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Abstract: The manufacturing of high-quality extruded low-density polyethylene (PE) paperboard
intended for the food packaging industry relies on manual, intrusive, and destructive off-line inspec-
tion by the process operators to assess the overall quality and functionality of the product. Defects
such as cracks, pinholes, and local thickness variations in the coating can occur at any location in the
reel, affecting the sealable property of the product. To detect these defects locally, imaging systems
must discriminate between the substrate and the coating. We propose an active full-Stokes imaging
polarimetry for the classification of the PE-coated paperboard and its substrate (before applying
the PE coating) from industrially manufactured samples. The optical system is based on vertically
polarized illumination and a novel full-Stokes imaging polarimetry camera system. From the various
parameters obtained by polarimetry measurements, we propose implementing feature selection
based on the distance correlation statistical method and, subsequently, the implementation of a sup-
port vector machine algorithm that uses a nonlinear Gaussian kernel function. Our implementation
achieves 99.74% classification accuracy. An imaging polarimetry system with high spatial resolution
and pixel-wise metrological characteristics to provide polarization information, capable of material
classification, can be used for in-process control of manufacturing coated paperboard.

Keywords: imaging polarimetry; stokes parameters; extruded plastic coatings; support
vector machines

1. Introduction

Extruded and laminated plastic coatings are used on paperboard for food packaging
applications. Environmental concerns about the impact of such polymers have increased
the need for the development and application of new types of coatings for packaging [1].
However, the low-cost production and excellent barrier properties of plastic coatings on pa-
perboard still outperform those novels’ environmentally friendly solutions. Different types
of plastic coatings have been formulated for different packaging end uses [2]. Low-density
polyethylene (PE)-coated paperboard is the most widespread plastic-coated paperboard
used in the packaging industry due to its good optical and mechanical properties. The
barrier functionality and sealability against liquids of PE coating are preferred for many
food packaging products. To reduce the environmental impact of plastic coatings used in
packaging and to increase the yield of its manufacturing process, sensing technologies for
the measurement of material parameters and detection of defects are necessary to move
towards an automated in-process control manufacturing.

To obtain the desired functionality, which is linked to overall product quality, paper-
board manufacturers rely mainly on off-line characterization. Holes, cracks, and variation
in coating thickness are the main defects affecting overall product quality and its barrier
properties after the manufacturing process [3]. Off-line characterization offers a quantita-
tive and qualitative analysis of product quality and comprises standardized methods that
can be replicated by others. Several standards have been issued to quantify pinhole forma-
tion [4,5]. Local coatings defects, for example, the appearance of holes in the surface and
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thickness variation of the plastic coating, need to be quantified according to the standards
under laboratory conditions. The methods require using a coloring ink that penetrates
the product through the defects, making them visible and pointing out the possible leak
locations. In a recent study, an optical light microscope, a polarized light microscope, and a
scanning electron microscope were used to characterize and quantify the defects [6]. The
disadvantage of this method of quality control lies in the synchronization between machine
parameters and characterization since this method lacks real-time feedback to the process.
Demands for higher product quality and competitive products require more in-process
metrology for which online sensors are essential to predict or detect defects during the
manufacturing process. Pores and cracks are often undesired in packaging, except when
they are intended to add breathability to the material for specific applications. Recent
sensor developments for quantifying the size and distribution of holes in the material
along the production line have been suggested in the literature. The sizes of holes in the
coated paperboard can be estimated by correlating the amount of current leaking between
cathodes positioned on both sides of the paperboard, which acts as a capacitor [7]. This
method is considered non-destructive, but the high voltage applied by the method can
increase the initial size of the pores in the packaging. The distribution of holes in the coating
can be determined using reflectometry [8], an optical system that uses polarization of light
to determine the optical properties of the material. Characteristics such as average surface
roughness and the material’s refractive index are found similar between the base layer
and its few-microns-thick PE coating. Based on these characteristics, defect detection and
classification become challenging when using traditional machine vision systems based on
the intensity and/or spectral measurements.

