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Abstract: In-class teaching evaluation, which is utilized to assess the process and effect of both
teachers’ teaching and students’ learning in a classroom environment, plays an increasingly crucial
role in supervising and promoting education quality. With the rapid development of artificial intelli-
gence (AI) technology, the concept of smart education has been constantly improved and gradually
penetrated into all aspects of education application. Considering the dominant position of classroom
teaching in elementary and undergraduate education, the introduction of AI technology into in-class
teaching evaluation has become a research hotspot. In this paper, we propose a statistical modeling
and ensemble learning-based comprehensive model, which is oriented towards in-class teaching
evaluation by using AI technologies such as computer vision (CV) and intelligent speech recognition
(ISR). Firstly, we present an index system including a set of teaching evaluation indicators combining
traditional assessment scales with new values derived from CV and ISR-based AI analysis. Next,
we design a comprehensive in-class teaching evaluation model by using both the analytic hierarchy
process-entropy weight (AHP-EW) and AdaBoost-based ensemble learning (AdaBoost-EL) methods.
Experiments not only demonstrate that the two modules in the model are respectively applicable
to the calculation of indicators with different characteristics, but also verify the performance of the
proposed model for AI-based in-class teaching evaluation. In this comprehensive in-class evaluation
model, for students’ concentration and participation, ensemble learning module is chosen with
less root mean square error (RMSE) of 8.318 and 9.375. In addition, teachers’ media usage and
teachers’ type evaluated by statistical modeling module approach higher accuracy with 0.905 and
0.815. Instead, the ensemble learning approaches the accuracy of 0.73 in evaluating teachers’ style,
which performs better than the statistical modeling module with the accuracy of 0.69.

Keywords: in-class teaching evaluation; index system; statistical modeling; ensemble learning;
artificial intelligence (AI)

1. Introduction

With the development of modern high-technology, the field of education has ushered
in a major change in the combination of traditional form and information technology, which
is considered as educational informatization.

From a general survey of relevant documents (e.g., National Educational Technology
Plan 1996–2016) [1], it is easy to find that the educational informatization in the United
States has gone through several stages including infrastructure construction, digital re-
sources improvement, and the training of teachers’ application ability. At present, it has
entered the intelligent application stage of educational informatization. Some other coun-
tries also have many educational informatization application cases [2,3]. For instance,
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robots are utilized in Japanese high school to assist campus management and program-
ming education [4]. A large quantity of E-learning resources is added to STEAM(Science,
Technology, Engineer, Arts and Math) education in Korea [5]. Australia combines virtual
reality technology with children’s education to pilot virtual classroom education [6]. In
China, the development of education informatization has been strongly supported by
national policies. According to “the 13th Five-Year-Plan of the National Education De-
velopment [7]” in 2017 and “the Education Informatization 2.0 Action Plan [8]” in 2018,
it is clearly proposed that one of the major projects of educational modernization is to
accelerate the process of educational informatization, aiming at smart education as its
future application goal. “China Education Modernization 2035 [9]” released in 2019 also
clearly pointed out that building an ensemble platform of intelligent teaching evaluation,
management, and service will accelerate the development of smart education, in which
in-class teaching evaluation and campus management are two representative applications.

Considering that a classroom is the most important place for traditional teaching
and learning activities, in-class teaching quality evaluation is the key aspect of the whole
education quality assessment system. In a classroom, teachers are committed to planning
teaching activities, while students carry out learning activities under the guidance of
teachers. Whichever aspect goes wrong may affect the entire in-class performance. The
method of in-class teaching evaluation has mainly experienced three stages: (1) In the early
stage, investigators were organized to go into classrooms for class observation, and then
evaluated in-class performance by using traditional assessment scales and questionnaires;
(2)The emergence of video recording technology made it possible for some courses to use
videos instead of classroom observation, yet these videos still need to be watched manually
for analysis; (3) Driven by the demand for convenience, efficiency, and accuracy, emerging
artificial intelligence (AI) technology makes the automatic analysis of in-class audio and
video data become a reality, thus replacing the manual evaluation workloads.

For the above two traditional evaluation methods, it is indispensable to utilize some
special in-class assessment scales, which mainly include five indicators: teaching objective,
content, method, means, and effect. Additionally, there are multiple secondary indicators
belonging to these main indicators, which make evaluation dimension cover more specific
observation points and thus improve both reliability and validity of scales [10]. Besides,
some evaluation scales include indicators of students’ activities in class, such as partici-
pation status, activity status, thinking status, and learning effect. All the above indicators
combine teaching and learning monitoring to establish a complete index system for evalu-
ation. For example, Chen Youqing [11] proposed a teaching evaluation index system by
combining three conventional scales, which includes four first-level indicators such as the
pertinence, initiative, diversity, and selectivity of learning, as well as several second-level
and third-level indicators. This study quantified the assessment of in-class teaching from
the perspective of “teaching evaluation by learning”. The University of California Berkeley
organized students from various departments to evaluate in-class teaching quality accord-
ing to curriculum design and teaching content by subjective scale scoring [12]. Stanford
University sent anonymous questionnaires to students for in-class feedback and conducted
one-on-one interviews after class, the results of which were evaluated by a professional
evaluation agency. These traditional evaluation methods are to use manual analysis, which
is inevitably influenced by subjective factors of observers. Sometimes there is a lack of
enough objective data to get a reliable conclusion [13]. Furthermore, evaluators must spend
a lot of manpower, material resources, and time to make in-class observation, scale scoring,
and interviews, while in-class observation may even affect the normal teaching activities.
Therefore, improving the traditional in-class teaching evaluation pattern has become an
urgent problem in the field of education.

