P’Q’ (on the court) overlap in camera space.
Another option, requiring less physical space around the court, is to place the camera on the straight
line defined by Q and Q' (on the portion shown with a thick yellow line), as this ensures that the
closest half of the court will not be occluded by the mesh. Right: View of an amateur padel court
from a camera close to the de facto standard for padel streaming. In this example, the mesh roughly
occludes the upper half of the court.

Therefore, the analysis of padel videos exhibits unique features due to the presence of
walls surrounding the court and their impact on visibility occlusion and game development.
A few papers do analyze player position and displacement aspects in padel but most of
them are based on data from direct observation [14] or video analysis from zenithal [15,16]
or nearly zenithal cameras [17], which greatly simplify player detection.

To the best of our knowledge, no formal analysis has been made about the accuracy of
video analysis techniques for player tracking on padel videos recorded from nonzenithal
cameras. The study closest to this work refers to video analysis for squash [18] using a
human pose estimation algorithm [19]. The camera angle for the videos in [18] is close to
those in major padel circuits. However, we analyze many state-of-the-art computer vision
algorithms besides [19] in a more challenging scenario due to the occlusion of the multiple
elements in a padel court (Figure 1).

In this paper we analyze the performance and accuracy of state-of-the-art position
estimation methods on a large collection of frames selected from publicly available videos.
Our aim is to estimate the 2D position of players within the court. Such 2D positions can
be estimated from the player’s 2D bounding boxes, from their segmentation masks, or
from player keypoints (e.g., feet and hip). Therefore, object detection techniques (providing
bounding boxes of detected instances), image segmentation techniques (providing pixel-
wise masks), and pose estimation techniques (providing keypoints according to some
human skeleton model) are good candidates for estimating 2D player positions.
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Detection algorithms can be trained to recognize and locate instances of multiple
objects in an image. A typical output of these algorithms is a collection of bounding boxes
enclosing the detected instances [20-24].

Image segmentation algorithms (e.g., refs. [23,25,26]) label each pixel of the image with
the ID of the predicted instance class corresponding to the pixel. Resulting masks provide
more information about the detected objects than just an enclosing box.

Pose estimation methods estimate the location of keypoints (e.g., neck, hip, feet) of the
detected people. Current human pose estimation methods can be divided into top-down
and bottom-up methods. Top-down methods (e.g., refs. [21,27-29]) first detect person
instances, and then their individual joints. An external detector locates person instances
and outputs estimated bounding boxes; the top-down method then performs single-person
pose detection on the cropped and rescaled subimage. Top-down methods are less sensitive
to the scale variance of persons but are usually slower and their performance is constrained
by that of the external detector. Bottom-up methods (e.g., refs. [30,31]) detect first all
keypoints in the image, and then these keypoints are grouped into person instances. Since
these approaches operate end-to-end, they are usually faster (even real-time [19]), but most
bottom-up methods are quite sensitive to scale variation.

We selected state-of-the-art methods for object detection, refs. [20,22,23,32] segmenta-
tion [23-25], and pose estimation, [19,21,29-31] all of them based on deep convolutional
neural networks. For the sake of reproducibility, all techniques we tested come from
publicly available computer vision repositories including neural network architectures,
pipeline configurations, and trained models.

For evaluating the accuracy of these methods, we used a collection of frames extracted
from 24 videos from World Padel Tour (WPT), the major padel international circuit. We
provide links to these publicly available videos in Table S1 of the supplemental material.
In order to evaluate the accuracy of the selected techniques, ground truth positions were
obtained by annotating manually player keypoints (left/right ankles and hip). These
three keypoints allowed us to estimate an image-space player position, which was then
converted onto a court-space position. We then computed deviations from predicted and
ground-truth player positions.

2. Materials and Methods
2.1. Dataset Description

Our evaluation is based on frames selected from professional padel videos. In particu-
lar, we selected 24 matches from World Pader Tour, all of them publicly available on the
WPT YouTube channel (see links in Table S1 of the supplemental material). All images were
analyzed at 1920 x 1080. In all videos the primary camera roughly follows the standard
view (Figure 1). The selected set is varied in terms of gender (15 male, 9 female finals) and
lighting conditions (16 indoor, 8 outdoor).

We selected randomly two game points for each match (24 x 2 = 48 periods), with the
only requirements that the whole period was captured from the main camera and that all
four players were inside the court during the whole period.

For the first dataset (testl), we selected a 5-image sequence from each game point
(48 x 5 =240 frames). Selected frames within each sequence were 10 frames apart (i.e.,
400 ms step for 25 fps videos). These frames were manually annotated by 5 annotators who
identified keypoints of the four players, as described in Section 2.2.

For the second dataset (test2), we selected also the in-between frames (using consecu-
tive frames, i.e., 40 ms apart for 25 fps videos) from each game point (48 x 40 = 1920 frames).
These frames were not annotated but relatively close (at most 400 ms) to a pair of annotated
images from test1.