Polarization is one of the main characteristics of light, along with intensity and wave-
length. For humans, perceived optical properties are limited to colors and intensities;
polarization is only available to us using instruments. Similarly, in many industrial applica-
tions, machine vision often relies solely on detecting color or intensity, or both. Polarization
in a machine vision application is used to filter out the haze created by surfaces where the
specular reflection in the scene hides the desired information. Machine vision has been
implemented in manufacturing to aid in-process product quality monitoring, defect inspec-
tion, and material classification, but highly specular and transparent materials challenge
the accuracy and robustness of the optical method employed [9,10].

In the last decades, there is an increased interest in the use of imaging polarimeters for
material classification [11–13]. The technique has been employed in remote sensing [14],
astronomy [15], aerospace and defence [16], biomedical applications [17–19], and industrial
manufacturing [20,21]. Polarimeters can provide partial- or full-polarization information
about the captured incoming light, depending on the optical elements employed and the
imaging system configuration. Industrially, the metrological features of polarization have
been restricted to ellipsometry and reflectometry [22]. The systems used are bulky, require
a priori knowledge of the sample’s optical properties, and can measure only small areas of
the samples [8,23]. Imaging polarimetry offers an alternative for measuring larger areas
with high spatial resolution and including radiance values directly related to polarization.
The pixel information is presented in the form of the Stokes parameters:

~S = (S0, S1, S2, S3)
T . (1)

The mathematical formulation of the Stokes parameters is convenient because it
has several degrees of freedom and can be further computed to obtain complementary
parameters related to physical material properties [24], for example, surface roughness,
birefringence, and coating thickness. Stokes parameters are expressed in power reflectance
units, like pixels in a commercial camera system record intensity values. Different con-
figurations of imaging polarimeters found in the literature serve specific metrological
purposes [20] and are classified according to the temporal or spatial recording of the
scene. The advent of new camera systems with embedded micro-polarizer arrays in the
division-of-focal-plane configuration offers the possibility of a new compact camera system
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for machine vision applications in industrial manufacturing processes. Linear imaging
polarimeters provide information from the first three Stokes parameters, that is, intensity
(S0) and linear polarization component (S1 , S2), which can be in certain cases sufficient for
the industrial application. To measure the complete polarization cues in a scene, a fourth
component, that is, the circular polarization component (S3), must be acquired. In certain
applications in which material properties are similar in terms of surface roughness and
spectral information, measuring the complete polarization from the material reflection is
desired; for example, in coating applications [25], instantaneous active imaging polarimetry
has been employed for measuring the polarization properties of the material. In certain
applications in which material properties are similar in terms of surface roughness and
spectral information, measuring the complete polarization properties from the material’s
light reflection is desired; for example, in paper coating applications [25], different fillers
and binders were applied to the paper, and instantaneous active imaging polarimetry has
been employed for measuring the polarization properties of the material. In this study, no
transparent or thin-film was used to coat the paper material. From our study, we measured
the polarization properties of the PE-coated paperboard and its substrate, that is, the paper-
board before applying the PE-coating. Instead of using a point-measurement system, we
proposed used a pixelated camera system that can obtain the full polarization properties of
the material with high-spatial-resolution. An image containing a set of polarization cues or
features represented in the form of Stokes parameters are obtained, and can directly relate
to the optical properties of each material. These features can then be used as predictors
of whether or not there exists a PE-coating on the paperboard. Then, we use a supervised
machine learning algorithm, that is, support vector machine (SVM), for classification based
on these polarimetric features. SVM [26] is a set of classification and regression algorithms
widely adopted in industrial applications. For the classification task, SVM requires to
modify a few set of parameters to balance the performance and accuracy of the result.
In the context of non-linearly separable data, a kernel-function (e.g., polynomial or basis
radial function) might transform the non-linear problem into a linear problem, returning
the maximal separable margin that divides the classes.

In this article, we present an active full-Stokes imaging polarimeter capable of de-
tecting the extruded PE coating on high-quality paperboard with high spatial resolution
and pixel-wise polarization metrology. The optical system is based on full-Stokes imag-
ing polarimetry and controlled polarized white-light LED illumination. Generalizing the
classification technique proves that the system can discern the presence or absence of the
extruded coating on the paperboard. In our understanding, the classification solution
presented can be further exploited for detecting and quantifying defects such as pinholes
and cracks in large areas of paperboard manufactured for packaging.