For AI-based evaluation methods, the use of intelligent technology to analyze in-class
teaching behaviors may bring more objective, timely, and efficient results. In China, the
popularization of the in-class intelligent attendance system has realized convenient atten-
dance check-in [14]. Dai et al. [15] put forward a kind of student motion capture system
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based on camera, and then the report of each student’s learning interest in class can be ob-
tained, which helped to teach students in accordance with their aptitude and to improve the
teaching effect. Yi He et al. [16] proposed a lightweight convolution-neural-network (CNN)
model for practical teaching evaluation, the experimental results of which confirmed the
possibility of the deep learning-based models in improving evaluation performance. Sama-
her [17] designed a smart education environment through the combination of intelligent
data analysis (IDA) and Internet of Things (IoTs) to automatically detect student violations
and teacher speeches, and then automatically provided corresponding reminders to reduce
manpower demand for campus management.

In this paper, we propose a statistical modeling and ensemble learning-based com-
prehensive model, which is oriented towards in-class teaching evaluation by using AI
technologies such as computer vision (CV) and intelligent speech recognition (ISR).

Firstly, we present an index system including a set of teaching evaluation indicators
combining traditional assessment scales with new values derived from CV and ISR-based
AI analysis. Generally, AI is good at visual and speech analysis, while some indicators in
the traditional teaching evaluation scales cannot be calculated from AI-based video and
audio analysis. On the other hand, the real in-class video and audio data may contain
certain process characteristics that are not available in traditional scales. Therefore, it
is necessary to design a more systematic and comprehensive index system for in-class
teaching evaluation. We refine and summarize a set of teaching evaluation indicators
combining traditional assessment scales with new values derived from AI analysis, which
not only has the advantages of objectivity from the real data, but also retains the experience
of subjective evaluation in the classical scales.

Next, we design a comprehensive in-class teaching evaluation model consisting of both
the analytic hierarchy process-entropy weight (AHP-EW) and AdaBoost-based ensemble
learning (AdaBoost-EL) modules. Based on human motion, emotion, speech and class
assignment text obtained from the real video and audio in class by AI technology, the
statistical modeling-based AHP-EW method is used to model the data at the subjective
and objective levels, respectively. At the same time, the ensemble learning model based on
AdaBoost is used to deeply mine the data, to establish the mapping relationship between
the observed data and in-class teaching indicators.

Finally, experiments are carried on to verify the feasibility and efficiency of the pro-
posed model. Experimental results demonstrate that the two modules in the model are
respectively applicable to the calculation of indicators with different characteristics. Accord-
ing to performance analysis, the proposed comprehensive model combined with the refined
index system has been proven to be effective for AI-based in-class teaching evaluation.

2. In-Class Evaluation Framework

Flanders interaction analysis system (FIAS) [18] is an in-class behavior analysis tech-
nology proposed by American in-class researcher N.A. Flanders in the 1960s, which is
more meticulous and mature in the earlier speech act theory of in-class teacher-student
interaction. FIAS is composed of a coding system for describing the interaction in the class,
a set of prescribed standards for observing and recording codes, and a matrix table for
displaying data, conducting analysis, and achieving research purposes. It is the beginning
of in-class evaluation in the modern form.

With the continuous improvement of educational scientific research methods, the
introduction of scientific quantitative research tools, such as coding tables, and the im-
provement of recording and video equipment, in-class observation methods and techniques
were enriched, making it more operable. However, while quantifying in-class observations
deepened the description and understanding of in-class teaching, it could not conceal its
pure technical deficiencies. From the 1970s, the qualitative research method began to enter
the in-class observation [19]. The complete text description presented the whole picture of
the class, so that the in-class events and in-class movement that were originally stripped out
could return to the situation itself. Then, researchers could use their personal experience
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to better understand the class. Today, two different qualitative research orientations have
enriched in-class observations from different levels and directions. The combination and
complementarity of the two orientations have become the mainstream trend of in-class
observation development [20].

In our in-class teaching evaluation system, firstly, according to the observation record
coding rules in FIAS, we sample and code the interactive behaviors in the class every
three seconds, and get eight kinds of data sets as the input basis (including teachers’
movement, teachers’ emotion, teachers’ speech text, teachers’ volume and speed, teachers’
label, students’ movement, students’ emotion, students’ label). Then, according to the
traditional classroom evaluation scales, a set of classroom evaluation index system suitable
for AI is designed.

In order to complete the mapping relationship between the input data and the index
system, the system also includes two evaluation modules: a statistical modeling module
based on AHP and entropy weight method and an ensemble learning module based on
AdaBoost. By inputting the relevant characteristics of teachers’ and students’ movements
and emotions, the evaluation results are calculated to complete the corresponding indicator
mapping relationship. Finally, based on the results of the performance test part, the
model that suits different indicators is selected to build a comprehensive in-class teaching
evaluation model system. The overall structure of the system is shown in Figure 1.
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3. Index System Design

The traditional in-class evaluation method will gain a lot of rich experience and
valuable suggestions from the experts, but it will cost more time and human resources.
Moreover, manual filling in the scale for in-class evaluation will inevitably introduce
subjective factors, which will affect the reliability of the evaluation results. The method
of AI in-class evaluation is to analyze multidimensional data such as the movement and
speech of teachers and students in the class through AI technology, which can overcome
the subjectivity and empirical dependence of traditional evaluation to a certain extent.
Therefore, we have studied some classic in-class evaluation measurement tables, refined
and summarized a set of in-class evaluation index system suitable for AI analysis.

At present, traditional in-class teaching evaluation was to fill in the evaluation scales
after the expert groups listen to the class, and the main indicators were mainly used to
evaluate: teaching contents, teaching goals, teaching methods, teaching attitude, teaching
effect, and so on. As it was difficult for the FIAS system to carry out a more classified and
detailed evaluation of activities in class, Professor Cui [21] expanded the main means of
in-class observation in the in-class evaluation practices in 2012. He proposed a new way
of professing in-class observation, “the Paradigm of LICC”, which was composed of four
dimensions: learning, instruction, curriculum, and culture. LICC is widely used in the
design of in-class teaching evaluation indicators.

