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Abstract: This paper proposes a method to enhance the quality of detecting and classifying surface
vehicle propeller cavitation noise (VPCN) in shallow water by using the improved Detection Envelope
Modulation On Noise (DEMON) algorithm in combination with the modified Convolution Neural
Network (CNN). To improve the quality of the VPCN spectrogram signal, we apply the DEMON
algorithm while analyzing the amplitude variation (AV) to detect the fundamental frequencies of the
VPCN signal. To enhance the performance of the traditional CNN, we adapt the size of the sliding
window in accordance with the properties of the VPCN spectrogram data, and also reconstruct
the CNN layer structure. As for the results, the fundamental frequencies contented in the VPCN
spectrogram data can be detected. The analytical results based on the measured data show that the
accuracy of the VPCN classification obtained by the proposed method is above 90%, which is higher
than those obtained by traditional methods.

Keywords: passive sonar; short time Fourier transform; convolution neural network

1. Introduction

Over the past few years, the progress of science and technology has helped people
further explore the ocean by using advanced equipment. However, all radio frequency-
based devices lose their effect on targets submerged in deep water. In such conditions,
replacing radio waves with sound navigation and ranging (Sonar) is the most optimal
solution [1]. The Sonar system is used to perform different tasks, such as observation,
detection, navigation, control, and communication [2]. The requirement for real-time
detection and classification of underwater signals is of utmost importance. Passive sonar is
mainly used to detect noise from marine objects, such as submarines, ships, and marine
animals [3]. It does not emit any signals; instead, it only detects sound waves coming to
itself. In particular, the processing of passive sonar signals poses a complicated problem
due to the changes in time and spectral characteristics of signals even obtained from the
same source. According to Nielsen [4], Urich [5], and Brekhovskikh [6], when a ship moves,
it generates its own signature signals:

- From generation by engines, machines and equipment onboard while in motion.
- From hydrodynamic flow on the hull.
- From presser foot and motor noise.

Each type of signal has its own characteristics and can be detected by experienced
surveyors by hearing or seeing the signal spectrum. Even though these signals are often
considered to be noise for telecommunication systems due to their negative impacts on
transmission, they are extremely useful for passive sonar, because they carry the full
characteristics of the target. During movement, the main noise source of each ship is
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the cavitation of the propeller blades (accounted for about 80–85% of the noise intensity
generated in the marine environment) [7]. The characteristics of this noise depend on the
rotation frequency of the propeller blades. The cavitation noise increases proportionately
with the speed of the blades and decreases as the depth increases. In the case of low-speed
surface ships, noise is mainly caused by engines (main propulsion or diesel generators).
The maximum value of the interference spectral density is calculated to be roughly 140 dB
ref.1 µPa@1m for small fishing vessels and roughly 195 dB ref.1 µPa@1m for ocean cargo
ships [4,6]. For large vessels, there have already been specific models and formulae to
estimate the maximum noise level that they emit [6]. However, for small, fast-moving ships
(especially divers), we cannot determine their existence by these models; rather, we need to
use other methods. The essence of the passive sonar is to process the affected cyclic signals
against a very loud background. This re-circulation is caused by the rotation of the propeller
blades or the motor. A simple way to separate these cyclic signals from the background is to
use the synchronous mediation method. This mediation will remove all components except
for the cyclic component, because the mediation part has equal magnitude compared to
the period of the cyclic part. This method is very useful in theoretical calculations, but it is
difficult to apply in practice, because it is very difficult to accurately identify the period of
the cyclic component and the initial phase of the signals.

To overcome these shortcomings, Detection Envelope Modulation On Noise (DEMON)
algorithms have been used [4]. DEMON-type algorithms, first introduced by Nielsen in
1991, are an analysis of propeller blade properties, such as the number of rotating shafts, the
rotation frequency of the shafts, and the rotation speed of the propeller blades. Since then,
there have been many variations of the DEMON algorithm proposed to solve different
specific problems, such as the tracking of multiple sources in a decoupled way [8], and
3/2D spectral analysis to extract propeller features from acoustic vector sensor data [9].
The basic DEMON algorithm has been tested in practice [10] and has also been used to
detect the breathing pattern of divers from recorded data [11]. These above analyses are
based on spectral estimation to detect and classify targets. The detection is performed using
classical signal demodulation to obtain the propeller blade characteristics. Additionally,
the noise emitted from the targets may vary depending on operating conditions, which
affects the stability of the passive sonar signal. Therefore, the real-time statistical changes of
those signals must always be monitored. When a change is detected, the processing phase
must be rebuilt to re-calculate the results. Research by Yang in 2020 [12] demonstrated that
classifications using neural networks often produce high levels of accuracy.