2. Material and Methods

We summarize our strategy in three main parts as follows:

1. polarimetric measurement of PE- and non-PE coated paperboard samples using the
full-Stokes imaging polarimeter, data acquisition, and polarimeter parameter calculations;

2. implementation of the distance correlation function for the feature selection of the
polarimetric measurements; and

3. model training and validation for material classification using supervised learning
algorithms, that is, support vector machine (SVM) algorithms.

Industrially manufactured paperboard samples were obtained from a local paperboard
manufacturer for use in this study. Before and after the extruded low-density polyethylene
(PE) coating was applied on one side of the paperboard, A4 sheet-sized samples were
extracted from the manufacturing process, resulting in paired samples from the same
process. The paperboard is multi-ply in structure, consisting of a cellulose base layer
coated with a mixture of binders and fillers on the side of the PE coating before the PE
coating is applied. This mixture of binders and fillers is added to the cellulose material
to increase the smoothness of the multi-ply structure, ensuring good adhesion of the PE
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coating and resulting in a more even coating thickness. This mixture also reduces the effects
of undesired protruding cellulose fibres that can puncture the extruded coating layer and
cause cracks, pinholes, and local inconsistencies in the PE thickness. These defects decrease
the overall quality of packaging material, degrading its most important properties as a fat,
oil, and moisture barrier [2]. We removed 20 × 20-mm pieces from the original samples,
placing them in a sample holder as shown in Figure 1a to make measurements using the
imaging polarimeter. The average thickness of the PE coating layer was 13 µm; in Figure 1b
this layer is shown in a PE-coated sample cross-section as imaged using a scanning electron
microscope (SEM) (TESCAN MAIA3 GMU 164 manufactured by TESCAN Brno, s.r.o.;
Brno, Czech Republic).

(a)

PE coating

Fillers and
binders

Cellulose
base layer

(b)

Figure 1. (a) adapted 20× 20 mm sample illuminated by the optical system. (b) scanning electron microscope (SEM) cross-
section image, (working distance 10-mm, field-of-view 200-µm), of PE-coated paperboard. The paperboard is composed of
a multi-ply cellulose material, a coating layer of binders and fillers, and a top PE-coating layer with an average thickness of
13 µm.

Figure 2 shows the experimental set-up. An active imaging polarimeter measures
the sample at an oblique angle while a high-luminosity white LED (Thorlabs, Inc. Ref.
MWWHL4, 570 mW and spectral range 400–700 nm) illuminates it with vertically polarized
light. The sensor in the active imaging polarimeter is based on a novel full-Stokes imaging
polarimetry camera system constructed by the Imaging and Applied Optics Lab—Prof. R.
Liang’s group—at the School of Optical Science, University of Arizona. For a complete de-
scription of the full-Stokes imaging polarimeter, the authors refer the reader to Tu et al. [27],
who provides details of the design, the calibration, and the demosaicing algorithm. A brief
description of the optical system’s components is presented here. Two linear polarimetric
cameras in a division-of-amplitude configuration are employed as the sensors of the system,
in which two balanced optical paths with complementary polarization information are
divided from the incoming light. This path division of the light allows the instantaneous
measurement of the complete polarization. An imaging lens focusing on the measured
surface is placed in front of the polarimeter assembly. A 50/50 non-polarizing beam-splitter
(nPBS) divides the incident beam into two balanced paths. As mentioned, two comple-
mentary polarization measurements are required to obtain the full-Stokes vector. In one
arm, an achromatic quarter-wave plate (AQWP) in the visible spectral range will divide
the beam into its circularly polarized components. In the second arm, to balance the path
difference created by the AQWP, a planar glass with a similar thickness as the AQWP is
placed. Finally, in both arms, linear Stokes polarimetric cameras capture the scene. With the
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appropriate demosaicing and calibration algorithms, the calibration and synchronization
of the cameras make it possible to obtain pixel-wise polarization and spectral radiance
information on the scene in a single shot.

Vertically polarized

Lens

Polarimetric linear

nPBS
AQWP

Sample

θ

+
90
◦

−
90
◦Stokes Cameras

planar glass

White LED

Figure 2. Active full-Stokes imaging polarimetry.

