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Abstract: In this article, we introduce a new ring artifacts reduction procedure that combines several
ideas from existing methods into one complex and robust approach with a goal to overcome their
individual weaknesses and limitations. The procedure differentiates two types of ring artifacts
according to their cause and character in computed tomography (CT) data. Each type is then
addressed separately in the sinogram domain. The novel iterative schemes based on relative total
variations (RTV) were integrated to detect the artifacts. The correction process uses the image
inpainting, and the intensity deviations smoothing method. The procedure was implemented in
scope of lab-based X-ray nano CT with detection systems based on charge-coupled device (CCD)
and scientific complementary metal-oxide-semiconductor (sCMOS) technologies. The procedure was
then further tested and optimized on the simulated data and the real CT data of selected samples
with different compositions. The performance of the procedure was quantitatively evaluated in terms
of the artifacts’ detection accuracy, the comparison with existing methods, and the ability to preserve
spatial resolution. The results show a high efficiency of ring removal and the preservation of the
original sample’s structure.

Keywords: ring artifacts reduction; CCD detector; sCMOS detector; high-resolution X-ray computed
tomography; relative total variation

1. Introduction

In the field of high-resolution X-ray computed tomography (CT) with a micron and
submicron spatial resolution, reconstructed CT data are often affected by severe ring
artifacts. They appear as concentric ring-like features superimposed on the imaged scene
and are centered on the object’s center of rotation creating either full rings (full scan over
360◦) or half rings (half scan over 180◦) [1]. Ring artifacts are mainly caused by imperfect
detector pixels, where a perfect pixel’s response should be linearly proportional to the
amount of photons incident on the detector. There are many different underlying causes for
individual pixels to have imperfect responses. These include defects in the scintillator, the
detector itself, and the readout electronics [2]. Moreover, the detector responses may vary
due to numerous time-dependent drifts, such as thermal drifts, and also due to changes
in the X-ray spectrum [2]. No matter the cause, ring artifacts degrade the resulting image
quality. Therefore, it is desirable to remove or at least significantly reduce the presence of
ring artifacts in CT data.

Ring artifacts reduction methods can be divided into three approaches. The first is
based on a flat-field correction of a detector [3]. The proper flat-field correction should
ideally remove all the detector sensitivity variations [4]. However, ring artifacts may
persist after this correction due to the detector pixels intensity dependencies and non-linear
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response functions, or due to time-dependent non-uniformities of the incident beam [5].
To overcome these issues, advanced flat-field correction approaches were proposed in
several recent works [2,4,6,7]. However, such sophisticated flat-field methods are not easily
applicable in practice, because they require specific CT acquisition scenarios, and precise
knowledge of used detection system is needed.

Second approach is the hardware-based ring artifacts reduction method. This method
is based on moving the detector system in defined horizontal steps during the CT acquisi-
tion so that the object is projected on different regions of the detector during a CT scan [8].
Through this, the effect of non-uniform detector responses is suppressed. Although the
practical functionality of this method was reported in [9] and [10], this procedure’s dis-
advantage is reducing the spatial resolution of the CT data if the detector shifts are not
accurately known [2] or the movement precision is worse than the used detector pixel size.
In general, this method is hardly applicable in nano CT systems due to such demanding
requirements on the movement precision.

The third approach for the ring artifacts reduction are the image-based processing
methods. These methods can be further divided, based on the domain of processed data, to
sinogram-based (sinogram pre-processing) and tomogram-based (CT data post-processing)
methods [11]. Sinogram-based methods work directly with the sinogram data, where the
ring artifacts appear as straight lines in a vertical direction and are therefore easier to detect
and to process. Some of these methods assume the presence of a specific high-frequency
component that is directly related to the ring artifacts. Therefore, they aim to filter out
the artifacts using low pass filters [12–15]. Most of these, however, fail to remove the
strong artifacts related to dead detector elements or damaged areas on the scintillator,
in which case they create an extra band around the original ring [10]. To overcome this,
other methods first detect the ring artifacts elements and then correct them using various
approaches: image inpainting [1,16–18] moving average and weighted moving average
filters [19–21], sensitivity equalization [22]. However, even these methods have their
limitations. Most of these methods are only suitable for suppressing a certain type of stripe.
Moreover, they are generally difficult to use in practice due to many parameters needing
to be adjusted when a wrong selection of parameters significantly affects the resulting
quality. However, the work of Anas [16] can be pointed out because it introduced a novel
idea for classifying rings based on their statistical properties and for addressing each type
separately.