According to the universal indicators of LICC [22] and the existing traditional scales,
we decided to divide the index system, as shown in Figure 2, into three dimensions:
teacher-related indicators, student-related indicators, and in-class pattern indicators. By
watching in-class videos and other observation means, teaching and research staff eval-
uate the in-class performance of students and teachers according to the traditional scale
indicators, which is taken as label indicators. The evaluation criteria of the labels include
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teacher’s attainment, teacher’s method, teacher’s language ability, student’s participa-
tion, student’s concentration, in-class teaching purpose, in-class teaching content, in-class
teaching effect, etc.
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Except for the label indicators obtained by subjective evaluation, other indicators of
teachers and students will be obtained by direct analysis of audio and video data through
AI. The indicators related to the in-class pattern, such as knowledge point refine diagram
and teacher–student movement analysis chart, are the overall performance results obtained
through voice recognition, video analysis, and other technologies.

It is worth noting that these indicators can also be classified as score indicators and cate-
gory indicators. Score indicators, including students’ concentration, students’ participation,
and knowledge mastery are described by score data. And category indicators are described
by categories, including teachers’ types, teachers’ style, and teachers’ media usage.

4. The Module of Statistical Modeling

Statistical modeling is a method that uses statistical methods to construct and analyze
data and deduce the relationship between data variables [23]. With the development of
technology, we can directly use computers to analyze data in batches, build statistical
module, deduce general rules, and make further predictions.

4.1. Analytic Hierarchy Process and Entropy Weight Method

Analytic hierarchy process (AHP) [24] is to decompose each indicator of the target
object into multiple constituent factors and layer them according to the relationship of the
constituent factors, after which factors are analyzed layer by layer and finally the influence
weights of various indicators for the target object are obtained.

In our statistical modeling module, the steps to get subjective weights of different
features for in-class teaching evaluation indicators are shown in Figure 3, which mainly
includes four steps:

• Build an analytic hierarchy model module,
• Construct a judgment matrix,
• Hierarchical ordering and consistency check,
• Consistency test and get subjective weight.
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Information entropy value is used to measure the magnitude of uncertainty. According
to the characteristics of entropy, the degree of dispersion of a factor can be measured by
the entropy value. The greater the degree of dispersion, the smaller the impact on the
results [25].

Entropy weight method measures the influence of the factor on the weight of the
result by calculating the entropy value of the factor [26]. Since entropy weight method
uses discrete data for analysis and calculation, this method is an objective weighting
method. The calculated entropy weight is the objective weight in our module [27]. The
steps of calculating objective weights by entropy weight method is given in Appendix A.1
(Algorithm A1).

4.2. Analytic Hierarchy Process-Entropy Weight (AHP-EW) Statistical Modeling for In-Class
Teaching Evaluation

We use the analytic hierarchy process (AHP) to calculate the subjective weight of the
indicators, and use the entropy weight method to calculate the objective weight of them.
We calculate the decision weight from the subjective and objective aspects, and obtain the
comprehensive weight based on the sequence information and strength information of the
two algorithms, and then get the score or type of each indicator, which is analytic hierarchy
process-entropy weight (AHP-EW) statistical modeling for in-class teaching evaluation.
The structure of the statistical modeling module is shown in Figure 4.

The specific calculation steps of using the AHP-EW method for indicator mapping are
as follows:

• Step 1: Determine the type of indicators and find the corresponding feature sequence.

For evaluation of score indicators, the indicators are analysis targets of the statistical
modeling and the calculated final score is the result of the evaluation. Differently, for
evaluation of category indicators, the modeling targets each category of certain indicator
and calculates each category’s final score. The corresponding category of the largest final
score is taken as the evaluation result of a certain category indicator, as shown in Figure 5.

• Step 2: Calculate the subjective and objective weights of the features for the indicators.

According to AHP-EW method in Section 4.1, the subjective and objective weights, as
well as their corresponding rankings of the features are calculated.

• Step 3: Calculate comprehensive weights by the combination weighting optimiza-
tion method.



Sensors 2021, 21, 241 7 of 28
Sensors 2021, 21, x FOR PEER REVIEW 7 of 28 
 

 

 

Figure 4. The structure of statistical modeling. 

 

Figure 5. In-class teaching statistical modeling. 

 Step 3: Calculate comprehensive weights by the combination weighting optimization 

method. 

Gang Li proposed the combination weighting optimization method [28], which takes 

both order information and strength information of subjective and objective weights into 

account and achieves an optimized combination weighing performance. The formulas of 

the method are as follows: 

Figure 4. The structure of statistical modeling.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 28 
 

 

 

Figure 4. The structure of statistical modeling. 

 

Figure 5. In-class teaching statistical modeling. 

 Step 3: Calculate comprehensive weights by the combination weighting optimization 

method. 

Gang Li proposed the combination weighting optimization method [28], which takes 

both order information and strength information of subjective and objective weights into 

account and achieves an optimized combination weighing performance. The formulas of 

the method are as follows: 

Figure 5. In-class teaching statistical modeling.

Gang Li proposed the combination weighting optimization method [28], which takes
both order information and strength information of subjective and objective weights into
account and achieves an optimized combination weighing performance. The formulas of
the method are as follows:

min
n

∑
i=1

(ωi − βi)
2 s.t.


ωi ≥ ωji < j

αi
− ≤ ωi ≤ αi

+

∑n
i=1 ωi = 1

, (1)

in which n is the number of features, ωi is the subjective weight of the i-th feature, βi is
the objective weight of the i-th feature, and [αi

−, αi
+] is the reasonable value interval of the

i-th feature.
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According to the subjective and the objective weights, their reasonable value intervals
of the comprehensive weights are calculated. Then, we calculate the comprehensive
weights of the relevant features for the indicators by formula (1) and sorted the results.

• Step 4: Calculate each student sample’s final score of students’ concentration.

From Step 1 and Step 3, we got the normalized feature sequence and the compre-
hensive weight sequence of features, respectively. Further, in this step, we sum the two
weighted as the final score of one indicator, which is shown as formula (2):

score =
n

∑
i=1

Wi·ai, (2)

in which n is the number of features, ai is the i-th normalized feature’s value, and Wi is the
comprehensive weight of the i-th feature.