Figure 3 shows the PE-coated paperboard sample image of each Stokes parameter after
being measured by the active full-Stokes imaging polarimeter. The 20× 20-mm sample
is resolved with a spatial resolution of 37 µm in a single pixel. The on-axis set-up shown
in Figure 2 was built to rotate the camera system around the sample, and illumination
was fixed at 45 degrees with respect to the sample’s surface normal. Several in-plane
measurements were made at different angles around the sample in 5-degree steps. Before
the parameter selection for the experiment, we analysed all the different positions to
determine the best angle configuration. It was found that the best angle between the
camera and the normal to the sample surface was 40 and 55 degrees, that is, around
the specular direction. In dielectrics, when illuminating with vertically polarized light,
roughness increases greatly affect the angles of polarization due to the retardation of the
light wave phase component [28].

As opposed to passive imaging techniques in which the polarization state of the
illumination is uncontrolled, in an active polarimeter, the polarization state of the incident
light is known. In our proposed set-up, the illumination is vertically polarized. Then,
the beam reflected by the samples is either partially polarized or completely depolarized,
in contrast to the incident light. The sensor in our polarimeter is based on a full-Stokes
imaging system, which can obtain in one shot pixel-wise information in the form of the
Stokes vector (1). At dielectrics and interfaces, the polarization of a beam undergoes
different phase delays resulting in changes in polarization.
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S0 S1
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0.0
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0.8
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Figure 3. Polyethylene (PE)-coated sample polarization measurement: S0, S1, S2 and S3 are the
Stokes vector as captured by full-Stokes imaging polarimetry.

In imaging polarimetry systems used in remote sensing and biomedical applications,
the features used in algorithms for material classification are parameters calculated from
the measured Stokes vector. These polarimetric parameters are related to the material’s
optical properties and can be easily mathematically formulated. We have calculated three
parameters from the initial Stokes vector, that is, the degree of polarization (DoP), p, the
azimuth, ϕ, and the ellipticity, χ, and we first evaluated their statistical significance for the
classification task using a distance correlation function. The DoP, p, is expressed as

p =

√
S1

2 + S2
2 + S3

2

S0
, (2)

which is inversely related to the depolarization effect, that is, the ratio at which polarized
light is partially polarized or unpolarized by the material under polarized illumination.
Using the three last components of the Stokes vector-like axis in Cartesian coordinate space
and representing the polarization measurements inside this coordinate space, angular
relations can be derived. Two angles can be calculated, the azimuth, ϕ, and the ellipticity,
χ, as

χ = tan

1
2

arcsin

 S2
3√

S2
1 + S2

2 + S2
3

 , −π/4 ≤ χ ≤ +π/4, (3)

ϕ =
1
2

arctan
(

S2

S1

)
, 0 ≤ ϕ < π, (4)

where χ, at the extremes of the inequality represents a fully circularly polarized beam when
points in the sphere are located at either side of the poles; χ = 0 being linearly polarized
otherwise the beam is elliptically polarized. The azimuth angle, ϕ, is often described in the
literature as the angle of linear polarization (AoLP). It measures the linear relation of the
observed beam and concerns only the linear polarization components of the Stokes vector
in the equation.

A Poincaré sphere, first presented by Henri Poincaré (1892), helps visualize these
angular relations (see Figure 4). Figure 5 shows the Poincaré spheres for PE- and non-PE
coated paperboard samples. In this figure, each sphere represents three measurements for
each class. Pixel-wise information in the form of the Stokes vector (1) are obtained in each
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measurement and then the vector is normalized concerning the intensity value of S0. In
Figure 5, each point in the surface of the sphere represents the normalized Stokes vector,
resulting in a unit Poincaré sphere. The angular distributions of the points on the surface
of the sphere differ due to the unique optical properties of the sampled material and the
angles, ϕ and χ, from the spherical coordinates system, are used as preliminary features
for the material classification.

S1
S0

S2
S0

S3
S0

χ
ϕ

Figure 4. Observable Poincaré sphere of polarization states. Associated with any point on the sphere
is a unique polarization state described either by spherical angular coordinates (ϕ, χ) or normalized
Stokes parameters S1/S0 , S2/S0 and S3/S0.