2.2. Defining 2D Court-Space Positions

Given a frame, we are interested in estimating the 2D position of the players within
the court. Such 2D position P = (Py, Py) must be represented in court-space (using



Sensors 2021, 21, 3368

40f17

physical length units e.g., meters) to enable further sport analyses based on positions and
displacements. The estimation of the vertical displacement of the player with respect to
the court floor is out of the scope of this paper.

Since players move in a 3D world, one way of formalizing such 2D position is con-
sidering the vertical projection of some point near the player’s center of mass. Although
the center of mass of a human body depends both on anatomical and pose factors, a good
estimate is the center of the hip bones. The hip is actually a major keypoint in most human
models used in computer animation and computer vision, and thus a common output for
pose estimation methods. Figure 2a shows our conceptualization of the 2D position of a
player (blue sphere), as the vertical projection of the hip (red sphere).
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Figure 2. Our definition of 2D position of the player (a) is conceptualized as the vertical projection of
the hip joint onto the floor (blue sphere). The perspective transform used to convert image points
(e.g., hip) to court-space points (b) creates an offset that depends on the distance to the floor and the
camera angle.

2.3. Court-Space Positions from Image-Space Joints

Since the images we are interested in are captured by a conventional camera, we
need to convert image-space data (player bounding boxes, segmentation masks, pose
keypoints) to court-space positions. Should images come from a depth camera, a zenithal
camera or multiview cameras, such conversion would be robust and straightforward. In
our case though, we need to resort to a 4-point perspective transform, which will allow
us to perform such conversion for player parts on the floor, or just a little bit off the floor
(e.g., feet).

We observed that spherical distortion was negligible in all selected videos, so we
performed no image undistortion. For each video, we obtained the pixel coordinates of the
quadrangle defined by the four corners of the court. We then computed the 3 x 3 matrix of
the perspective transform that maps this source quadrangle (in homogeneous image-space
coordinates) onto the 10m x 20 m destination quadrangle corresponding to the physical size
of a padel court (court-space coordinates). We use this matrix to map points from image-space
to court-space, but this is only exact for body parts on the floor. Figure 2b illustrates this
problem. Multiple body parts (e.g., the hip and the left knee) are projected onto the same
image-space pixel h. Since no reliable depth estimation is available, applying the perspec-
tive transform to / leads to an offset between the estimated position (black sphere) and the
true one (blue sphere). The offset can be computed as mfﬁ’ being thus 0 when either the
body part is on the floor (H; = 0) or the camera angle 0 equals 90 (zenithal camera).

Since the offset is inversely proportional to tan(6), we computed the interval of 6
values for the de facto stardard camera view. First, we computed the location of the camera
in that setting. The constraint that the image-space projection of the mesh spans the range
from the net to the service line leads to the following system (Figure 3):
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The solution C = %, D = % indicates that the camera should be placed ~7.6 m

above the court, and ~15.5m from the wall (see Figure 1).
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Figure 3. Side view of a padel court showing placement for the camera to satisfy the
occlusion constraints.

Within the court, 6 ranges from arctan % ~ 26.3° at the bottom edge of the court, to
arctan ﬁ ~ 12.5° at the top edge. The ratios %, D Jélo and % can be interpreted also
as the error amplification factors at different parts of the court. For example, if the feet
of the player is (or is estimated at) some height c above the floor, the approximate offset
(error) in the vertical Y coordinate of its estimated image 2D position will be 2.0c, 3.3c or
4.64c, depending on whether the player is located near the bottom edge, the net, or the top
edge of the court. Therefore, we expect position predictions to be less accurate for players
on the top half of the court, since their screen-space projection is smaller (thus hindering
detection, segmentation, and pose estimation tasks), their occlusion higher, and because
vertical errors will have a larger amplification factor.

Notice that the above amplification factors apply both to manual and automatically
computed annotations.

2.4. Manual Player Annotation

Since no ground truth positions are available for elite padel videos, we created a
simple application for their manual annotation. In a pilot study, we observed that directly
estimating the 2D position (as the vertical projection of the hip) was a difficult task. There-
fore, we decided to ask the annotators to identify three joints for each player: the left
ankle (Ly, Ly), the right ankle (Ry, Ry), and the hip center (Hy, Hy) (Figure 4). From the
image-space positions of these joints, we estimated the image-space position of the player
as p = (px, py) with py = Hy and p, = (L, + Ry)/2 (Figure 4). That is, we use the hip to
estimate the image-space horizontal coordinate and the average of the feet to estimate the
vertical coordinate (near the bottom part of the image-space projection of the player). The
court-space position was computed by multiplying the perspective transform matrix.

Figure 4. Close-up view of the image annotation application showing manually annotated joints
(white circles) and estimated image-space player positions (red circles).