On the contrary, the tomogram post-processing methods work with CT data after
the tomographic reconstruction. These methods often use a conversion of the data from
Cartesian to the polar coordinate system. After this conversion, the ring artifacts appear
as stripes that can be further processed using similar assumptions and strategies as for
sinogram-based methods [23–27]. One method from these can be pointed out, Liang [26]
proposed a novel ring artifacts reduction approach integrating benefits of an efficient
iterative framework together with relative total variations (RTV) algorithm for the texture
extraction. However, this method uses a simple mean values analysis to detect and correct
the artifacts, which is insufficient in the case of dead detector elements or damaged areas
on the scintillator. Moreover, tomogram-based methods are, in general, strongly dependent
on the quality of the used tomographic reconstruction because some extra artifacts might
be created [20]. Therefore, a novel class of methods lying between sinogram-based and
tomogram-based approaches has been recently developed. The ring artifacts reduction is
addressed directly during the reconstruction process using specific forms of regularizations
(e.g., [11,28,29]). Such regularizations can, however, be highly computationally demanding,
which limits the practical applicability of those methods.

In this article, we present a new ring artifacts reduction procedure that combines
several selected ideas from image-based processing methods into one complex sinogram-
based method with a goal to overcome all previously mentioned limitations. The ring
artifacts are classified into two types based on their cause and actual appearance in the CT
data. We prefer to separate the detection and correction schemes for each type of artifact
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for their effective removal. We propose a two-step iterative correction scheme that deals
with all the artifact types in the sinogram domain. Consequently, a significant influence
of tomographic reconstruction on the efficiency of artifacts reduction is avoided. The
reduction strategy was optimized for each artifact type separately to preserve the spatial
resolution and sample’s structural information, which are the most important factors in the
field of nano-tomography. Practical functionality of the prosed method was verified on
both synthetic data and real CT data. It shows a high efficiency of ring artifacts removal,
and a robustness to character of input data and used detection system in context of other
tested ring artifacts correction techniques.

2. Materials and Methods

In this article, a two-step ring artifacts reduction scheme is proposed. This scheme
was developed for the artifacts’ reduction in the sinogram domain and is based on a
categorization of ring artifacts into two types. The ring artifacts are categorized based on
the observation of responses from different kinds of deficiencies in sinograms and on their
specific hardware causes (see Figure 1). In the proposed reduction scheme, each of these
classes is then addressed separately using dedicated detection and reduction procedures.
In the first step, the most prominent ring artifacts (high-level artifacts) are corrected, and
subsequently weak artifacts (low-level artifacts) are corrected in the second step.

Figure 1. Example of ring artifacts affected data—glass capillary sample acquired with a charge-
coupled device (CCD)-based camera: (a) sinogram; (b) detail of sinogram central area; (c) central
area of corresponding tomogram. Red arrows indicate the high-level ring artifacts and blue arrows
the low-level ring artifacts.

2.1. High-Level Ring Artifacts

The class of high-level ring artifacts (HRA) is represented by the most prominent
stripes in the sinograms (see Figure 1). The actual cause of such artifacts is two-fold. One
cause originates from entirely dead detector pixels or damaged areas on the scintillator.
The behavior of these pixels then does not follow the pattern of responses of adjacent
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non-defective elements. Their responses are close or equal to the saturation level of the
detector (maximum of the dynamic range) or the minimum of the dynamic range. The
second cause is related to so-called “hot pixels”, which may be considered as a type of fixed
pattern noise [30]. They are defined as pixels with the dark current values significantly
above the average. They follow the responses of the adjacent non-defective pixels but with
significant deviations that do not vary in time. In the sinograms, they appear as prominent
stripes, but they do not reach the extremes of the dynamic range.

High-Level Ring Artifacts Removal

The reduction in high-level ring artifacts is divided into two parts: first, the artifacts’
positions are detected, and second, the input sinogram is corrected at these positions.
For the artifacts’ detection, an iterative detection scheme was designed. This detection
procedure consists of 5 steps (see Figure 2) that are iteratively repeated until any of 4
stopping conditions is fulfilled. These steps are:

1. Texture extraction

Figure 2. Illustrative scheme of proposed high-level ring artifacts detection scheme—as example
images, the outputs from the first iteration are shown.

Ring artifacts, together with the structural details, are considered as a texture of
sinogram. Therefore, textural information is first extracted using the subtraction of input
sinogram and its smoothened version (i.e., image after texture removal):

Ti = Ii − Ssi , (1)

where Ti is extracted texture image in the current iteration i, Ii is input sinogram in the
current iteration i and Ss,i is input sinogram after the texture removal. For texture removal,
an algorithm based on relative total variation (RTV) is used (for more details see the
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Appendix A section). After the texture extraction in the current iteration, the first stopping
condition (SC 1) is evaluated:

‖Ti − Ti−1‖2

‖T1‖2
≤ R1, (2)

where Ti is extracted texture image in the current iteration i, Ti−1 is extracted texture image
in the previous iteration, T1 is extracted texture image in the first iteration, and R1 is a
selected threshold value. Using this stopping condition, the iteration is stopped when the
normalized L2 norm of the difference between two sequential extracted textures is equal or
lower than the set value R1.