For different indicators, the specific calculated in the statistical modeling module is
described in Table 1 below.

Table 1. The calculation of indicators in the statistical modeling module.

Index Input Feature Output

Students Concentration

Students’ Movement
Students’ Emotion

Concentration Judgment
Matrix

Concentration Labels

Frequency and Average Duration of 8
types of Students’ Movement;

Frequency and Average Duration of 2
types of Students’ Emotion;

Score_Concentration

Students’ Participation

Students’ Movement
Students’ Emotion

Participation Judgment Matrix
Participation Labels

Frequency and Average Duration of 8
types of Students’ Movement;

Frequency and Average Duration of 2
types of Students’ Emotion;

Score_Participation

Teachers’ Type
Teachers’ Movement
Teachers’ Emotion

Teaching Type Labels

Frequency and Average Duration of 9
types of Teachers’ Movement;

Frequency and Average Duration of 2
types of Teachers’ Emotion;

Score_ Indoctrination
Score_ Natural

Score_ Interactive

Teachers’ Style

Teachers’ Movement
Teachers’ Emotion

Teachers’ Volume and Speed
Teaching Style Labels

Frequency and Average Duration of 9
types of Teachers’ Movement;

Frequency and Average Duration of 2
types of Teachers’ Emotion;

Mean and Variance od Teachers’
Volume and Speed

Score_Passionate
Score_Humorous

Score_Solemn

Teachers’ Media usage Teachers’ Movement
Media Usage Labels

Frequency and Average Duration of 9
types of Teachers’ Movement;

Score_ Multimedia
Score_ Blackboard

5. The Module of Ensemble Learning

Machine learning is an approach of artificial intelligence. Through the analysis of data,
the system can automatically learn the rules of data, improve from the learning experience,
improve its own model learning effect, and use the rules to predict unknown data [29,30].

Machine learning can be divided into two categories: supervised learning and un-
supervised learning. Among them, supervised learning learns a function from a given
training data set. For the new data obtained, the corresponding results can be predicted
according to this function. The training set of supervised learning includes input and
output, that is, features and targets, and the targets in the training set are pre-annotated.

Ensemble learning is a supervised learning algorithm that has significant advantages
in generalization problems and is a hot issue in the field of machine learning in recent
years. The main idea is the process of combining multiple basic learners into an ensemble
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learner with better performance through some methods, that is to say, the generation and
integration of basic learners are used to realize the construction of ensemble learners.

Ensemble learning includes many basic learners, which can be decision tree, neural
network, or other machine learning algorithms. Most ensemble learning algorithms use
multiple similar basic learners for homogeneous integration, while some use heterogeneous
integration of multiple different basic learners [31].

At present, the commonly used ensemble learning models are divided into bagging,
boosting, stacking, and blending, and the boosting algorithm is the most influential algo-
rithm. In 1990, Schapire proved a conclusion with a constructive method [32]. “According
to the classification error rate in the training process, the distribution of training subsets is
constantly updated to make the learning process pay more attention to those samples that
are difficult to classify. As long as we find a basic learner which is slightly better than a
random guess, we can construct it into an ensemble learner with arbitrary precision.” This
construction process is the core of the boosting algorithm.

5.1. AdaBoost

Adaptive boosting algorithm (AdaBoost) is the most classic boosting algorithm, which
is an iterative algorithm proposed by Freund and Schapire in 1995 to improve the accuracy
of arbitrary learners [33]. The core idea of the AdaBoost algorithm is to train different basic
learners according to different subsets of the same training sample set, and then assign
weights to each basic learner according to the classification error rate, and then combine
them into a strong classifier.

AdaBoost can be used to solve classification problems and regression problems. It is
one of the best supervised learning algorithms with the advantages of easy operation, high
precision, flexible selection of basic learners, and less over fitting [34,35]. So, we choose
AdaBoost as the algorithm of ensemble learning in the teaching evaluation model.

AdaBoost includes four steps: (1) Preparing the data set, (2) Initialize training set weight,
(3) Training the weak learner, (4) Combining the weak learner into a strong learner. The specific
learning process is given in the Appendix A.2 (Algorithm A2).

5.2. Adaboost-Ensemble Learning (Adaboost-EL) for In-Class Teaching Evaluation

The process of the AdaBoost algorithm-based ensemble learning (AdaBoost-EL) mod-
ule is presented in Figure 6.

Based on the above, we choose the AdaBoost algorithm to construct the ensemble
learning module for the in-class teaching evaluation. The steps for using the AdaBoost-EL
method to evaluate indicators are as follows:

• Step 1: Determine the type of the indicator and set the corresponding input data for
ensemble learning module.

Before using the ensemble learning module for evaluation, it is still necessary to
determine the specific types of indicators. Different types of indicators use different
algorithms. For the score indicators, such as students’ concentration in class, students’
participation, etc., we build the module based on the AdaBoost regression algorithm.
For the category indicators, such as teachers’ type, teachers’ style, teachers’ media usage
evaluation and so on, the model is constructed based on the AdaBoost classification
algorithm.

• Step 2: Construct the ensemble learning module and adjust its parameters.

According to the algorithm selected in Step 1, different loss functions and the number
of basic learners is set, respectively. Experiments are carried out with the control variable
method. Then, we calculate the corresponding error rate. The parameters and the loss
function are determined according to the minimum error rate criterion.

The root mean square error (RMSE) is usually used to measure the difference between
the predicted value and the real value in the model, that is, the error rate. The smaller the
value is, the closer the predicted value is to the real value, and the better the effect will be.
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For different indicators, the specific calculation instructions using the ensemble learn-
ing module are shown in Table 2.
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Table 2. The calculation of indicators in the ensemble learning module.