For players standing or walking, the method above provides an accurate estimate
of the true court-space 2D position. For running players though we expect a larger error,
since at some frames both feet are in the air. We analyzed some running cycles by ren-
dering a realistic human avatar [33] using Motion Capture Data from Carnegie Mellon
University Motion Capture Database http://mocap.cs.cmu.edu/, accessed on 1 March
2021. Figure 5 shows such deviations (in image-space) for different player poses and
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orientations. Fortunately, the vertical displacement is small and roughly constant along
running animation cycles.

.
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Figure 5. Deviation between the true image-space 2D position (blue spheres) and the position
estimated from the feet and hip joints (green spheres), for different poses and orientations: (a) side
view, (b) three-quarter view, and (c) back view. Notice that the vertical displacement (which will
be amplified due to the perspective transform) is small and roughly constant along the running
animation cycle. Motion data from subject #9, trial 6 of CMU Motion Capture Database.

For human annotators, obtaining accurate labels for a large number of examples is
often infeasible. In our case, the position of player keypoints (ankles, hip center) must
be guessed since the joints are not directly visible and occluded by skin and clothes.
Video compression artifacts, motion blur, and occluding objects further hinder this task.
Collected positions are thus subjective and noisy. We thus asked M = 5 participants to
annotate all images in testl. For each image and player, court-space positions estimated
by the 5 annotators were aggregated to estimate a ground truth position for each of the
Nj =960 observations. Following Raykar et al. [34] we estimate ground truth positions
for each player by computing a weighted average of the annotated positions. Annotator
weights are initialized as uniform weights. Then the aggregated position is recomputed
using the current weights, which are then updated as the inverse variance with respect
to the updated average. This process is repeated until convergence (usually less than
10 iterations). The aggregated position is taken as the ground truth 2D position for test1.

Figure 6 shows the estimated positions before and after aggregation. Notice that
per-annotator estimates are grouped into tight clusters around the estimated ground truth.
We computed the error of per-annotator positions with respect to ground truth positions, as
a measure of the difficulty of the annotation task as well as a measure of consistency of the
estimated ground truth. As expected, the mean error was negligible (0.22 cm and —0.97 cm
for X and Y coordinates) since the aggregation method we used is quite robust to outlier
annotations. The standard deviation (SD) was 5.92 cm and 12.15 cm for X, Y coordinates,
which better reflect the overall accuracy of human annotators in this particular task. Since
the error refers to court-space positions, this already accounts for the error amplification
due to the perspective deformation, which mostly affects Y coordinate.

2.5. Selected Position Estimation Methods

We tested both top-down and bottom-up pose estimation methods. Top-down meth-
ods use an external person detector to locate person instances, so that subsequent pose
estimations are limited to a single-person within each detected bounding box. Table 1
lists the state-of-the-art top-down pipelines we selected for evaluation. All pipelines be-
long to the OpenMMLab Pose Estimation Toolbox available at https://github.com/open-
mmlab/mmpose, accessed on 1 February 2021. Notice that each pipeline is based on
multiple methods (e.g., the backbone for extracting feature maps and the keypoint head
for pose estimation).
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Figure 6. Estimated court-space player positions for all annotators. Top and right: Gaussian kernel
density estimates.

Table 1. Top-down pose estimation methods selected for evaluation. The first column shows the detector configuration, i.e.,
the method used to detect players in the image. The second column shows the actual pose estimator, which computes the
keypoints of each player within the bounding box returned by the detector. The following abbreviations are used in the first
column: r50 refers to the use of ResNet-50 as backbone for the detector, fpn refers to the use of ResNet plus a Feature Pyramid
Network for object detection, person indicates the network has been trained on a COCO subset (with person class only),
x101 refers to the use of ResNeXt-101 as backbone for the detector, 32 x 4d and 64 x 4d refer to the ResNeXt-101 template,
and htc refers to Hybrid Task Cascade [25]. The following abbreviations are used in the second column: hrnet w48 refers to
the HRNet network proposed in [30]; w48 represents the width of HRNet subnetworks, 384 x 288 and 256 x 192 refer to
the image resolution for pose estimation (for each detected player), and dark refers to DarkPose [29].