2. Vertical pattern extraction

The extracted texture image from the previous step is further convolved:

Pi = Ti ∗ k, (3)

with a convolution kernel k that corresponds to one-dimensional (1D) vertical mean filter
with the length l. This is done to highlight a vertical stripe pattern (e.g., ring artifacts) and
to blur remaining non-vertical structures. Then, the first derivative is approximated by
finite differences in the horizontal direction, and the result is binarized row-by-row by
thresholding with a threshold value set to a double of the calculated standard deviation of
a given row:

Bi(x, y) =
{

1, i f ∆xPix(y) > 2 · σ∆x Pi x

0, otherwise
, (4)

where Bi(x,y) corresponds to the value of resulting binary mask in the current iteration i at
coordinates x,y and σ is used notation for standard deviation.

3. Possible artifacts’ positions detections

The binary mask is then summed in the column direction:

Vi(y) =
M

∑
x=1

Bi(x, y), (5)

where Vi(y) refers to value of the resulting vector at position y and M refers to number of
rows in the binary mask Bi, x and y refer to vertical and horizontal indices, respectively.
In the resulting vector, only elements with values above threshold R2 are considered as
possible candidates for positions of ring artifacts Ap:

Api(y) =

{
1, i f Vi(y) > R2.
0, otherwise

(6)

However, the inevitable RTV smoothing errors may negatively affect this detection.
To avoid this, the distances between possible detected artifacts are also analyzed. When
the distance between two neighboring possible artifacts’ positions is below threshold R3,
the intermediate positions are also considered as the possible artifacts’ positions. In this
step, the second stopping condition (SC 2) is evaluated, the iteration is stopped when no
possible artifacts’ positions are detected.

4. Artifacts’ positions verification

Verification of detected possible artifacts’ positions Ap is achieved by the analysis
of mean column vector LTi of extracted textural information Ti in the current iteration
i. Possible artifact positions Ap are considered as verified Av, if they meet the following
condition:

Avi(y) =

{
1, i f

∣∣LTi

(
Api(y)

)
− LTi

(
Api(yx)

)∣∣ > 2·σ∆LTi
,

0, otherwise
(7)
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where Api(yx) is the nearest artifact-free position to analyzed possible artifacts’ position
Api(y) and the threshold value corresponds to twice the standard deviation value of the
first derivative of LTi, which is approximated by finite differences. If no possible artifacts’
positions are considered as verified, the iteration is stopped (the third stopping condition—
SC 3). On the other hand, when certain positions are verified in the current iteration i, they
are then compared to the verified positions from previous iterations and if no new verified
artifacts’ position is detected, the iteration is stopped (the fourth stopping condition—SC 4).

5. Initial artifacts reduction

In each iteration, the sinogram is corrected at new verified artifacts’ positions. This is
achieved by filling the sinogram at artifacts’ positions by means of image inpainting. In
our work, this is completed by using a partial differential equation (PDE)-based approach,
where Laplace equation is solved with the Dirichlet boundary condition:

SCi =

{
∇2u = 0, f or Avi

u(x, y) = Ii (x, y), on ∂Avi
, (8)

where Sc corresponds to corrected sinogram in the current iteration i.
After the termination of the detection procedure, the final artifacts reduction is con-

ducted. In this step, the previously described inpainting scheme is used again, and the
input sinogram is corrected at the detected ring artifacts’ positions Av. The implementation
details and used parameters can be found in Appendix C (Table A3).

2.2. Low-Level Ring Artifacts

Low-level ring artifacts (LRA) are caused by miscalibrated detector pixels. Their
sensitivity deviations result from higher or lower dark current values compared to the
non-defected pixels. They follow the responses of the adjacent non-defective pixels but
with certain deviations. In the sinogram (see Figure 1), their presence is not distinct from
the non-defective pixels as the HRA, but they still negatively affect the data quality.

Low-Level Ring Artifacts Removal

The main idea of the proposed algorithm for LRA removal is that column-wise neigh-
boring homogenous areas (i.e., areas at same vertical positions of two adjacent columns)
from extracted texture should ideally (without any artifact) have the same average values.
To achieve this, an iterative procedure was proposed (see Figure 3), consisting of these steps:

1. Texture extraction

For the texture extraction, the same procedure as in high-level ring artifacts removal
(Equation (1)) is used with the same stopping condition (Equation (2)) set to the threshold
value R1. To reduce the presence of noise and its negative effect on the subsequent analysis,
the extracted texture is further filtered with a 1D pixel-wise adaptive low-pass Wiener filter
in column-wise direction:

Tfi
= Ti ∗ w, (9)

where Ti is extracted texture in current iteration i, w is kernel of 1D Wiener filter with the
length l and Tfi is the noise reduced texture, which is used only within steps 2 and 3.