Indicator Input Base Learners Classification
Algorithm Output

Students’ Concentration
Students’ Movement

Students’ Emotion
Concentration Labels

Regression Tree

Forecast Score of
Concentration

Students’ Participation
Students’ Movement

Students’ Emotion
Participation Labels

Forecast Score of
Participation

Teachers’ Type
Teachers’ Movement
Teachers’ Emotion

Teaching Type Labels

Classification Tree SAMME

Types:
Indoctrination,

Natural,
Interactive

Teachers’ Style

Teachers’ Movement
Teachers’ Emotion

Teachers’ Volume and Speed
Teachers’ Style Labels

Types:
Passionate,
Humorous,

Solemn

Teachers’ Media-usage Teachers’ Movement
Media Usage Labels

Types:
Multimedia,
Blackboard

6. Experiment and Performance Analysis
6.1. Input Data

Our data set is extracted and sorted from the outcome data set of four relative research
projects of our partner—Hangzhou Hikvision Digital Technology Co., Ltd., China, which
are (1) ‘Machine Vision-Based Video Recognition for In-Class Movement’, (2) ‘Super Large-
Scale Vocabulary Speech Recognition in Classroom Scenarios’, (3) ‘Voiceprint Recognition
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in Classroom Scenarios’, and (4) ‘Far Field Pickup in Classroom Scenarios’. Original data
come from a real smart classroom environment deployed by Hangzhou Hikvision Digital
Technology Co. In this smart classroom, there is a pickup for voice acquisition, and two
cameras recording videos for teachers and students, respectively.

List of data collection equipment in the real classroom is given in Appendix B.
During the experiment, a total of 300 student samples and 200 teacher samples were

selected, and the audio and video data in the class were sampled every three seconds
to obtain five types of data, such as students’ movement, students’ emotion, teachers’
movement, teachers’ emotions, teacher volume, and speech speed and through the speech
recognition technology to obtain the teacher speech text data of the whole class. The
student label data are obtained according to the after-class test results, and the teacher label
data are obtained through the evaluation of the researchers.

The input data can be divided into sequential data (students’ movement, students’
emotion, teachers’ movement, teachers’ emotion, teachers’ volume, teachers’ speed) and
non-sequential data (teachers’ speech text). For sequence data, the frequency and average
duration of statistics need to be counted. Additionally, for non-sequence data, word
frequency statistics need to be done.

The collection methods and content of the 8 data categories are shown as Table 3:

Table 3. The collection methods and content of the 8 data categories.

Data Categories Collection Methods Data Content

200 teacher samples

Movement Collect teachers’ movements per 3 s Movement number (1–9) and corresponding time

Emotion Collect teachers’ emotions per 3 s Emotion numbers (1–2) and corresponding time

Volume and Speed Collect teachers’ volume (dB) and speed
(word per minute) per 3 s Volume value, speed value and corresponding time

Speech Text The content sequence of process speech
text in the whole class Every sentence and its start and end time

Labels Three evaluation labels marked by experts
to evaluate the teachers from the courses.

Teaching type (1–3),
Teaching style (1–3),
Media usage (1–2).

300 student samples

Movement Collect students’ movements per 3 s Movement numbers (1–8) and corresponding time

Emotion Collect students’ emotions per 3 s Emotion numbers (1–2) and corresponding time

Labels
According to the test after class and the
Concentration and Participation in the

whole class

Scores of the tests, Concentration and Participation
in class

6.2. Performance Analysis Indicators

In order to objectively evaluate the “statistical modeling” and the “ensemble learning
model” and select the best one with better performance, we designed several commonly
used performance analysis indicators.

The specific meanings and mathematical representation of five performance indexes
are as follows:

(1) Root mean square error (RMSE):

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2. (3)

RMSE is to measure the deviation of the predicted value from the true value in the
regression questions. The less the RMSE is, the less the deviation of the predicted value is
to the true value, which also means a better performance of the regression model.

(2) Accuracy (Accu.):

Accu. =
ncorrect

N
. (4)
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Accuracy is the proportion of correctly classified samples to the total number of
samples (N).

(3) Confusion Matrix

Confusion Matrix is a matrix showing the forecast and the actual number of positive
and negative classes. It is convenient to calculate P, R, F1 through this.

Table 4 below is an example of a confusion matrix.

Table 4. An example of a confusion matrix.

Actual Predicted Positive Negative

Positive TP FN

Negative FP TN

T means true, F means false, P means positive, N means negative.
So, TP is the number of true positive classes, that is, the prediction and the actual

label are both positive; FN is the number of false negative classes, that is, the prediction is
negative and the actual label is positive; FP is the number of false positive classes, that is,
the prediction is positive and the actual label is negative; TN is the number of true negative
classes, that is, the prediction and the actual label are both negative.

(4) Precision (P)

Precision is the proportion of true positive in all the results predicted to the positive:

P =
TP

TP + FP
. (5)

(5) Recall (R)

Recall is the proportion of positive classes found by the classifier in all positive classes:

P =
TP

TP + FN
. (6)

(6) F1_score (F1)

F1_score is the harmonic mean of P and R:

F1 =
2× P× R

P + R
=

2× TP
N + TP− TN

. (7)

(7) Macro_Precision (M_P)

Macro_Precision is the arithmetic average of the precision of each category (when
there are more than 2 categories), which is to measure the global precision of the algorithm:

M_P =
1
n

n

∑
i=1

Pi. (8)

(8) Macro_Recall (M_R)

Macro_Recall is the arithmetic average of the recall of each category (when there are
more than 2 categories), which is to measure the global recall of the algorithm:

M_R =
1
n

n

∑
i=1

Pi. (9)

(9) Macro_F-measure (M_F1)
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Macro_F-measure is the Harmonic mean of M_P and M_R:

M_F1 =
2×M_P×M_R

M_P + M_R
. (10)

6.3. Model Construction and Parameter Selection
6.3.1. The Example of Statistical Modeling Module

Now, we take students’ concentration as an example for further analysis.

• Step 1: Determine the type of the indicator and find the corresponding feature sequence.