Detector Config Pose Estimator Config Core Method(s)
faster renn r50 fpn person hrnet w48 384 x 288 HRNet [30] Faster R-CNN [22] ResNet [35]
faster renn x101 64 x 4d fpn hrnet w48 384 x 288 HRNet [30] Faster R-CNN [22] ResNeXt [36]
faster renn r50 fpn hrnet w48 384 x 288 dark HRNet [30] DarkPose [29] Faster R-CNN [22]
ResNet [35]
faster renn r50 fpn hourglass52 384 x 384 Hourglass [27] Faster R-CNN [22] ResNet [35]
faster renn r50 fpn hrnet w48 384 x 288 HRNet [30] Faster R-CNN [22] ResNet [35]
cascade mask renn x101 64 x 4d fpn hrnet w48 256 x 192 HRNet [30] ResNeXt [36] Cascade Mask R-CNN [23]
htc x101 64 x 4d fpn hrnet w48 256 x 192 HRNet [30] ResNeXt [36] Hybrid Task Cascade [25]

HRNet [30] ResNeXt [36] Cascade Mask R-CNN [23]

den/cascade mask renn x101 32 x 4d fpn hrnet w48 256 x 192 Deformable ConvNets [37]

On the other hand, bottom-up methods first locate keypoints for all the persons in
the image, and then merge them into person instances. Table 2 lists the state-of-the-art


faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person.py
hrnet/coco/hrnet_w48_coco_384x288.py
faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco.py
hrnet/coco/hrnet_w48_coco_384x288.py
faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
darkpose/coco/hrnet_w48_coco_384x288_dark.py
faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
hourglass/coco/hourglass52_coco_384x384.py
faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py
hrnet/coco/hrnet_w48_coco_384x288.py
cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco.py
hrnet/coco/hrnet_w48_coco_256x192.py
htc/htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco.py
hrnet/coco/hrnet_w48_coco_256x192.py
dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py
hrnet/coco/hrnet_w48_coco_256x192.py
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bottom-up pipelines we selected for evaluation. All pipelines belong to the OpenMMLab
Pose Estimation Toolbox except OpenPose [19].

Table 2. Bottom-up pose estimation methods selected for evaluation. The following abbreviations
are used in the first column: hrnet and higher hrnet refer to the networks proposed in [30,31], 32 and
48 represent the width of HRNet subnetworks, 512 x 512 and 640 x 640 refer to the downsampled
image resolution for pose estimation, res50, res101 and res152 refer to the type of ResNet network [21],
and udp stands for Unbiased Data Processing for Human Pose Estimation [28].

Configuration Core Method(s)
higherhrnet/higher hrnet32 512 x 512 Higher HRNet [31]
higherhrnet/higher hrnet32 640 x 640 Higher HRNet [31]
higherhrnet/higher hrnet48 512 x 512 Higher HRNet [31]

hrnet w32 512 x 512 HRNet [30]
hrnet w48 512 x 512 HRNet [30]
mobilenetv2 512 x 512 MobileNetv2 [26]
resnet/res50 512 x 512 ResNet [21]
resnet/res50 640 x 640 ResNet [21]
resnet/res101 512 x 512 ResNet [21]
resnet/res152 512 x 512 ResNet [21]
hrnet w32 512 x 512 udp HRNet [30] UDP [28]
higher hrnet32 512 x 512 udp Higher HRNet [31] UDP [28]

Regardless of the pose detection method, the image-space 2D position was com-
puted from hip/ankle coordinates as p = (Hy, 4(L, + Ry)). Since we chose the COCO
human model for all tests, the hip itself was computed as the average of the left and right
hip keypoints.

We also evaluated the accuracy of the detectors that were selected for the person
detection step of top-down pose estimation methods. All these detector pipelines are part
of the OpenMMLab Detection Toolbox [20] available at https://github.com/open-mmlab/
mmdetection, accessed on 1 February 2021. In this case, the estimated 2D position was just
the mid point of the bottom edge of the box.

Finally, we also report the accuracy of segmentation methods. We used Detectron2 [24],
available at https://github.com/facebookresearch/detectron2, accessed on 1 February
2021. We extracted the contour of detected person instances and estimated player positions
by combining feet and hip estimates. We used contour points at local minima (bottom part
of the instances) to estimate image-space feet locations (Figure 7) and the minimum of all
detected local maxima to estimate the hip.

Figure 7. Segmentation-based estimation: mask contours (in yellow), mask bounding boxes (in
green), local minima in the vertical direction (blue dots), points used to estimate feet locations (blue
circles), and estimated player positions (red circles).

3. Results
3.1. Test 1

We tested all the methods in Tables 1 and 2 with the images in testl, all of them from
professional padel videos (see Table S1 of the Supplemental Material).