2. Homogenous areas detection

Homogenous texture areas are detected column-wise using the following formula:

Hi(x, y) =
{

1, i f Tfi (x, y) ≤ Tf i(1 : M, y)
0, otherwise

, (10)

where y is the coordinate of analyzed column, Hi(x,y) corresponds to the value of resulting
binary mask in the current iteration i at coordinates x,y and M is the number of sinogram
rows.
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Figure 3. Illustrative scheme of the proposed low-level ring artifacts removal procedure—the outputs
from the first iteration are shown as examples.

3. Correction factors calculation

Correction factors for sinogram columns are calculated from extracted texture Tfi
by comparing two neighboring columns in terms of average intensity values of their
neighboring homogenous areas. The column with smaller index is always taken as a
reference, and other column is then corrected using the following equation:

Tfi (1 : M, y) = Tfi (1 : M, y) + Ci(y), (11)

where Ci(y) is a correction factor for column y in the current iteration i:

Ci(y) =

∑Nh
j=1 Tfi (h, y− 1)

Nh
−

∑Nh
j=1 Tfi (h, y)

Nh

, (12)

where h is x coordinates of neighboring homogenous areas in analyzed columns (at coordi-
nates y and y−1), h is those coordinates where Hy = 1 ∧ Hy−1 = 1, and Nh is the number
of those positions. If Nh = 0, the correction factor for the previous column (Cy−1) is used.

4. Detrending

Calculated correction factors in the previous step can successfully reduce the artifacts,
but the overall structural trend of the extracted texture is also lost. To avoid this, the
Savitzky-Golay filter [31] is used to extract this trend from the calculated correction factor
values:

t = Ci ∗ s, (13)
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where s is the 1D kernel of the Savitzky-Golay filter with polynomial order r and frame
length f. The value of this parameter f is decreasing with each iteration by power of
two—by this the over-smoothing effect is avoided. Subsequently, this trend is subtracted
from the calculated correction factors:

Cdi
= Ci − t, (14)

to ensure that only the artifacts are reduced while the overall structural pattern of the
textural information is preserved.

5. Sinogram correction

In each iteration i, the corrected sinogram SC is calculated as the sum of the smoothened
sinogram Ss (i.e., sinogram after texture removal) and the extracted texture after an artifact
reduction:

SCi = Ssi +
(
Ti + Cdi

)
. (15)

These steps are repeated until the stopping condition described by Equation (2) is
fulfilled. The implementation details and used parameters can be found in Appendix C
(Table A4).

2.3. Real CT Data Acquisition

A laboratory-based CT system Rigaku nano3DX [32] was used for CT measurements.
For purposes of our study, this CT system was equipped with a Rigaku’s scientific X-
ray CDD camera (XSight™ Micron LC X-ray CCD camera [33]) and a scientific X-ray
scientific complementary metal-oxide-semiconductor (sCMOS) camera (XSight™ Micron
LC X-ray sCMOS camera [34]), nominal parameters of used cameras are stated in Table A2
in Appendix B. As it was shown in our previous study [35], radiographic data acquired by
tested charge-coupled device (CCD) and sCMOS cameras mainly differ in projection domain
in terms of the population of hot pixels that mostly correspond to high-level ring artifacts.
As samples, a glass capillary array (pores diameter: 3 µm) and a ruby ball (diameter: 300 µm)
were selected. They were scanned using circular trajectory with an angular range from 0
to 180 degrees with an acquisition of 800 projection images for one CT scan. Molybdenum
rotatory target was used (50 kV and 24 mA) for all the measurements. Exposure times
for X-ray projection data were selected following the manufacturer’s recommendations
(based on the level of detected signal). Specifically, the exposure times for glass capillary
array measurements were 16 s (CCD) and 6 s (sCMOS), and they were 13 s (CCD) and
4.5 s (sCMOS) for ruby ball measurements. Acquired projection data were only flat-field
corrected before the ring artifacts reduction was applied. Subsequently, CT data were
reconstructed using ASTRA toolbox [36]—filtered back projection (FBP) reconstruction with
cosine filter. Then, all the data were normalized so that the minimum and maximum values
were 0 and 1 arbitrary units, respectively. The achieved linear voxel size values for binning
2 × 2 were 0.53 µm and 0.63 µm for the CCD and sCMOS cameras, respectively.

2.4. Synthetic Data Creation

Three synthetic images were used in this work, representing various levels of data
complexity—a ball phantom (single material sample), a Shepp-Logan phantom (multi
material sample) and a Siemens star phantom (highly complex sample). Phantom images
were generated in tomogram domain (see Figure 4) and then transformed by Radon
transform to sinogram domain, using the ASTRA Tomography Toolbox [36]. The sinograms
were simulated to have similar parameters as those acquired by nano3DX device equipped
with a CCD camera, specifically to have a linear voxel size of 0.53 µm, a detector width of
1648 pixels and to follow the acquisition of 800 projection angles from an angular range
of 0◦ to 180◦. Gaussian distributed noise with a standard deviation of 0.01 (reflects noise
properties of real projection data) was also added to generated sinograms.