According to Section 3, students’ concentration is classified as a score indicator. In
addition, from data preprocessing, 20 students’ features such as frequency and average
duration of students’ movement and emotion are extracted from original students’ data set.
Then, we select 11 features related to students’ concentration and determine their positive
and negative effects to get a directional feature sequence, after which the feature sequence
is normalized to the range [0,100].

• Step 2: Calculate the subjective and objective weights of 11 features for students’ con-
centration

According to AHP and the entropy-weight method in Section 4, the subjective and
objective weights, as well as their corresponding rankings of 11 features are calculated, as
shown in Table 5.

Table 5. The weight of 11 types of features.

Subjective Weights and Orders Objective Weights and Orders Comprehensive Weights and Orders

(1) (2) (3) (4) (5) (6) (7) (8)
Feature Weights Orders Weights Orders Reasonable Value Range Weights Orders

X1 0.166 1 0.072 7 [0.072–0.166] 0.121 2
X2 0.142 3 0.109 4 [0.109–0.142] 0.125 1
X3 0.094 6 0.062 10 [0.062–0.094] 0.080 8
X4 0.031 10 0.071 8 [0.031–0.071] 0.053 11
X5 0.151 2 0.043 11 [0.043–0.151] 0.095 5
X6 0.140 4 0.102 5 [0.102–0.140] 0.120 3
X7 0.106 5 0.075 6 [0.075–0.106] 0.088 6
X8 0.041 8 0.069 9 [0.041–0.069] 0.056 10
X9 0.032 9 0.133 1 [0.032–0.133] 0.083 7
X10 0.023 11 0.132 3 [0.023–0.132] 0.073 9
X11 0.074 7 0.133 2 [0.074–0.133] 0.105 4

Among them, X1–X11 are the frequency of “looking up to listen to lectures”, the
average duration of “looking up to listen to lectures”, the average duration of “looking
down to take notes”, the frequency of “lying on the table”, the average duration of “lying
on the table”, the frequency of “looking aside”, the average duration of “looking aside”.

• Step 3: Calculate comprehensive weights by the combination weighting optimization
method.

Using the formula (1), we take both order information and strength information
of subjective and objective weights into account and achieve an optimized combination
weighing performance.

Then, according to the subjective and objective weights of 11 features in column 2©– 5©
of Table 5, their reasonable value intervals of comprehensive weights are listed in column
6©. Then, we calculate the comprehensive weights and rankings of 11 features for students’

concentration by formula (7). The results are shown in column 7©– 8© of Table 5.

• Step 4: Calculate each student sample’s final score of students’ concentration.

From Step 1 and Step 3, we get the normalized feature sequence and the compre-
hensive weight sequence of features, respectively. Further, in this step, we sum the two
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weighted as the final score of each sample’s students’ concentration, which is shown as
formula (2).

6.3.2. The Example of Ensemble Learning Module

Like the statistical modeling module, we also introduce the construction of ensemble
learning module through an example of students’ concentration.

• Step 1: Determine the type of the indicator and set the corresponding input data for
the AdaBoost-EL method.

Students’ concentration is classified as a score indicator. In addition, 20 features
extracted from original students’ data set in data preprocessing constitute the input data
for the AdaBoost-EL method with 300 student samples and 20 features of each sample.
Then, we randomly select 40% as the testing set and 60% as the training set.

• Step 2: Construct the ensemble learning module and adjust its parameters.

Because students’ concentration is a score indicator, we choose CART(Classification
and Regression Trees) regression tree as the basic learner, and set different loss functions (lin-
ear loss, square loss, and exponential loss) and the number of basic learners (30,50,70,100),
respectively, with the idea of using control variables to carry on the experiment. Then, we
calculate the corresponding root mean square error (RMSE) to evaluate the results. Among
them, the RMSE is used to measure the gap between the predicted value and the real value
in the model. The smaller the value is, the closer the predicted value is to the real value,
and the better the effect is. The test results are as follows.

It can be seen from the results, shown in the Table 6, that when predicting the students’
concentration, the RMSE is the smallest when selecting 70 basic learners and linear loss
functions, which is 9.3749, and the prediction effect of ensemble learning is the best.

Table 6. The results of ensemble learning module with different parameters.

Loss Function The Number of Base Learners RMSE

Linear

30 10.2316
50 9.6649
70 9.3749

100 10.0136

Square

30 9.9312
50 10.3445
70 10.1863

100 9.3807

Exponential

30 10.2625
50 9.7782
70 10.0313

100 9.8675

From the overall result chart (Figure 7), it can be found that the overall test result of the
linear loss function is better than the other two loss functions, and as the number of basic
learners increases, the smaller the overall RMSE, that is, the better the prediction effect.

6.4. Performance Analysis

In this section, aiming to construct a better comprehensive evaluation model through
comparing and combining statistical modeling and ensemble learning, we tested both mod-
ules’ performances in different in-class teaching evaluation indicators by the performance
analysis indicators introduced in the above Table 6. To thoroughly compare the proposed
statistical modeling and ensemble learning modules, we apply them to the evaluation of
each score indicators and each category indicators separately, which is shown in Figure 8.
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6.4.1. Performance Analysis of Statistical Modeling Module

For the score indicators, students’ concentration and students’ participation, the
evaluation result is continuous. Therefore, RMSE is used to perform the AHP-EW method,
and the prediction results are compared with the label data, as shown in Figure 9.

According to the performance analysis, we obtained the RMSE of the statistical mod-
eling module for score indicators, which is shown in Table 7.

Table 7. Performance analysis for score indicators evaluated by the statistical modeling module.

Statistical Modelling

Score Indicator RMSE

Concentration 11.167

Participation 13.409

From the above figures, the AHP-EW does well both in the two score indicators, which
both have high fitting degrees between the predicted value and the label value. It can
be calculated that the RMSE between the predicted value and the label value of students’
concentration was 11.167, and the RMSE of students’ participation was 13.409. Compared
between the two indicators, the AHP-EW does better in students’ concentration than the
other one.