In Industry 4.0, using and mastering AI hardware and software technologies is ex-
tremely important, as the applications of AI make data-processing more accurate. The
advances and potentials of Machine Learning (ML), including Deep Learning (DL) in the
field of acoustics in general and particularly ocean acoustics increasingly attract awareness.
Machine learning is a group of specialized techniques that use mathematical and statistical
calculations to automatically detect patterns in data. Based on continuously trained data,
ML analysis results in the complex relationship between observed data and the desired
label; the larger the amount of training data which can be produced, the more accurate
specification model ML can give. For passive sonar, Support Vector Machines (SVM) and
the ML algorithm are applied to process signals coming from classes of which properties
are unknown. In other words, those unknown properties have not been included in the
existing database. The basic approach is “one-class” classifications, in which all data from
already known classes are considered a single class. According to [13], using the results of
the analysis of acoustic signals on the time and frequency domains combined with Least
Mean Square as input for the SVM model gives significantly improved results compared
to comparable models. Yang’s research team [14] (2018) used unsorted SONAR data for
pre-training to increase the effectiveness of supervised learning. They used the values
of the final hidden layer of the competitive deep-belief network (CDBF) as the input for
the SVM classifier. In 2018, Ke et al. [15] also used multi-layer auto-encoders to pre-train
data, where characteristics for noise source classification were used as SVM input in the
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classification step. However, there are still limitations in classification results, mainly due
to two reasons: First, because the complicated underwater environment contains a variety
of background noises, and the quality of the received signal is very poor, resulting in a
low classification rate; second, because traditional machine-learning methods often extract
features manually, which significantly reduces the quality of the training set.

More modern approaches are used for new detection techniques, such as Artificial
Neural Networks (ANN), Deep Learning, and so forth. Passive sonar data are passed
through algorithms to reduce the data dimension. The now more simplified data will
be used in ANN models to detect new patterns, and a threshold will be set to decide if
the next event belongs to the new class or not. Here, the detection principle compares
known data and received data. In recent years, DL model has had the ability to go into
and process hidden features of the target signal through a multi-layer network without
mimicking features. Compared with ML methods, DL can extract more specific features
of a target through a multi-layer network with greater accuracy. From the proposal of
Fukushima (1980) [16] and LeCun (1989), the CNN completed in 2012 [17] was the first
multi-layer structure that used relative relationships in space to reduce the parameter
dimensions and improve training performance. VGG-16 [18] (2014) formed a trend to
improve the accuracy of DL networks by increasing the depth of the model. Variations of
GoogleNet [19] (2015), by combining multiple filters of different sizes into the same block,
produced the block architecture for the later CNN. ResNet-50 [20] (2016) used identified
“short-cut” connections to map inputs from the previous layers to the following layers.
It is very deep-network architecture, but has a smaller number of parameters, based on
techniques from GoogleNet. DenseNet [21] (2017) is the next generation of ResNet which
inherits the block architecture and develops the “short-cut” connection for a dense network.
Deep learning can be used to solve the problems of low recognition accuracy when the
signal is unstable, as it can extract features based on large datasets. On the other hand, since
there is a variety of noise, a good selection of features can improve model performance.

From the above analyses, this research proposed a pre-processing model using im-
proved DEMON for better input to a customized CNN to enhance classification accuracy.
The next parts of the paper will be organized as follows: Section 2 introduces the underwa-
ter signal pre-processing method, Section 3 analyzes the CNN proposed structure, Section 4
provides the experiment results discussion, and Section 5 concludes the paper. The last
part will be our acknowledgement.

2. Pre-Processing Underwater Signal

The signals generated from moving ships can be divided into two main types of
components: speed-dependent and non-speed-dependent. The speed-dependent compo-
nents are the negative signals generated by the ship’s propulsion systems (engine, gearbox,
rotating shaft, propeller), and these sound sources include frequencies that change with
speed. The underwater signal, depending on the speed of the ship, will increase or decrease
in direct proportion to the speed of the ship, which all have a linear relationship. There-
fore, the analysis of a few main components will allow the calculation of the remaining
parameters without much complexity.