The ring artifacts were simulated (see Figure 5) and added to the sinograms (see
Figure 6). In total, 25% of detector elements were affected by artifacts: 5% HRA and
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20% LRA. The artifacts’ positions were generated randomly without any recurrences.
As for high-level artifacts, one fifth of affected positions was assigned the intensity value
(referring to detector response) equal to the maximum of used dynamic range (16bit), which
corresponds to dead, unresponsive detector pixels. The remaining high-level artifacts’
positions were assigned the intensity deviations generated as uniformly distributed random
numbers from the interval from 10% to 60% of maximum sinogram intensity value. The
intensity deviations of low-level artifacts were generated similarly but from the interval ±
1% of maximum sinogram intensity value. Such deviations were then added to the original
responses at given artifacts’ positions. Using such parameters, an extreme case of ring
artifacts presence in sinogram was simulated.

Figure 4. Synthetic data used for testing and validation of all tested methods: (a) ball phantom; (b) Shepp-Logan phantom;
(c) Siemens star phantom.

Figure 5. Example of simulated response deviations of detector elements representing the ring artifacts.
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Figure 6. Shepp-Logan phantom sinogram affected by simulated ring artifacts presented in Figure 5. Blue curve shows
mean column values—the highest peaks belong to high-level ring artifacts (HRA). In the red labelled image, the magnified
area affected by low-level ring artifacts (LRA) is shown.

2.5. Other Methods

The performance of the proposed method was compared to three other selected ap-
proaches from the class of sinogram-based methods: the wavelet-Fourier-transform-based
method by Münch [13], correction vector-based method by Eldib [15] and complex correc-
tion technique by Vo [21]. For notational simplicity, these methods are further called M1,
M2 and M3, respectively. Since the performance of all the methods is highly dependent
on specific settings, the optimal parameters for each method were selected to ensure a
relevant and fair comparison. This was completed based on the suggestions in the original
works and also based on the practical testing on synthetic data using a combination of both
qualitative and quantitative evaluation (brute-force search with structural similarity index
(SSIM) [37] as a validation metric). To test the consistency of these parameters within various
test samples, only one specific setting was used for each of the methods (see Table A5).

2.6. Evaluated Criteria and Metrics

The proposed method was tested on both synthetic and real high-resolution CT data.
Three criteria were considered for the evaluation. First, the proposed method was tested in
terms of artifacts detection accuracy focused on the HRA detection. For this evaluation,
three statistical metrics were used: true positive rate (TPR—ratio of correctly detected
artifacts’ positions to all positions labelled as artifacts) [38], positive predictive value—
precision (PPV—percentage of artifacts’ positions that were correctly detected) [39] and
Dice similarity coefficient (DSC) [40].

Then, the overall performance of the proposed method was evaluated in context of
other ring artifacts correction methods. This was completed both quantitatively using syn-
thetic data with ground truth images and qualitatively on real CT data. For the quantitative
performance evaluation, two metrics were used: the peak signal-to-noise ratio (PSNR),
and structural similarity index (SSIM) [37]. These were calculated between the corrected
tomogram (tomogram reconstructed from the ring artifacts corrected sinogram) and the
ground truth tomogram (tomogram reconstructed from the corresponding sinogram with-
out ring artifacts). The resulting tomogram data were first standardized to Z-scores, i.e.,
mean value was subtracted from the data and the result was divided by the corresponding
standard deviation. This was completed so that the possible effect of intensity shifts on



Sensors 2021, 21, 238 11 of 20

corrected data could be eliminated. It was possible to precisely evaluate the functionality
of ring artifacts reduction and also the effect of distortion on the data.

The lastly considered criterion focused on the robustness of the proposed ring ar-
tifacts reduction procedure to the used detection system, and on its effect on achieved
spatial resolution. For the spatial resolution calculation, the modulation transfer function
(MTF) analysis [41] was used following the procedure defined in ASTM E1695-95(2013)
standard [42]. CT data of the ruby ball sample, acquired by both CCD- and sCMOS- based
cameras, were used for this analysis.

3. Results
3.1. HRA Detection Accuracy of Proposed HRA Detection Scheme

The accuracy of the proposed HRA detection scheme was evaluated on the synthetic
data with known artifacts’ positions. The results are stated in Table 1. For all the phantom
images, the proposed method was able to classify all the artifacts’ positions with a precision
above 95%. However, a certain amount of artifacts’ positions, out of total 82 artifacts’
positions, was not detected in all the cases: two artifacts’ positions for Shepp-Logan and
Siemens star phantoms, and three positions in the case of ball phantom. For Siemens star
phantom, a higher number of falsely classified artifacts’ positions led to a PPV score of
84.21% and DSC of 90.40%. On the contrary, for Shepp-Logan phantom, all the positions
classified as artifacts were correct (PPV = 100%).