+S1

−S1 +S2

−S2

+S3

−S3

Sample 2
Sample 1

Sample 3

PE coated:

(a)

+S1

−S1 +S2

−S2

+S3

−S3

Sample 2
Sample 1

Sample 3

non-PE coated:

(b)

Figure 5. Poincaré unit sphere representation from imaging polarimetry measurements of (a) PE-coated paperboard and
(b) non-PE coated paperboard. Each pixel value was normalized by its S0 pixel value, and three polarimetric measurements
of each class are presented.
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We implemented a distance correlation metric, in which we look for the pair of features
ranking the highest and finally provided the best accuracy for the classification. Sample
correlation functions are employed to measure the linear and nonlinear relations between
variables. Distance correlation functions based on measurements of the correlation between
the features are employed to rank the importance of the features. The distance correlation
function presented by Szekely et al. [29] has been demonstrated to be useful in feature
selection for relatively small datasets with high dimensionality [30]. This metric does not
require any a priori knowledge of the feature distribution, and it has advantages over more
commonly used statistical tests, such as Pearson correlation, which cannot detect nonlinear
relations between the evaluated variables. A summary of the implementation according to
Reference [29] follows. We first obtain the defined distance covariance for each combination
of features,

dCov(Fx, Fy) =
1
n2

n

∑
i=1

n

∑
j=1

D( f xi, f xj)·D( f yi, f yj), (5)

where D( f xi, f xj) = ‖ f xi − f xj‖, and D( f yi, f yj) = ‖ f yi − f yj‖, are the centered Eu-
clidean distances of the feature vectors Fx and Fy with scalar values f x and f y, respectively.
Finally, we can calculate the distance correlation (dCor),

dCor(Fx, Fy) =
dCov(Fx, Fy)√

ν2
Fx· ν2

Fy

, (6)

where ν2
Fx and ν2

Fy are the positive feature variances. If Fx and Fy are independent features,
then the (dCor) will be equal zero. We are interested in features with the largest distance
correlation, as they benefit the class separation and classification accuracy of the supervised
learning algorithm. The result is the selection of the best features, which is meant to be
a preprocessing step in our machine learning approach. This reduces the computational
cost without compromising the accuracy of the resulting classification model. We have
implemented this algorithm to rank and select the best pair of features for the classification
algorithm described in our machine learning pipeline.

2.1. SVM Algorithm

For the classification process, we implemented a support vector machine (SVM)
algorithm with the use of a Gaussian kernel function using selected features of the two
sample classes, that is, PE- and non-PE coated paperboard. SVM algorithms have proven
to be robust in implementation for industrial classification problems. When the features
in the dataset present non-linear relations, the SVM algorithm can use kernel functions
to find the maximum separable hyperplane for classification. Gaussian and polynomial
kernel functions are an example of nonlinear kernel functions. The kernel function will
map the nonlinear data from the original dimensional space into a higher-dimensional
space. This may result in a linearly separable problem where a hyperplane can divide the
classes with the maximum margin possible. In this experiment, we constructed the SVM
model in Python using scikit-learn libraries for supervised learning based on the library
for support vector machines (LIBSVM).

2.2. SVM Algorithm Pipeline

We obtained 24 polarimetric measurements for both classes (i.e., 12 polarimetric
measurements each for the PE- and non-PE coated paperboard) included in the dataset.
The measurements were taken from different regions of the initial industrial samples. Each
measurement contains 400 × 70 pixels with the individual values of the Stokes vectors.
We calculated the polarimetric features at each pixel, as described in the previous section.
The pipeline of our classification approach is described in Figure 6. After obtaining the
data, we implemented a feature selection-based distance correlation function (dCorr) (6),
selecting the two best-ranked features. We then partitioned in a 50–50 split of the dataset
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for training and validation. Because of dealing with a limited number of samples, it is
appropriate to determine the best possible combination for training and validation without
degrading performance or causing underfitting. We observed that by increasing the data
for training and when reaching 50% of the complete dataset, there is no significant increase
in the score in either model. We presume that the simplicity in identifying the classes relies
on the strong correlation between the polarimetric features at each pixel in the recorded
images and the surface homogeneity resulted from the high quality of the samples.