The noise from a moving ship is mainly caused by propeller blades, which in turn
causes cavitation. The International Institute of Marine Surveying in United Kingdom
demonstrated that, according to Bernoulli’s Law, the propeller blade passing through
the water exerts positive pressure on the blade’s surface and negative pressure on the
blade’s back. Negative pressure leads to water bubbles around the blade, and when these
bubbles explode, shock waves are created. The repetition of such processes produces
ship-specific features. Based on that phenomena, DEMON-type algorithms will extract the
lower modulating frequencies from the higher frequency noise.
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2.1. Drawbacks of the DEMON Algorithm

The DEMON technique is a set of algorithms used to analyze narrow-band underwater
signals based on the principle of treating the noise or the signals generated by propellers as
the envelope of amplitude modulation of carrier waveform that has a specific frequency
(such as small propellers or diving system pressure regulators). That envelope is specific
for the cavitation noise and modulation waveform, which determines the periodicity of the
propeller rotation with the fundamental frequencies.

In the basic DEMON algorithm as defined by Nielsen, x(t) is the acoustic signal that
contains the noise of the propeller and the environment, presented by:

x(t) = s(t) + n(t), (1)

s(t) = m( f , t)w(t), (2)

where s(t) is a broadband signal formed by the modulation of a carrier waveform w(t) by a
modulating waveform m( f , t), and n(t) is environmental noise. The modulating waveform
m( f , t) is periodic with frequency f , thus m2( f , t) is also periodic, which can be expressed
under a cosine formula [22] as follows:

m2( f , t) =
L

∑
l=0

Alcos(lc f t + lφ), (3)

where c = 2π/ fs, fs is the sampling frequency, Al is the expansion coefficient of m2(t), φ
is the phase, and L is the number of coefficients. Because the square makes the left side
of Equation (3) always positive, the coefficient must be selected to make the right side
also positive.

The Figure 1 shows the procedure to perform the DEMON algorithm. In this pro-
cedure, the propeller signal is first of all converted from analog to the digital signal.
Afterwards, a bandpass filter is used to extract the designed cavitation noise signal. The
envelope of the cavitation noise signal is then computed. A window function is used to
capture a period of the envelop of the cavitation noise signal. After computing the root
mean square (RMS) of the above-mentioned windowed signal, the Fast Fourier Transform
(FFT) is applied to obtain the fundamental frequencies of cavitation noise, which are the
typical features for detection and classification of the propellers.

Figure 1. The orginal DEMON algorithm [4].

DEMON was very effective at recognizing the diesel engine ships or propulsion steam
boats; however, it began to expose limitations for new engine generations. The famous
engine company Schottel, in 2015, introduced new versions of its advanced propulsion
systems, such as new types of propellers and Schottel Rim Thruster (SRT) propulsion.
The new SRT is an electric propulsion system with no gearbox or drive shaft. The static
part of the electric motor is attached outside of the pipe connection. The propeller blades
are attached inside of the rotating compartment. This creates a lighter propulsion device
that reduces transmission loss and limits engine noise at very low levels. Therefore, it
significantly affects the detection performance of the DEMON algorithm that focuses on
processing the envelope frequency of the cavitation noise.
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2.2. Improving the DEMON by Using Amplitude Variation

The signals emitted by the ship can be characterized by narrow-band frequency with
low variations, because the motion of the ship engine and the propeller is normally stable.
The spectrum of the received signals is characterized by the frequency peaks that exist in
each period.

For the standard Fourier transform, the basic function is the complex oscillation:

bw(t) := exp(iwt), (4)

where t is the time axis of the signal and w is the single frequency parameter. The Fourier
transform of the signal s(t) is then written as an integral:

F(w) =
∫ ∞

−∞
exp(iwτ)s(τ)dτ. (5)

FFT cannot identify the time when the frequency occurs and the sound sources that
the signal belongs to. Therefore, we used the Short Time Fourier Transform (STFT) instead
of the Fast Fourier transform (FFT). The STFT adds a time dimension to the base function
parameters by multiplying the infinitely long complex exponential with a window:

b(w,t0)
(t) := w(t− t0)exp(iwt), (6)

where w(t) is the window function and (w, t0) is the time-frequency coordinates of the
base function. The general formula for STFT [23] is written as follows:

S(w, t0) =
∫ ∞

−∞
w(t0 − τ)exp(iwτ)s(τ)dτ. (7)

The formula shows information on the time and frequency domain. The result of
Formula (7) is like using a filter-bank with band-pass filters, which have the Fourier
transform as the window w(t) as the frequency response, but shifted to the center frequency
w. STFT performs a series of FFT operations on each overlapping segment over the
entire data.