Table 1. Proposed HRA detection scheme accuracy—evaluated for synthetic data.

Ball Shepp-Logan Siemens Star

TPR [%] 96.34 97.56 97.56
PPV [%] 96.34 100.0 84.21
DSC [%] 96.34 98.77 90.40

We further evaluated the effect of noise level in the data on the detection accuracy of
proposed HRA detection scheme (tested on Shepp-Logan phantom). Results of this analysis
are shown in Figure 7. The precision of artifacts’ detection was found almost independent
of the noise presence, reaching values above 95% for all tested cases. However, a direct
proportion was found between the noise level and the number of artifacts’ positions that
were not detected. This tendency is expressed by both the TPR and DSC metrics. Despite
this tendency, the proposed HRA detection scheme resulted in scores of both metrics above
80% even for cases with a severe noise presence.

3.2. Overall Performance Evaluation in Context of Other Tested Methods

A high ring artifacts presence in the synthetic data made their correction very chal-
lenging, which is reflected by the poor results of the tested methods (Table 2). Apart from
the proposed method, all the tested methods failed to successfully reduce the artifacts,
especially the population of HRA, and to preserve the structural information (see Figure 8).
The overall worst results were achieved by the M2 method. Especially in case of the
ball phantom, the M2 method failed to distinguish the artifacts and sample structure. It
led to an almost complete suppression of structural information (see Figure 9), which is
further represented by a negative SSIM value (Table 2). In the case of the M1 method, a
poor correction led to wide rings and blurring the overall image structures (see Figure 8).
The M3 method results were visually good, and most of the artifacts were successfully
reduced (see Figure 8). However, the quantitative evaluation (Table 2) revealed a poor
input data preservation in terms of structural information and intensity values. This effect
is further demonstrated in Figure 10 by histogram analysis of the Shepp-Logan phantom
tomogram. Unlike the proposed method, the M3 method led to a significant transformation
of histogram shape and Z-score range compared to the reference data. Compared to all
other methods, the proposed method obtained the best results, as all the artifacts were
reduced, and the sample structure was fully preserved (see Figures 8–10).
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Table 2. Quantitative performance evaluation of tested methods.

Ball Shepp-Logan Siemens-Star

PSNR [dB] SSIM PSNR [dB] SSIM PSNR [dB] SSIM

M1 7.59 0.39 3.95 0.29 3.66 0.22
M2 1.03 −0.03 1.81 0.27 3.21 0.21
M3 11.39 0.47 1.91 0.22 3.30 0.20

Proposed 27.48 0.97 28.45 0.97 11.17 0.72

Figure 7. Dependence of the accuracy of the proposed HRA detection scheme on the noise level—evaluated for Shepp-Logan
phantom.

Figure 8. Comparison of tomograms after ring artifacts reduction by tested methods—simulated data of Shepp-Logan
phantom: (a) reference; (b) original (without any correction); (c) M1; (d) M2; (e) M3; (f) proposed. For visualization, the
same contrast setting was used for all the images.
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Figure 9. Comparison of data distortion between the proposed method and M2 method—tomograms of ball phantom: (a)
reference; (b) M2 method; (c) proposed. For visualization, the same contrast setting was used for all the images.

Figure 10. Comparison of data distortion between the proposed method and M3 method—histogram analysis of standard-
ized tomogram values.

The overall performance of the tested methods was further evaluated on real CT data.
From the resulting tomograms, the effectiveness of the tested methods was evaluated
qualitatively using visual perception. For visualization purposes, the glass capillary array
data acquired by a CCD camera were selected due to the presence of prominent HRA
in the central area (see Figure 11). Apart from the proposed method, the other methods
only reduced the HRA to a certain degree, leaving the artifacts still detectable after the
correction. Moreover, in the case of the M3, some extra artifacts were created during the
correction (see Figure 11e).
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Figure 11. Comparison of tomograms after ring artifacts reduction by tested methods—real computed
tomography (CT) data of glass capillary array acquired with a CCD-based camera: (a) original
tomogram (without any correction)—red labelled area marks central area visualized in following
images; (b) original; (c) M1; (d) M2; (e) M3; (f) proposed. For visualization, the same contrast setting
was used for all the images.

3.3. Spatial Resolution Preservation and Robustness to Used Detection System

The results of the spatial resolution evaluation are stated in Table 3. The proposed
method was able to preserve the spatial resolution within the accuracy limit of the used
standard for both used detection systems. The robustness is further visually demonstrated
in Figure 12. The proposed method in this example reduced all the ring artifacts without
any negative effect or distortion on the data regardless of the used detection system.

Table 3. Results of spatial resolution evaluation.