We contrasted two nonlinear kernel functions for SVM, that is, a Gaussian and a
second-degree polynomial kernel function based on statistical significance test from the
classification accuracy after training and validation. To obtain the statistical significance
of the resulting model, we used 10-fold cross-validation since SVM does not account for
statistical score interpretation. We conducted the cross-validation twice. The first time
was to obtain the best parameter combination for each kernel. Then, we repeated 10-fold
cross-validation, in this case on each parameterized kernel function, and selecting the one
with the best performance. Finally, to test the generalization of the model, we performed
the classification of PE- and non-PE coated paperboard using a polarimetry measurement
that was not included in the dataset used to train the classifier.

6. Using the validation
dataset, measure the final
classification scoring.

5. Selected SVM model from
the above iteration and
validation.

4. Statistical validation
method for kernel selection
and parametrization of the
classifier.

3. Dataset divided into
training and validation

1. Calculate parameters

2. Feature selection using the
statistical distance correlation
function.

K-fold
crossvalidation

Datase
(DoP, Az, El)

(Distance correlation)
Feature selection

Training
dataset

Validation
dataset

SVM model
(best parameters)

Classification
(Score)

Parametrization k-
tim

es

Figure 6. Workflow pipeline for the training, validation and selection of the classification algorithm.

3. Results and Discussions
3.1. Feature Selection

Pixel-wise polarimetric values of the degree of polarization (dop) (2), and azimuth
(az) (4), and ellipticity (el) (3) angles were calculated from the measured Stokes parameters.

We evaluated the distance correlation between these three independent parameters to
assess the best of these parameters for the classification problem. In the feature selection
step, we measured the correlation between these polarization parameters. The metric for
the distance correlation function (dCorr (6)) is based on the distance covariance (dCov (5))
and was used as a feature selection tool. Figure 7 shows the pairwise relations among these
three parameters, that is, DoP and the angular variables θ and χ, plotted in the form of a
scatter matrix. The diagonal of the matrix represents the parameter distribution, the top
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corner shows the correlation between features in the form of a scatterplot, and the bottom
corner shows the value of the distance correlation (dCorr) function for each pair of features.

From the scatter matrix, the combination of DoP and the angular parameters could be
tested for classification, while the angles themselves displayed considerable overlapping.
The relation between DoP and χ scored the highest in distance correlation, suggesting to
be the best candidates for classifying PE- and non-PE-coated paperboard, and which we
further selected for training the classifier.

χ

0.40

0.45

0.50

0.55

0.60

0.65

0.80

0.0 0.5 1.0 0.4 0.5 0.4 0.5 0.6

0.40

0.45

0.50

0.40

0.60

0.20

1.00

DoP θ χ

θ
D

oP

dCorr
0.63

dCorr
0.31

dCorr
0.09

coated type:

Non-PE
PE

Figure 7. Scatter matrix displaying the relation between features degree of polarization (DoP), ϕ, and χ. The dCorr value
represents the distance correlation between the features. All the features in the dataset are normalized and only 20% of the
dataset is shown to aid in the visualization.

3.2. Classifiers Parametrization, Training and Validation

We next evaluate the classification performance of two SVM kernel functions, that is,
Gaussian and second-degree polynomial kernel functions. Before comparing the kernels’
classification’s scores, it is necessary to find the best set of parameters for each kernel. For
each kernel, a set of predefined parameters is tested to determine the classification score
and measure the recall of the model, that is, the true positives the model has correctly
obtained as a percentage of all positive cases, so we can select the best combination. After
applying the cross-validation, the Gaussian kernel with the hyperparameters C = 100 and
γ = 0.1 and the second-degree polynomial with the hyperparameter C = 100 were selected.
With these specified parameters, we proceed to evaluate and compare the scoring accuracy
of both models. Figure 8 shows the difference in statistical significance between the two
kernels after using 10-fold cross-validation with the selected hyperparameters for each
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kernel function. We obtained a ratio of about 99.74 ± 0.12% for the Gaussian and 99.61
± 0.16% for the polynomial degree 2 kernel functions, suggesting a smaller variation and
higher score of the former after cross-validation.

Gaussian polynomial
0.992

0.994

0.996

0.998

0.999

0.997

0.995

0.993

Sc
or

e

Figure 8. Support Vector Machine (SVM Gaussian and second-degree polynomial kernel function
accuracy scores after 10-fold cross-validation.