Optimizing the STFT first usually involves finding the segment size, then adding
zero-padding for small segment sizes to gain spectral better, and lastly, choosing an
appropriate window.

We propose the DEMON by using an amplitude variation (the DEMON-AV), illus-
trated in Figure 2, as follows:

Figure 2. The proposed DEMON-amplitude variation algorithm.

Step 1 The signal spectrum is calculated by STFT. From that, we calculate a two-dimensional
spectral matrix, among which one dimension is the frequency, and the other is the
number of samples.

Step 2 The algorithm considers the frequency spectrum according to the dB scale of the
signal as input. We divide the dataset into samples with an equal length of time.
Underwater signals are complex by nature, which are influenced by many envi-
ronmental factors. If selecting records with short lengths of time, there will not



Sensors 2021, 21, 3353 6 of 18

be enough characteristics for analysis, thus the analysis quality is reduced. Con-
versely, if selecting records with long lengths of time, it will be redundant and
ineffective. Therefore, based on the actual calculations and the amount of available
data, our research divided the data samples into 30 s long samples which proved to
be optimized. Then, we computed the amplitude variation for each segment of the
spectrum, and constructed a spectral matrix.

Step 3 The frequency amplitude of each segment is averaged to obtain a unique represen-
tative value.

Step 4 Using the stacking technique to reduce the variance to increase the signal-to-noise
ratio (SNR) and the threshold of the signal-to-noise ratio was selected based on
calculating the standard deviation of the original signal spectrum.

This technique divides the acoustic signal x(t) into consecutive overlapping segments.
The variance will decrease as we divide more overlapping segments; thus, the probability
of correctly estimating the fundamental frequency f of the signal will increase.

2.3. Simulation Results and Evaluation of Detection Accuracy

In both methods, computation requires the definition of a target frequency window;
unsuitable selection of input parameters can make the detection task unfeasible. Each
sample is smoothed by the window function, and the corresponding standard deviations
are calculated. The signal is detected whenever the corresponding signal exceeds the
corresponding detection threshold. The frequency amplitude of each segment is averaged
to obtain a unique representative value. This technique divides the acoustic signal into
consecutive overlapping segments. When the signal is unstable, the detection and classifi-
cation accuracy will be reduced significantly. DL models can solve this problem more easily,
because they extract hidden features using layers. On the other hand, as there are various
types of noise, suitable selection of features plays an important role in guaranteeing the
performance of the model. Thus, the result of improving DEMON by amplitude variation
will reduce false alarms, while retaining sufficient features to increase detection accuracy.
DEMON considers the adjacent frequencies to be an envelope, therefore, it can only detect
one maximum peak frequency. On the other hand, DEMON-AV focuses on calculating
the amplitude variation between adjacent frequencies, then by observing the frequency
changes along the signal spectrum, it can show the characteristics of each amplitude peak
frequency. Based on the recorded data (Record-1), the Figure 3 shows the signal frequencies
detected by the original DEMON algorithm, whereas the Figure 4 illustrates the detected
results by using the DEMON-AV. It is clear that the proposed DEMON-AV shows a better
performance in terms of characteristic frequencies and harmonics separation for a given
measured acoustic data, when it is compared to the original DEMON. Based on the Record-
2, the similar results can be obtained by using the original DEMON and the DEMON-AV,
which are plotted in the Figure 5 and the Figure 6, respectively.

Detection accuracy is calculated from the numbers and percentages of correct and
incorrect ship detection. We selected 3300 samples to test the analysis results, among
which 1800 samples contained signals from the subjects, and 1500 samples did not. Each
sample was divided into equal lengths of a minute. Table 1 shows two confusion matrices
displaying the detection accuracy, and Table 2 summarizes the accuracy rates.

The result of this process, such as Figures 7 and 8, is a set of filtered spectrogram
images, which will be put into the DL network for training.
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Figure 3. Signal frequency detection by DEMON with Record-1.
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Figure 4. Signal frequency detection by DEMON-AV with Record-1.
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Figure 5. Signal frequency detection by DEMON with Record-2.
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Figure 6. Signal frequency detection by DEMON-AV with Record-2.