CCD sCMOS

Original 0.62 µm ± 0.03 µm 0.85 µm ± 0.04 µm
Proposed 0.62 µm ± 0.03 µm 0.82 µm ± 0.04 µm
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Figure 12. Demonstration of robustness of the proposed method to the used detection system—real
CT data of ruby ball: (a) original tomogram (scientific complementary metal-oxide-semiconductor
(sCMOS), without any correction)—red labelled area marks the central area visualized in following
images; (b) detail (sCMOS)—original; (c) detail (sCMOS)—corrected by proposed method; (d) original
tomogram (CCD, without any correction)—red labelled area marks the central area visualized in
following images; (e) detail (CCD)—original; (f) detail (CCD)—corrected by proposed method. For
visualization, the same contrast setting was used for all the images.

4. Discussion

The practical testing demonstrated that the proposed ring artifacts reduction proce-
dure, compared to other methods, can achieve superior results in the following criteria:
artifacts detection accuracy, overall performance, robustness to detection system, and the
ability to preserve the spatial resolution. First, the method was tested in terms of HRA
detection accuracy. It was found that for all the tested data, the proposed HRA detection
scheme achieved a precision higher than 95% (see Table 1), even for the increasing noise
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level present in the data (see Figure 7). However, for all data, a certain amount of artifacts’
positions was not detected. Moreover, a direct proportion was found between the number
of HRA positions that were not detected and the noise level. However, this amount was
found to be negligible in terms of the total number of artifacts’ positions, as both the TPR
and DSC metrics scored above 80% even for cases with a severe noise presence.

Although the proposed method did not detect all the HRA positions, the overall
quantitative and qualitative results were superior to other tested methods. This was
achieved by the proposed two-step correction scheme, when the HRA reduction algorithm
and LRA reduction algorithm are working in tandem reducing all the artifacts effectively.
A high ring artifacts presence in the case of the synthetic data made their correction
very challenging, which was reflected by poor results of the M1, M2 and M3 methods (see
Table 2). As for the M1 method, residual rings persisted after the correction for all the tested
data resulting in unusable data for further analysis. However, the worst overall results
were achieved with the M2 method, as it failed to reduce all the artifacts and preserve
the structural information of the input data. Specifically, in the case of ball phantom,
the method failed to distinguish the artifacts and sample structure leading to an almost
complete suppression of structural information (see Figure 9), which is further represented
by a negative SSIM value (Table 2). The M3 method achieved visually acceptable results,
but the quantitative evaluation on synthetic data revealed that the method had led to a poor
preservation of structural information and intensity range of the input data (see Figure 10).
All these findings were further confirmed by testing on the real CT data. The acquired
results corresponded to those from testing on the synthetic data. Compared to all other
methods, the proposed method obtained the best results, as all the artifacts were reduced,
and the sample structures were fully preserved.

The lastly considered criterion focused on the robustness of the proposed ring artifacts
reduction procedure to the used detection system and its effect on the spatial resolution. In
this analysis, the proposed method proved itself to preserve the spatial resolution within
the accuracy limit of the regular standard for both detection systems (see Table 3). Moreover,
the proposed method was functional regardless of the detection system without the need
for any settings’ optimization.

All the beforehand discussed aspects restrict the application of the M1, M2 and M3
methods in nano-tomography, where preservation of quality and structural information of
input data are of key importance. Moreover, these methods were found highly dependent
on the used parameters and the character of input data. Even following the original authors’
recommendations and optimization, the methods did not achieve acceptable results with
one setting for all the tested data. This showed a limited robustness and applicability of
these methods in practice. Only the proposed method achieved acceptable results for all
the conducted tests and showed a high robustness to the character of input data in terms of
structure complexity and also the used detection system.

5. Conclusions

The small size of detector pixels used in nano CT devices does not enable an appli-
cation of any hardware-based method for removing ring artifacts, leaving image-based
processing methods as the most promising way for an effective ring artifacts removal.
Several approaches from this class exist but each with some deficiencies, such as the
degradation of data quality and spatial resolution, which is inconsistent with the core
purpose of nano-tomography. The procedure presented in this paper is based on a smart
implementation of several ideas from existing methods and utilization of their advantages.

The ring artifacts are classified into two types based on their cause and actual appear-
ance in the CT data. Each artifact class is then handled separately since it is impossible for
a single approach to remove all of them. In our procedure, we applied novel iterative RTV-
based algorithms in the sinogram domain to avoid any negative influence of tomographic
reconstruction. The proposed procedure was optimized and tested on different types of
data, cameras, and samples as well.
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In confrontation with other advanced ring artifacts reduction methods, it proved its
supremacy during practical tests, being robust regarding the character of input data and
used detection system. Moreover, the method was able to fully preserve the input data,
structural information and spatial resolution. Such features show a high potential of the
proposed procedure for practical use in the field of synchrotron- or lab-based nano CT
systems.
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Appendix A