For the category indicators, the evaluation of teachers’ type, teachers’ style, and
teachers’ media usage, we obtain the normalized confusion matrix under the statistical
modeling, as shown in Figure 10.

According to the confusion matrix, it is easy to calculate the performance parameters
of each category of three indicators: The precision, recall, F1-score value of each class, and
accuracy, M_P, M_R, M_F1 to evaluate the global performance of statistical modeling, as
shown in Table 8.

Table 8. Performance analysis for category indicators evaluated by the statistical modeling module.

Statistical
Modelling

Category Indicators Precision Recall F1 Accuracy M_P M_R M_F1

Teachers’
Type

Indoctrination 0.987 0.938 0.962

0.815 0.789 0.791 0.790Natural 0.776 0.776 0.776

Interactive 0.604 0.659 0.630

Teachers’
Style

Passionate 0.982 0.918 0.949

0.695 0.703 0.687 0.695Humorous 0.511 0.414 0.457

Solemn 0.615 0.728 0.667

Teachers’
Media Usage

Multimedia 0.891
0.905 0.918 0.448 0.602

Blackboard 0.919
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According to the above table, among the various categories’ evaluation of teachers’
type, “indoctrination” performs well, and the rest is mediocre, and the overall performance
of the method is in the evaluation of teachers’ style, the performance of “passionate” is
better than that of “humorous” and “solemn”. The overall performance of the model for
this indicator is relative. There are only two categories in the teachers’ media usage, and
the overall performance is also good.

6.4.2. Performance Analysis of Ensemble Learning Module

Similar to the performance analysis of the statistical modeling module, it still distin-
guishes score indicators and category indicators.

For the score indicators, students’ concentration and students’ participation, the
evaluation result is continuous, so we use the same analysis indicator, RMSE, to calculate
the accuracy of the AdaBoost-EL method, and draw the prediction results of the model
and compare with the label data, as shown in Figure 11.

According to the performance analysis, we obtained the RMSE of the ensemble
learning module for score indicators, which is shown in Table 9.

Table 9. Performance analysis for score indicators evaluated by the ensemble learning module.

Ensemble Learning

Score Indicator RMSE

Concentration 8.318

Participation 9.375

The charts above are the comparison of the predicted results and label data of the
students’ concentration in the training set and the test set. From the fitting degree of the
chart, we can find that the ensemble learning model has a good prediction effect both on
the training set and test set. Among them, the RMSE of prediction results and label data on
the training set is 8.318, and the RMSE on the test set is 9.3749.

The following charts are the comparison of the predicted results and label data of
the students’ participation in the training set and the test set. Among them, the RMSE of
prediction results and label data on the training set is 8.571, and on the testing set is 9.663.
The fitting degree is slightly lower, but it is still higher than the statistical model.

Similarly, for the category indicators, teachers’ type, teachers’ style and teachers’
media-usage, the normalized confusion matrix of the three indicators on the ensemble
learning model is shown in Figure 12.
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According to the confusion matrix, the performance parameters of the three indicators
in the ensemble learning model are calculated: P, R, F1 of each class, and accuracy, M_P,
M_R, M_F1, which are used to evaluate the global performance of the ensemble learning
model, as shown in Table 10.

Table 10. Performance analysis for category indicators evaluated by the ensemble learning model.

Ensemble
Learning

Category Indicators Precision Recall F1 Accuracy M_P M_R M_F1

Teachers’
Type

Indoctrination 0.947 0.935 0.941

0.785 0.755 0.761 0.758Natural 0.776 0.728 0.752

Interactive 0.542 0.619 0.619

Teachers’
Style

Passionate 0.951 0.935 0.943

0.73 0.729 0.719 0.724Humorous 0.578 0.464 0.515

Solemn 0.66 0.756 0.705

Teachers’
Media Usage

Multimedia 0.881
0.89 0.897 0.433 0.584

Blackboard 0.899

According to the above table, it can be concluded that the performance of teachers’
type is better for “indoctrination”, while for the other two indicators, it is similar to the
performance of the statistical model in each category.

In the evaluation of teachers’ style, the values of P, R, and F1 of “passive” are better
than the values of “solemn”, while the performance of “humorous” is the worst.

The overall performance of ensemble learning is also better for the binary indicator,
teachers’ media usage. Like the statistical model, the misjudgment rate of multimedia is
higher than that of blackboard.

6.4.3. Comparison between the Two Modules

To distinguish the performance of the two modules more conveniently, we summarize
the performance parameters of the two modules into a table (Table 11).

The above table includes the performance of the statistical modeling and the ensemble
learning modules for five indicators, teachers’ type, teachers’ style, teachers’ media usage,
students’ concentration, and students’ participation. Interpreting the data into graphs can
more clearly compare the performance between the two modules, as shown in Figure 13.

The first histogram is for score indicators, students’ concentration and students’ Par-
ticipation, we mainly use RMSE to measure the error between the predicted value and the
real value. In contrast, it is obvious that the RMSE of ensemble learning module is smaller
for the two score indicators, which means the evaluation performance of the AdaBoost-EL
method is more suitable.

The second group of line charts are for category indicators, teachers’ type, teachers’
style, teachers’ media usage.

According to the curve in the figure, for teachers’ style, the evaluation effect of ensem-
ble learning module is better, which can be more targeted to the characteristics of indicators
in-depth mining, using the idea of ensemble learning to enlarge the complementarity
between data.

However, for the other two indicators, teachers’ type and teachers’ media usage, it is
obvious that the performance of the statistical modeling is better. We can use the AHP-EW
methods with a combination of subjective and objective to better extract the correlation
between features.

According to the performance analysis in the previous section, for different indicators,
the AHP-EW method and the AdaBoost-EL method have their own advantages and
disadvantages. For the proposed indicators, we choose models that perform better in the
evaluation results, and combine the comprehensive in-class evaluation model, as shown in
Figure 14.
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Table 11. The evaluation performance of all experiments.