higherhrnet/coco/higher_hrnet32_coco_512x512.py
higherhrnet/coco/higher_hrnet32_coco_640x640.py
higherhrnet/coco/higher_hrnet48_coco_512x512.py
hrnet/coco/hrnet_w32_coco_512x512.py
hrnet/coco/hrnet_w48_coco_512x512.py
mobilenet/coco/mobilenetv2_coco_512x512.py
resnet/coco/res50_coco_512x512.py
resnet/coco/res50_coco_640x640.py
resnet/coco/res101_coco_512x512.py
resnet/coco/res152_coco_512x512.py
udp/coco/hrnet_w32_coco_512x512_udp.py
udp/coco/higher_hrnet32_coco_512x512_udp.py
https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmdetection
https://github.com/facebookresearch/detectron2
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Since annotated-based ground-truth data was available for testl, we could compute
different accuracy and precision metrics. For each of the N; = 960 court-space position
estimations, the error was computed separately for X and Y coordinates by subtracting the
ground truth. For each method, we report the absolute mean error @, @, as well as the
standard deviation of the error s(Ey), s(Ey). Some methods were unable to detect all four
players; the percentage of detected players ranged from 86% to 99.8%, depending on the
method. Since we ignored missing detections when computing |E,|, |Ey|, s(Ex), s(E,), we
also computed the Average Precision (AP) of each method for different distance thresholds.
For example, AP is the ratio of correct positions (in this case, with an absolute error
below 10 cm) over the total number of observations Nj. Notice that missing detections do
decrease the AP but have no impact on |Ey|, |Ey|, s(Ex), s(Ey).

Table 3 summarizes the results of each method, sorted by AP;0 (last column). The
prefix of each method indicates its type: DT = detection, MK = mask-based, BU = bottom-up
pose detection, TD = top-down pose detection.

We first discuss metrics on the X coordinate. The mean absolute error was below 3 cm
for most methods, which is negligible in a court 10 m wide. The standard deviation, which
accounts for random errors, better represents the accuracy of the methods. Most methods
achieved s(Ey) values below 5 cm. Detection methods (providing only bounding boxes,
Figure 8) were clearly more inaccurate than pose estimation methods. We computed the
bias-corrected Average Precision for 10cm and 20 cm thresholds, AP’ and AP2. Best
methods (top-down pose estimators) achieved AP’ > 98%, which is an excellent result.

We now discuss the Y coordinate. Recall that predicting court-space 2D positions is
harder for this coordinate due to higher mesh/structure occlusion, smaller player detections
in image-space, and higher error amplification for misplaced keypoints. The mean absolute
error was below 12 cm for the best methods, which also achieved s(E,) values below 11 cm.
We computed the bias-corrected Average Precision for 30 cm, 40 cm, and 50 cm thresholds,
AP;O, AP;O, and AP;O. Again, the best methods were top-down pose estimators, which

achieved APﬁO > 95% and AP;O > 98%. If we take AP;O as a global measure of the
method’s precision, the best method was the combination of Faster R-CNN [22] for player
detection, with HRNet [30,31] for locating the keypoints of each detected player.

Overall, nonsystematic errors for predicted court-space 2D positions were quite rea-
sonable for the best computer vision methods. Actually, in our comparison, computer
vision methods offered approximately the same accuracy as human annotators. Recall that
the standard deviation for human annotators (Section 2.4) was 5.92 cm for X coordinates
(vs. approx. 5cm for the best methods in Table 3), and 12.15cm for Y coordinates (vs.
approx. 12cm).

We also computed systematic and random errors for players on the bottom part of
the court, which are nearer to the camera and thus easier to locate. As shown in Table 4,
the results are significantly better, with random errors around 3 cm and 7 cm for X and Y
coordinates, respectively and more than 98% of the estimations below the 30 cm threshold
for the best methods. Again, if we take AP;O as a global measure of the method’s precision,
the best method for the players on the bottom part of the court was again HRNet [30,31],
used in combination with either a Faster R-CNN detector [22] or Hybrid Task Cascade
detector [25]. Notice also that for these players, some bottom-up pose estimation methods
provide more competitive results, which confirms the difficulty of bottom-up methods to
estimate joints in persons with small image-space projections.
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Table 3. Comparison of selected methods for testl. Methods are sorted by increasing Average Precision AP;O. Therefore, the best (most accurate) methods appear at the bottom of the table.
The prefix of each method indicates its type: DT = detection, MK = mask-based, BU = bottom-up pose detection, TD = top-down pose detection. See Tables 1 and 2 for abbreviations on
top-down and bottom-up methods, respectively.