Based on the previous results, we trained the model using the complete training
dataset. Figure 9 shows the classification and class division by the model’s hyperplane
in the original space, where observes an area of overlap between the classes and the
support vectors that will lead to misclassification. However, a good generalization for
the classification is achieved due to the robust relationship of the polarimetric parameters
with the expected classes and the non-linear curved separation found by the SVM kernels.
Based on the parameter distribution the Gaussian kernel provides better accuracy for the
classification than the polynomial classifier.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
χ

D
oP

(a)

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
χ

D
oP

(b)

Figure 9. Feature space representation of the classification model of the binary classes PE- and non-PE-coated paperboard
implemented with an (a) polynomial degree two and (b) SVM Gaussian kernel classifier.

We finally used the validation dataset on the resulting models of both classifiers to
compare their prediction accuracy. Figure 10 shows the confusion matrix after using the
validation dataset. We can observe that a better performance is achieved by the Gaussian
kernel as expected from the cross-validation results.
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Figure 10. SVM Gaussian and second-degree polynomial kernel function confusion matrix using the
validation dataset on the trained support vector classifiers.

3.3. Classifier Testing

In the previous section, a cross-validation test provided both statistical significances
for the training and validation, while a validation dataset was used to test the accuracy
of the resulting models. We now test the classification model using a new set of data
from two new samples, that is, PE- and non-PE coated paperboard. The algorithm can
separate the PE-coated from the non-PE coated paperboard, indicating the robustness of the
method with almost no misclassification as we can observe in Figure 11. The misclassified
areas in both results can be associated with physical properties, like local variations in the
topography of the samples or imperfections within the PE coating, which may required
further investigation to associate them with the changes in the polarization parameters.
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Figure 11. Test dataset with non-PE- and PE-coated paperboard samples (left–right): model classifi-
cation, DoP, and χ. The values of the features have been normalized to a range of 0 to 1.

To extend the discussion of whether these areas can be regarded as misclassified,
further experiments are required. In the case of PE-coated areas, the scattering mechanism
within the coating and reflection from the base layer can affect the accuracy of the measure-
ment. It is also possible that subsurface scattering from irregularities or defects within the
extruded material may generate these effects. In the case of the non-PE coated material,
misclassification can result from geometric constraints, areas with abrupt changes in the
surface roughness, or defects in the mixture coating. This analysis could be performed in a
later study, in which our understanding of the optical properties of each material could be
extended using complementary techniques and instrumentation. However, for large-area
manufacturing processes of high-quality products, in which over 99% of the pixels mea-
sured from the samples are of the expected class, the areas where misclassification occurs
can be tracked and investigated using current off-line production methods.
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Potentially, this system could eliminate some of the off-line quality-control practices
in the manufacturing of paperboard by instead using quantitative polarimetric imaging
systems for the in-process control, where defects such as pinhole and cracks, found in the
coating need to be monitored.

4. Conclusions

We proposed using active imaging polarimetry to classify industrially manufactured
polyethylene (PE)-coated paperboard and its substrate. With high spatial resolution, in-
stantaneous acquisition, and pixel-wise metrological polarization information, we derived
a set of polarimetric features, that is, degree of polarization (DoP), ellipticity, χ, and az-
imuth, ϕ, which were later analysed in the classification application. We proposed a robust
feature selection method based on distance correlation to reduce the computational cost
of the algorithm while not compromising the classification accuracy. From the selected
features, we implemented a support vector machine (SVM) classifier that uses a nonlinear
kernel trick, that is, a Gaussian kernel function, obtaining 99.7% classification accuracy.
We demonstrated active polarimetry based on a full-Stokes imaging system with verti-
cally polarized illumination of the sample for in-process metrology, in which complete
polarization information provides a set of robust features directly related to the material’s
optical properties that are undetectable by other machine vision systems. To the author’s
knowledge, no such study or implementation has so far been proposed.

In future work, we will explore the relation between spectral information and the
polarization information that can be important in the surface characterization of paper-
based materials and it is available from the active full-Stokes imaging polarimetry. This
could increase the likelihood of finding new correlations for surface parameters or, in the
case of quality control, other types of defects originating along the production line.
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