Statistical
Modelling

RMSE
Overall Module Parameters

Concentration 11.167

Participation 13.409 Precision Recall F1 Accuracy M_P M_R M_F1

Teachers’
Type

Indoctrination 0.987 0.938 0.962

0.815 0.789 0.791 0.790Natural 0.776 0.776 0.776

Interactive 0.604 0.659 0.630

Teachers’
Style

Passionate 0.982 0.918 0.949

0.695 0.703 0.687 0.695Humorous 0.511 0.414 0.457

Solemn 0.615 0.728 0.667

Teachers’
Media Usage

Multimedia 0.891
0.905 0.918 0.448 0.602

Blackboard 0.919

Ensemble
Learning

RMSE
Overall Module Parameters

Concentration 8.318

Participation 9.375 Precision Recall F1 Accuracy M_P M_R M_F1

Teachers’
Type

Indoctrination 0.947 0.935 0.941

0.785 0.755 0.761 0.758Natural 0.776 0.728 0.752

Interactive 0.542 0.619 0.619

Teachers’
Style

Passionate 0.951 0.935 0.943

0.73 0.729 0.719 0.724Humorous 0.578 0.464 0.515

Solemn 0.66 0.756 0.705

Teachers’
Media Usage

Multimedia 0.881
0.89 0.897 0.433 0.584

Blackboard 0.899
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7. Conclusions

Aiming at accelerating the development of smart education, this paper has proposed
an AI-application-oriented in-class teaching evaluation model by using statistical modeling
and ensemble learning.

First of all, this paper designs a more systematic and comprehensive index system for
in-class teaching evaluation, including a set of teaching evaluation indicators combining
traditional assessment scales with new values derived from AI analysis, which not only
better suits AI analysis output, but also retains the rich experience of scales and question-
naires. Next, a comprehensive in-class evaluation model consisting of statistical modeling
and ensemble learning is proposed to establish the accurate mapping relationship between
the observed data and teaching evaluation indicators. The module of statistical modeling
utilizes the AHP-EW method to model the subjective and objective data. Meanwhile, the
module of ensemble learning employs the AdaBoost method to deeply mine the data.
Experiments not only demonstrate that the two modules in the model are respectively
applicable to the calculation of indicators with different characteristics, but also verify
the performance of the proposed model for AI-based in-class teaching evaluation. In this
comprehensive in-class evaluation model, for students’ concentration and participation,
ensemble learning module is chosen with less root mean square error (RMSE) of 8.318 and
9.375. In addition, teachers’ media usage and teachers’ type evaluated by the statistical
modeling module approach higher accuracy with 0.905 and 0. 815. Instead, the ensemble
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learning approaches the accuracy of 0.73 in evaluating teachers’ style, which performs
better than the statistical modeling module with the accuracy of 0.69.
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Appendix A

Appendix A.1

The steps of calculating objective weights by the entropy weight method is as follow:

Algorithms A1 Calculating objective weights by the entropy weight method

Input:
For totally N samples and M corresponding features,
the j-th feature value of the i-th sample xij(i = 1, 2, . . . , N; j = 1, 2, . . . M);
Process:

1. Xij =
xij−min{x1j ,··· ,xnj}

max{x1j ,···xnj}−min{x1j ,··· ,xnj}
% Normalization of positive influence feature

2. Xij =
max{x1j ,··· ,xnj}−xij

max{x1j ,···xnj}−min{x1j ,··· ,xnj}
% Normalization of negative influence feature

3. k = 1
ln(n) > 0, ej = −k ∑n

i=1 pij ln
(

pij
)
, j = 1, 2, · · · , m

% Entropy value of the j-th feature
4. dj = 1− ej, j = 1, 2, · · · , m % Information entropy redundancy of the j-th feature

end
Output: Subjective weight of the j-th feature

Appendix A.2

The specific learning process of the AdaBoost algorithm is as follow:

Algorithms A2 Learning process of the AdaBoost algorithm

Input: Dataset D1(i) = 1/m; D = {(x1, y1), (x2, y2), . . . , (xm, ym)};
Basic-learner L;
Iteration T;
Process:
1. D1(i) = 1/m; % Initialize training set weight
2. for t = 1, · · · , T:
3. ht = L(D, Dt); % use D and Dt to train the learner ht
4. et = Prx∼Dt,y I[ht(x) 6= y]; % Calculate the error of learner ht

5. if et > 0.5 then break
6. αt =

1
2 ln ( 1−et

et
); % Calculate the coefficient of learner ht

7. Dt+1(i) =
Dt(i)

Zt
×
{

exp(−αt), ht(xi) = yi
exp(αt), ht(xi) 6= yi

=
Dt(i) exp(−αtyi ht(xi))

Zt

8. % Update the weight of training set, where Zt is the normalization factor.
% Zt = ∑m

i=1 Di · exp(−α·yi ·L(xi))
9. end
Output: H(x) = sign(∑T

t=1 αtht(x))
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Appendix B

Original data come from real smart classrooms deployed by Hangzhou Hikvision
Digital Technology Co. In a smart classroom, there is a pickup for voice acquisition, and
two cameras recording videos for teachers and students, respectively.

List of data collection equipment in the real classroom is as follow.

Device Picture Description

Real Classroom
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Digital Technology Co. In a smart classroom, there is a pickup for voice acquisition, and 

two cameras recording videos for teachers and students, respectively. 

List of data collection equipment in the real classroom is as follow. 

Device 

Picture 

Description 

Real Classroom Overall layout of the smart classroom 

Pickup 

DS-2FP2020-A 
To obtain the voice data in the classroom 

Overall layout of the smart classroom

Pickup
DS-2FP2020-A
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In the front of the classroom.
To record the voice for students, and obtain the
data such as students’ movement, emotion . . .

Camera for teachers
iDS-EGD0288-HFR
(8–32 mm) (2.8 mm)
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