Method |Ex| s(Ey) AP}(0 AP?C0 |Ey | s (Ey) AP;0 AP‘;0 AP;0
DT-htc-x101-64 x 4d 10.87 13.48 54.3 86.1 59.41 18.71 0.3 0.3 0.6
DT-faster-recnn-r50-1x 10.83 13.49 55.6 87.0 58.19 21.48 0.7 1.0 1.2
MK-Detectron2 9.25 12.67 66.9 87.7 40.86 23.51 3.0 3.8 5.5
BU-openpose 4.03 5.50 92.3 99.1 22.59 23.85 40.0 63.3 73.6
BU-mobilenetv2-512 x 512 4.62 8.93 914 98.6 21.59 25.38 58.1 75.7 85.5
BU-res50-640 x 640 3.73 6.33 95.1 98.9 19.41 20.48 52.8 76.7 87.5
BU-hrnet-w32-512 x 512 3.06 4.54 97.9 99.8 17.38 15.98 51.7 75.9 88.6
BU-res152-512 x 512 3.14 4.14 97.7 99.8 17.67 18.74 62.3 81.1 88.9
BU-higher-hrnet32-512 x 512 2.55 3.29 98.9 100.0 16.48 13.87 53.1 78.0 91.2
BU-higher-hrnet32-640 x 640 2.68 3.45 98.7 100.0 15.60 13.29 60.6 83.3 924.1
TD-faster-rcnn-r50-1x—resnetv1d152-384 x 288 2.80 3.45 98.6 99.9 15.41 12.76 59.5 85.1 949
TD-faster-rcnn-r50-1x—hourglass52-384 x 384 2.82 3.54 98.0 99.9 15.00 12.41 614 87.9 95.3
TD-faster-rcnn-r50-1x—hrnet-w48-384 x 288-dark 2.78 4.11 98.1 99.8 14.29 11.80 67.4 88.4 95.9
TD-faster-rcnn-r50-1x—hrnet-w48-384 x 288 2.68 3.26 98.7 100.0 14.40 11.55 65.2 89.9 97.0
TD-cascade-mask-rcnn-x101-64 x 4d—hrnet-w48-256 x 192 2.67 3.37 98.1 99.9 14.16 11.42 67.9 90.0 97.2
TD-cascade-mask-rcnn-x101-32 x 4d—hrnet-w48-256x192 2.66 3.39 98.2 99.8 14.27 11.42 66.5 89.0 97.2
TD-htc-x101-64 x 4d—hrnet-w48-256 x 192 2.70 3.37 98.5 99.9 14.20 11.30 67.5 89.7 97.5
TD-faster-rcnn-r50-1x—hrnet-w48-256 x 192-person 2.75 4.23 98.3 99.7 11.12 10.93 87.6 96.9 98.2
TD-faster-rcnn-x101-64 x 4d-1x—hrnet-w48-256 x 192 2.63 3.23 98.5 100.0 11.10 10.66 88.0 96.9 98.7

TD-faster-rcnn-r50-1x—hrnet-w48-256 x 192 2.71 413 98.4 99.9 11.34 11.47 87.3 95.9 98.7
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Table 4. Comparison of selected methods for test1, for players on the bottom half of the court. Methods are sorted by increasing Average Precision AP;O. Therefore, the best (most accurate)
methods appear at the bottom of the table. The prefix of each method indicates its type: DT = detection, MK = mask-based, BU = bottom-up pose detection, TD = top-down pose detection.
See Tables 1 and 2 for abbreviations on top-down and bottom-up methods, respectively.

Method |Ex| s(Ex) AP0 APY |Ey| s(Ey) APY AP AP}
DT-htc-x101-64 x 4d 11.67 14.21 49.2 84.1 51.73 12.87 0.0 0.0 0.2
DT-faster-rcnn-r50-1x 11.77 14.35 484 84.5 50.29 13.37 0.0 0.0 0.2
MK-Detectron2 10.13 13.62 63.1 83.8 33.43 16.23 1.9 2.6 6.2
BU-mobilenetv2-512 x 512 4.02 9.99 96.8 98.2 17.66 22.44 72.3 89.7 93.1
BU-res50-640 x 640 3.22 5.71 974 99.3 14.69 17.00 83.5 93.5 97.1
BU-res152-512 x 512 2.70 3.36 99.0 100.0 12.36 10.39 83.6 96.0 99.0
TD-faster-rcnn-r50-1x—hrnet-w48-256 x 192 2.57 4.53 99.0 99.8 7.31 7.30 98.7 99.6 99.6
BU-openpose 3.04 3.84 98.1 100.0 10.53 11.95 95.4 99.2 99.6
BU-hrnet-w32-512 x 512 2.57 3.14 99.6 100.0 10.56 8.91 91.9 99.0 99.6
BU-higher-hrnet32-512 x 512 2.36 2.87 99.8 100.0 10.03 7.72 94.7 99.5 99.8
TD-cascade-mask-rcnn-x101-32 x 4d—hrnet-w48-256 x 192 2.47 291 99.2 100.0 9.31 7.21 97.5 99.8 99.8
TD-faster-rcnn-r50-1x—hrnet-w48-384 x 288 2.55 2.94 98.8 100.0 9.67 7.29 96.2 99.8 99.8
TD-faster-rcnn-r50-1x—hrnet-w48-384 x 288-dark 2.64 4.37 98.5 99.8 8.86 7.12 98.1 99.6 99.8
TD-faster-rcnn-r50-1x—resnetv1d152-384 x 288 2.58 2.99 99.2 100.0 9.47 7.66 97.3 99.6 99.8
TD-cascade-mask-rcnn-x101-64 x 4d—-hrnet-w48-256 x 192 2.53 3.00 99.0 100.0 9.07 6.82 98.3 100.0 100.0
BU-higher-hrnet32-640 x 640 2.46 3.08 99.0 100.0 9.45 7.60 97.7 100.0 100.0
TD-faster-rcnn-r50-1x—hourglass52-384 x 384 2.66 3.12 98.3 100.0 9.74 7.55 96.0 99.6 100.0
TD-faster-rcnn-r50-1x—hrnet-w48-256 x 192-person 2.51 3.88 99.0 99.8 7.11 6.67 98.8 99.8 100.0
TD-faster-renn-x101-64 x 4d-1x—hrnet-w48-256 x 192 2.43 2.84 99.0 100.0 7.10 6.52 99.0 100.0 100.0