In this work, a relative total variation (RTV)-based algorithm proposed by Xu et al. [43]
is used for the texture extraction. Objective function of this algorithm can be expressed as:

argmin
S

∑
p

(
Sp − Ip

)2
+ λ·

(
Dx(p)

Lx(p) + ε
+

Dy(p)
Ly(p) + ε

)
. (A1)

The data term
(
Sp − Ip

)2 makes the input I and result S not extensively devi-
ate, where p corresponds to pixel indices. The second part of the objective func-
tion, λ·((Dx (p))/(Lx (p) + ε) + (Dy (p))/(Ly (p) + ε)), corresponds to the RTV measure,
where λ is a weight controlling the degree of smoothing, and ε is a small positive number
to avoid division by zero and also controlling the sharpness of the image S. Dx(p) and Dy(p)
are windowed total variations in the x and y directions for pixel p:

Dx(p) = ∑
q∈R(p)

gp,q·
∣∣∣(∂xS)q

∣∣∣, (A2)

Dy(p) = ∑
q∈R(p)

gp,q·
∣∣∣(∂yS

)
q

∣∣∣, (A3)

which count the absolute spatial difference within the rectangular window R(p) centered
at pixel p. Pixel q belongs to R(p). The term gp,q refers to a weighting function defined
according to spatial affinity:

gp,q ∝ exp

(
−
(
xp − xq

)2
+
(
yp − yq

)2

2σ2

)
, (A4)

where σ controls the spatial scale of the window corresponding to the size of textural
elements. To help distinguish the prominent structures from the texture elements, the RTV
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measure also contains windowed inherent variations Lx(p) and Ly(p) in the directions x and
y, defined as:

Lx(p) =

∣∣∣∣∣∣ ∑
q∈R(p)

gp,q·(∂xS)q

∣∣∣∣∣∣, (A5)

Ly(p) =

∣∣∣∣∣∣ ∑
q∈R(p)

gp,q·
(
∂yS
)

q

∣∣∣∣∣∣. (A6)

The objective function defined in Equation (A1) is non-convex and can be solved using
the linear optimization process with the penalty of quadratic measure proposed by Xu
et al. [43]. For a practical implementation, the available Matlab® code by Xu et al. [43] was
used with the settings stated in Table A1. These settings were selected by an extensive
practical testing where the overall functionality of both HRA and LRA removal algorithms
was evaluated and optimized using described synthetic data by a combination of both
qualitative and quantitative evaluation (brute-force search with SSIM [37] as a validation
metric).

Table A1. Relative total variation (RTV) texture extraction settings used within HRA and LRA
removal algorithms.

Parameter HRA Removal LRA Removal

Λ 0.005 0.050
E 0.020 0.030
Σ 6 1

Appendix B

Table A2. Nominal parameters of both used cameras without a lens unit.

Technical Features CCD Camera sCMOS Camera

Array size 3320(H) × 2500(V) 2048(H) × 2048(V)
Pixel size 5.4 µm 6.5 µm

Sensor diagonal 22.5 mm 18.8 mm
Nonlinearity <1% 0.2%

Dynamic range 2300: 1 21,400: 1
Acquisition gain 0.45 e-/ADU 0.52 e-/ADU

Readout noise 11 e-rms 1.4 e-rms
Readout rate 8 Mpix./s (approx. 1 fps) 40 fps (@ 16 bit)
Dark current 0.001 e-/pix./s −35 ◦C 0.14 e-/pix./s @ 0 ◦C

Binning Independent on-chip binning
in x, y 2 × 2, 3 × 3, 4 × 4, 8 × 8

Peak quantum efficiency 56% @ 540 nm 82% @ 550 nm
Shutter type Electromechanical Rolling shutter

Data interface USB 2.0 USB 3.0

Appendix C

Appendix C.1. Proposed Method—Used Settings

These settings were selected by an extensive practical testing where the overall func-
tionality of the algorithms was evaluated and optimized using synthetic data by a combi-
nation of both qualitative and quantitative evaluation (brute-force search with SSIM [37] as
a validation metric).
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Table A3. HRA removal algorithm settings.

Parameter Value

L 10% of sinogram rows
R1 0.05
R2 70% of sinogram rows
R3 0.25% of sinogram columns

Table A4. LRA removal algorithm settings.

Parameter Value

F 129
L 10% of sinogram rows

R1 0.02
R 6

Appendix C.2. Other Methods—Used Settings

Table A5. List of the other methods and used settings (notations of the parameters are adopted from the original works).

Method Notation Settings

Münch [13] M1 Wavelet: DB7; Decomposition level: 4; Damping factor: 1.3
Eldib [15] M2 Filter size: 15; Standard deviation: 10

Vo [21] M3 Algorithms sequence: 6, 5, 3; R = 7; Filter size for algorithms 5 and 6: 81; Filter size for algorithm 3: 31
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