Figure 7. Spectrogram after pre-processing with DEMON-AV for Record-1.

Table 1. Detection accuracy on a database of 3300 samples.

DEMON Ship No Ship

Ship 1463 198
No Ship 337 1302

Total samples 1800 1500

DEMON-AV Ship No Ship

Ship 1768 45
No Ship 32 1455

Total samples 1800 1500
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Table 2. Accuracy rates and also the false-alarm rates.

DEMON (%) DEMON-AV (%)

Detection Accuracy1 81.28% 98.22%
False Alarm 13.2% 3%

Figure 8. Spectrogram after pre-processing with DEMON-AV for Record-2.

3. Using CNN for Spectrogram Classification

Passive sonar generally relies solely on the ability of surveyors to directly hear under-
water signals or look at the spectrum. However, human error can cause different results
at different times on the same signal. Applying the neural network to a passive sonar is
a form of support that adds references for the surveyors, helping the system to operate
more stably.

3.1. Reasons for Selecting CNN

A person with normal vision can always detect and recognize objects in an image,
as well as describe the content. However, this task is much more difficult for a computer,
as it considers each image to be merely a numerical matrix (a set of pixels represented
numerically in a specific system, usually Red-Green-Blue (RGB). Therefore, we need to
find a bridge that connects this numerical matrix with the semantic information contained
in the image. ANN does not work very well with image input. In the data set pro-
cessed in Section 2, if we consider each pixel as a feature, an input image with dimensions
(224 × 224 × 3) will have 150, 528 features. If the image size increases to 1000 × 1000, each
input image will have 1 million (1 M) features. If using fully connected NN and assuming
the second layer has 1000 units, the matrix size will be 1000 × 1 M, which equals to a
weight of 1 billion (1 B) to be trained. This requires a huge amount of computations and
often leads to overfitting due to insufficient training data. Therefore, our research team
proposed to use proposed CNN to extract and classify underwater signals based on the
spectrogram image data processed in Section 2.

3.2. CNN Architecture and Proposed CNN

LeNet was one of the first CNN models developed by Yann LeCun. LeNet’s structure
consists of two convolution layers, two maxpooling layers, two fully connected layers, and
the output is a softmax layer. The downsides of LeNet are that the network is very simple,
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and it uses sigmoid (or tanh) functions in each convolution layer, so the network computes
very slowly.

VGGNet uses a series of convolution layers in the middle and the end of the architec-
ture. This will make the whole computation process take longer, but the features will be
retained better than using maxpooling. Input size decreases through convolution, but the
depth increases. Due to the depth and the number of fully connected nodes, the VGG16 net-
work and variants, such as VGG19, have enormous capacities. This makes implementing
VGG a difficult task.

Like other hidden layers, the convolution layer takes input data and transforms this
to produce input for the next layer (the output of this layer is the input of the next layer).
The transformation used is the convolution calculation. Each convolution layer contains
one or more filters which are feature detectors that detect and extract different features of
spectrograms. The general formula of a continuous domain one-dimensional convolution
is defined by:

( f ∗ g)(t) ,
∫ ∞

−∞
f (τ)g(t− τ)dτ. (8)

In CNN, f (t) is the input image, g(t) is the filter that acts as a sliding window, and t
is the position of the filter placed on the original spectrogram. At each point t, ( f ∗ g)(t) is
the value of the product of the intersection between the signal and the window with the
delay t. That integral gives the relative correlation between the signal and the window in
the defined domain. Moving from a continuous to a discrete domain by using the Riemann
sum formula yields:

( f ∗ g)(t) , ∑
τ∈D f∨t−τ∈Dg

f (τ)g(t− τ). (9)

The Riemann sum formula estimates an integral by dividing the domain into intervals
and calculating the area of each interval.

The number of intervals above is the size of the filter in the convolution layer. If the
filter size is [5 × 5], we multiply the convolution 25 times and then add them up, instead of
integrating the whole region continuously. In Figure 9, the example of the Riemann sum,
instead of having to calculate the function value at all the points from 0 to 5, we only need
to calculate the results of 10 intervals with a 0.5 difference, thereby decreasing the number
of calculations from infinity to 10. The calculated points are called the “stride”. We will use
the stride to move the filter with each specified step. The smaller the stride, the more we
have to compute, and as a result, the size of the output gets bigger. The larger the stride,
the less we have to compute, but we will lose more relevant information.