TD-htc-x101-64 x 4d—hrnet-w48-256 x 192 2.54 3.01 99.2 100.0 9.22 6.88 98.1 99.8 100.0
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We also tested the best detection/pose estimator pipelines on a more challenging
image set from an amateur video, for visual evaluation. All players were informed and
gave their consent on this study. Figure 8 shows the estimated image-based positions for a
representative collection of frames, with different types of shots, poses, displacements, and
location within the court. Notice that hip and ankle joints are detected very robustly, even
in challenging poses with partial occlusions due to the metal structure and the mesh over
the glass walls (in elite padel videos these metallic parts are thinner and less obtrusive;
see sample video in the supplemental material. Estimates from the ankle /hip joints (red
circles) provide a good approximation of our conceptualization of 2D player positions.
Detection-based estimates are faster but much less accurate (green circles) and sensitive to
limb locations.

Figure 8. Estimated 2D positions from pose estimation (red circles) and detection methods (green

circles). The close-up images show detected boxes and joints for a varied set of game situations, for
all four players.

3.2. Test 2

According to Table 4, one of the most accurate methods is the top-down pose estima-
tion configuration that combines a Hybrid Task Cascade detector [25] (htc x101 64 x 4d)
based on ResNeXt [36] with a HRNet [30] pose estimator (hrnet w48 256 x 192). We
tested the performance of this configuration on a larger dataset (test2) with N, = 7680
observations. For test2 we had ground truth positions only for one every ten frames. We
also computed Average Precision values, but this time the predicted court-space position
was considered correct if X and Y coordinates were within the intervals defined by the
ground truth values at the two nearest frames from test1 (at most 200 ms apart from the
frame being analyzed). For example, if ground-truth (x,y) positions for frames i, i + 10
were (x;,y;) and (xj;10,¥i+10), then for a frame j with i < j < i+ 10 a prediction (x;, y;)
is considered correct if x; € [x;, x;110] and y; € [yi, Yiy10], since the linear interpolation
of (x;,y;) and (xj 110, Yi+10) would (wrongly) assume constant speed within the 400 ms
interval that separates ground truth frames.

We considered thresholds of 30 cm, 40 cm, and 50 cm. For the best configuration above,
AP was 98.27% and AP was 99.17%. When considering only players on the bottom
half of the court, AP3 was 99.71%, AP*’ was above 99.99% and AP°° was 100%. These
results demonstrate that pose estimation methods provide a robust way to estimate player
positions and that these positions are indeed very accurate for the players on the bottom
half of the court.
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3.3. Amateur Video

We also tested the best method on a more challenging dataset. The accompanying
video shows estimated player positions for a Full HD amateur video. This video is partic-
ularly challenging due to the lighting conditions and the thick metallic parts that cause
significant occlusion. Furthermore, the camera was closer to the ground than the de facto
standard (about 4.6 m vs. 7.6 m), which increased significantly the error amplification for
players on the top half of the court. Unlike the videos we used for testl and test2 , the
amateur video did show some spherical distortion that we did not correct, and court limits
were not clearly visible due to occlusions, which hindered the identification of the court
corners needed to compute the perspective transform matrix. Despite all these challenges,
even raw (i.e., unfiltered) estimated court-space positions match reasonably well the actual
player positions, for the vast majority of frames (see Figure 9 and the accompanying video).

0 2 4 6 8 10

Figure 9. Estimated court-space positions from the accompanying amateur video. Notice that
zigzagging is more noticeable for paths on the top part of the court. Hue just indicates the court
quadrant the player is located at.

4. Discussion

Although a number of technologies have been proposed to get motion data in racket
sports, including 3D optical systems based on retroflective markers captured by multiple
cameras [38], and Inertial Measurement Units (IMUs) [39—41], these approaches require
players to wear the IMUs/markers and thus cannot be applied to analyze already existing
videos. The marker-less, video-based techniques we compared in this paper fill this gap by
allowing the analysis of elite and amateur videos captured in noncontrolled setups.

Overall, the main issues that hinder video-based positional analysis in padel videos
are occlusion (net, metallic structure, glass walls, other players) and the error amplification
due to the chosen camera angle (Figure 1). This contrasts with the much easier setup
of tracking players from a zenithal camera, which does not suffer from occlusion and
perspective problems. We have shown that state-of-the-art detection and pose estimation
methods do handle occlusion very well.

The simplest approach is to use a person detector network to estimate a bounding
box for each player. This approach provides a reasonable localization of the player in the
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image (methods prefixed with DT in Table 3), with random errors around 18 cm for the
Y coordinate. Pose estimation methods offer more accurate results, since they identify
player joints (hip, feet) that lead to more accurate player positions. Within this category,
bottom-up pose estimation methods (prefixed with BU in Table 3) are faster than top-down
methods (prefixed with TD in Table 3) but resulting random errors are above 13 cm for the
Y coordinate, whereas most top-down methods achieved errors below 11 cm. As shown
in Figure 8 and the accompanying video, even completely occluded arms and legs are
estimated at plausible locations.

Since the main camera is static, a simple baseline approach for player detection would
be background subtraction [6,16]. For nonzenithal views though, this baseline is less robust
to occlusions than the deep segmentation approaches we tested, which in turn were clearly
outperformed by pose estimation methods (Tables 3 and 4), which benefit from keypoint
locations within the player’s pixels to predict player positions more accurately.

Notice also that the best methods detected all four players in all or nearly all frames,
without requiring video-based object detection techniques [42-44] which exploit temporal
coherence across consecutive frames. We did not apply any temporal filtering to the data,
as this would partially hide the actual accuracy of the methods being compared. For player
and team analyses that require the identification (besides localization) of individual players
across frames, person detectors can be combined with temporal tracking techniques [45,46].

It must be noted that the results in Section 3 are based on comparing predicted court-
space positions with ground truth positions extracted from human-annotated data. Since
the perspective correction assumes that the player’s feet are on the ground (height ~ 0),
we have not considered the error for players with both feet in the air, for example during a
smash jump. For the standard camera setting, such vertical displacements result in an offset
on the predicted court-space Y coordinate. We believe though that these displacements
should have a negligible impact on tactical analyses of padel matches. On one hand, jump
frequency in padel is relatively small. According to [3], the frequency of smash jumps was
found to be below 0.6 jumps per minute (professional male players), which represents
about 0.0001% of the frames (assuming a vertical jump height of d = 1.25m and duration
t = 24/2d/g = 1s). Split-steps (small vertical jumps used as a preparatory motion for
a lateral displacement [47]) were more frequent (1.5 per minute), but since their vertical
distance is small, their impact on accuracy is also small.

On the application side, the systematic collection of player tracking data will allow
analysts to apply to padel some studies that have been introduced recently in other sports.
Some example analyses that only require player positional data include (a) the frequency
at which players stay in particular court regions (e.g., attack, defense and transition zones)
and how this frequency varies depending on game, player, gender, and skill factors,
(b) the detection of time periods where player locations are nonoptimal, e.g., leaving large
portions of the court out-of-reach, (c) the quality at which teammates move synchronously
within the court, and (d) the distance covered by the players, speed profiles, and sudden
direction changes, for the different court zones and game situations. If combined with
player identification (besides localization), these techniques will allow for further studies
such as players’ external load quantification [48], individual action recognition [49], and
interpersonal coordination evaluation [50]. As an inexpensive method to get player tracking
data, these techniques will allow amateur padel clubs to evaluate and monitor players’
performance, as well as other applications such as video-based reflective learning [40], the
analysis of the effects of different training drills, and the comparison between small game
adaptations for children.

5. Conclusions

In this paper we have compared state-of-the-art position estimation techniques (based
on detection, segmentation, and pose estimation) on the high-angle videos that are the
de facto standard in padel matches. The best results were obtained by top-down pose
estimation techniques, in particular when combining cascade detectors [25] based on
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ResNeXt [36] with a HRNet [30] keypoint estimator. These methods achieved standard
deviations (random errors) below 5 cm (X coord) and 12 cm (Y coord), which are on par
with those from human annotators. Average precision values demonstrate the robustness of
these methods, with more than 98% of the estimated positions within a 30 cm error tolerance
with respect to ground truth, for players on the bottom half of the court. These error values
are quite competitive compared to state-of-the-art systems based on multiple-cameras,
radar-based positioning, and GPS equipment used in other sports [51].

We chose to estimate player positions using a simple combination of hip and ankle
coordinates. Should appropriate training examples be available, we could train a network
to predict positions from multiple joints, taking into account also the perspective transform.
Actually, as future work we plan to train such a network using realistic human models [33].
We also plan to apply skeleton-based action recognition techniques [52] to detect actions
(e.g., smash jumps) that imply a vertical displacement of the player above the ground.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/521103368/s1, Table S1: WPT padel matches selected for the evaluation, Video S1: Estimated
player positions for the amateur padel video.
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