Figure 9. Examples of the Reimann sum.



Sensors 2021, 21, 3353 11 of 18

The proposed network model structure diagram is shown in Figure 10:

Figure 10. Proposed CNN structure.

Pixels at the center of the input matrix are covered by sliding a window over and
over, meaning that the area is used many times to calculate the output value; whereas the
pixels at the corners or edges of the matrix are only used a few times, so a lot of important
information in the near-edge areas will be lost. However, this is the area that contains a
lot of frequency information in the spectrogram. Therefore, we added padding with a
value of 2, meaning that the input will be buffered with zero values, so that the model
can do the integration. Without padding, the window will only slide where the window
and the signal completely intersect. Adding padding increases the size of the input matrix,
leading to an increase in the output matrix size. Therefore, the positions on the edges and
corners of the original input matrix recede deeper, which will be used more in calculating
the output matrix, avoiding information loss.

The tuning is a challenge with a deep-learning complicated structure. Because un-
derwater datasets are insufficient, it is difficult for the deep model network to be trained.
Therefore, we propose a neural network using batch normalization using one input layer,
four convolution layers, four maxpooling layers, and two fully connected layers. The batch
normalization layers which are placed just after defining the sequential model and after
the convolution layer will reduce the internal covariate shift of the model. The internal
covariate shift is a change in the input distribution of an internal. The inputs received from
the previous layer are always changed. Adding batch normalization layers ensures that
the mean and standard deviation of the inputs will always remain the same, and minimize
the fluctuation of the distribution. Batch normalization is placed after the activation layers,
because if we put batch normalization beforehand, then the calculation of batch normal-
ization will likely produce negative features, and applying activation layers like Relu will
lead to the loss of image characteristics. Batch norms do not compute the entire data, and
the model’s data distribution will make some noise. This can help overcome overfitting
and help learn better. The first convolution layer has one convolution [5 × 5], and the
stride is two, with 96 kernels. Using a smaller convolution matrix [5 × 5] will retain more
information on the spectrogram. If the matrix size is an even number, we have to add
padding to the left of the input matrix more than the right (or vice versa), which results in
an asymmetry. Therefore, we chose the matrix size as an odd number, in order to have a
pixel in the center. This can be regarded as a distinguishing point for better performance.
The filter size of the pooling layers is [3 × 3]; the stride is two. Extending the size of the
convolution layers, reducing the dimensions of the feature map and making the filter size
and stride smaller increased the accuracy of our model.

3.3. Training Model with Pre-Processing Data

We used data sets that had been pre-processed by DEMON and DEMON-AV as inputs
to LeNet, VGG, and our proposed CNN model. It is easy to see the difference in the
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accuracy between the models. We separated the samples into 70% for the training set,
20% for the validation set, and 10% for the test set. We also used a spectrogram size of
(3 × 224 × 224) to include in the CNN model for training. From analyzing results between
the models, the accuracy of LeNet and VGG with DEMON pre-processing is only 54% , as
shown in Figure 11, and 63%, as depicted in Figure 12, respectively. The training time of
LeNet is 3.5 h, while that of VGG is 4 h. Our proposed CNN pre-processed by DEMON
reached the accuracy level of 80% as illustrated in Figure 13, which is higher than the two
previous models, with the same training time.

Figure 11. The accuracy of DEMON and LeNet (54%).

Figure 12. The accuracy of DEMON and VGG (63%).

Similarly, we tested LeNet and VGG using DEMON-AV pre-processing for a training
time of 4 h, and obtained the accuracy result of 70%, as shown in Figure 14, and of 78%,
as given in Figure 15, respectively. Finally, we pre-processed our proposed CNN with
DEMON-AV, and the obtained accuracy result is 90% as depicted in Figure 16, which is the
highest accuracy obtained by all tested models.
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Figure 13. The accuracy of DEMON and proposed CNN (80%).

Figure 14. The accuracy of DEMON-AV and LENET (70%).

Figure 15. The accuracy of DEMON-AV and VGG (78%).

We can conclude that our proposed model has significantly improved the accuracy
without increasing the training time. It proves that improving the traditional signal pro-
cessing combined with improving the DL model will remarkably increase classification
performance. In DL, a model can be viewed as a “black box”, in which operations between
the input and output of the system are not visible to viewers. The model will be optimized
for each specific purpose to focus on each desired outcome. Thus, it is not only the security
of the system, but also the desired accuracy which is enhanced.
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Figure 16. The accuracy of DEMON-AV and proposed CNN (90%).

To obtain the heat map, we used Gradient-weighted Class Activation Mapping (Grad-
CAM) [24], as demonstrated in Figure 17 , to compute the gradient of the score for a specific
feature of a convolution layer. Those gradients were global-average-pooled to obtain the
total weights αk

c with c, which is the class:

Lc
Grad−CAM = ReLU(∑

k
αc

k Ak). (10)

Figure 17. Grad-CAM flow chart [24].

The Figure 17 shows the Grad-CAM flow chart proposed in [24]. We used Relu
activation to combine all weighted feature maps to visual Grad-CAM heatmaps as depicted
in Figures 18 and 19.

We checked the transparency of the proposed CNN model with a heatmap to visually
explain whether the key input regions containing the features from each spectrogram were
correctly and sufficiently extracted or not. The high-resolution visualization defines the
important features and class discrimination.

From the heat-maps in Figures 18 and 19, we found that the proposed CNN could
precisely extract the area that contains the feature of the input signal. All training and
testing in this paper were conducted on Python 3.6.8 in the Ubuntu 20.04 system. The
environment used to configure the GPU was CUDA 10.1 and Cudnn 7.6.5 on Dell T3600
Workstation Xeon 8 core NVIDA k2200 4 GB.
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Figure 18. Proposed CNN Heatmap with spectrogram of Record 1.

Figure 19. Proposed CNN Heatmap with spectrogram of Record 2.

4. Experimental Results

In fact, when researching the characteristics of the underwater environment as well as
sonar systems, there are many different channels to model and systems for receiving and
analyzing signals. The research team’s basic system uses a single channel, consisting of a
hydrophone, a module for signal processing, and signal amplification modules (digitizer
and filter) and a real-time recorder. The system can expand to measure multiple channels
by increasing hydrophones for each specific case.

Our simulation used the dataset from the project: “An underwater vessel noise
data-base” by the Research Center for Telecommunication Technologies—Universida de
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Vigo [25], as well as the dataset recorded by ourselves—the Institute of Electronics—in
Lan Ha Bay, Hai Phong, Vietnam. Datasets include various types of underwater ship
sounds. The underwater channel used for data collection was built on the geometry
channel which were introduced and demonstrated by Van Duc Nguyen et al. [26,27].
The sounds were recorded in shallow waters in real conditions at different times during
the day, which contains both natural and anthropogenic environment noise. The system
uses hydrophones BII-7001-SN:0602, a product of Benthoway in Canada. BII’s is a ommi-
spherical hydrophone which can receive a low frequency until 10 Hz, and offer excellent
acoustic characteristics of low noise and durability. Bespoke built-in pre-amplifiers allow
the hydrophones to be used with long extension cables with no loss in sensitivity [28]. The
scenario for experiments is shown in Figure 20.

Figure 20. Location of receiver units and some targets on Google Maps.

5. Conclusions

This paper described a method for surface vehicle propeller cavitation noise (VPCN)
in shallow water. It is a spectrogram domain analysis for a passive sonar using amplitude
variation with a modified Convolution Neural Network which attains an accuracy level
of around 90% without increasing the training time. The proposed model, which is
provided for cavitation noise from the propeller, has better performance in recognizing
and decreasing false alarms. Based on the classification results, we conclude that: (1) Deep
learning models provide good results for detecting and classifying underwater and surface
targets, and these models still process well in low-SNR environments; (2) while the DEMON
algorithm focuses on fundamental frequency, our improved model additionally recognizes
variations in the amplitude of fundamental frequencies; (3) the transformation of data from
the signal sequence to the spectrogram enables the system to process a large amount of
complicated data on a real-time basis; and (4) datasets are still limited due to some security
reasons. Therefore, pre-processing datasets and finding ways to increase the number of
samples are the two main problems that shall be improved in the future.
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Abbreviations

The following abbreviations are used in this manuscript:
ANN ArtificialNeural Networks
CNN Convolution Neural Network
DEMON Detection Envelope Modulation On Noise
DEMON-AV Detection Envelope Modulation On Noise-Amplitude variation
FFT Fast fourier transform
Grad-CAM Gradient-weighted Class Activation Mapping
RMS Root mean square
STFT Short time fourier transform
VPCN Vehicle propeller cavitaion noise
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