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Abstract: Crop mixtures are often beneficial in crop rotations to enhance resource utilization and yield
stability. While targeted management, dependent on the local species composition, has the potential
to increase the crop value, it comes at a higher expense in terms of field surveys. As fine-grained
species distribution mapping of within-field variation is typically unfeasible, the potential of targeted
management remains an open research area. In this work, we propose a new method for determining
the biomass species composition from high resolution color images using a DeepLabv3+ based
convolutional neural network. Data collection has been performed at four separate experimental
plot trial sites over three growing seasons. The method is thoroughly evaluated by predicting the
biomass composition of different grass clover mixtures using only an image of the canopy. With a
relative biomass clover content prediction of R2 = 0.91, we present new state-of-the-art results across
the largely varying sites. Combining the algorithm with an all terrain vehicle (ATV)-mounted image
acquisition system, we demonstrate a feasible method for robust coverage and species distribution
mapping of 225 ha of mixed crops at a median capacity of 17 ha per hour at 173 images per hectare.

Keywords: mixed crop mapping; species composition estimation; targeted fertilization; grass clover
mixtures; proximity sensing; precision agriculture; deep learning

1. Introduction

Crop mixtures of grass and clovers have many advantages such as reduced use of
industrial fertilizer, lower production costs, increased protein self-sufficiency, increased
yield stability, and improved feed quality [1]. To optimize fertilization of grass clover
mixtures, the clover proportion must be known, as the fertilizer response is greater at low
clover proportions. Visual inspection of clover proportion is uncertain and impossible
when large fields needs to be covered. Therefore, automated and robust methods for
estimating clover proportion in mixtures are needed for example to adjust fertilization
levels at ‘close to real-time’. Although the technique has been shown to work with deep
learning based methods [2,3], there is a need to verify and enhance the stability of model
predictions across different growth conditions, camera systems, and mixtures of species
and varieties.

The problem of automatically assessing the mixed crop composition using computer
vision and top-down images has been investigated during the previous 15 years. Before the
introduction of deep learning [4], all approaches were based on morphological opera-
tions [5–9] or binary patterns [10]. While the use of morphological operations to distinguish
grass from clovers based on the leaf widths proved valuable, it was highly sensitive to
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factors such leaf sizes, camera setup, lighting, and image resolutions. This led to a need for
ongoing parameter-tuning, specific for each acquisition setup and growth stage.

Skovsen et al. [3] introduced the use of deep learning for grass clover segmentation to
reduce the need for ongoing model refinements. Using synthetically created training data,
an FCN-8s [11] fully convolutional model was trained to segment images into grass, clover,
weeds, and soil. Over the duration of three out of four seasonal cuts, the model improved
state-of-the-art accuracy in grass clover semantic segmentation, while demonstrating an
increased robustness towards changing leaf sizes.

Skovsen et al. [12] proposed a cascaded FCN-8s approach to further segment clovers
into species of red clover and white clover. Although the results looked promising for
estimating the clover species in the biomass samples, it did not generalize to the first
seasonal cut. This was possibly due to a non-uniform vertical distribution of white clover
in the high yielding samples.

Bateman et al. [2] proposed an improved model architecture for semantic segmen-
tation, named LC-Net (Local Context Network). Based on a VGG16 model [13] back-
bone, an encoder–decoder architecture was designed to fuse standard feature maps with
contextual feature maps of lower resolution. This resulted in more accurate semantic
segmentations, specifically along object boundaries.

Due to the inherent entanglement of the deep learning model architecture, training
data, hyper parameters, and image quality, a direct comparison between proposed methods
and their results is increasingly inaccurate. As a consequence, an increase or decrease in
either of the components greatly influence the final result.

Mapping the spatial species distribution of mixed crops is a difficult task, but neces-
sary, to fully benefit from targeted fertilization. Bakken et al. [14] systematically mapped
grass clover plots of sizes up to 4 × 8 m. Ten days after being cut, the plots were fully
photographed guided by a metal frame, enclosing each plot. Using morphological opera-
tions, the images were then segmented into grasses, clovers, and weeds to determine the
species distributions both spatially and temporally. Skovsen et al. [15] presented prelimi-
nary large scale species distribution maps of grass clover mixtures. Using an all terrain
vehicle (ATV)-mounted camera system, 17,759 images, spatially distributed across 150 ha,
were collected and semantically segmented into grass, clover, weeds, and soil pixels using
a publicly available FCN-8s model.

In this work, we have three contributions: (1) Extension of biomass-labeled image
data for grass clover segmentation evaluation. Compatible with the publicly available
GrassClover dataset [16], we extend the number of samples by 110% and double the
number of experimental sites; (2) State-of-the-art results in predicting the relative biomass
clover content from top-down canopy images in changing conditions. Using the synthetic
training data of the GrassClover dataset, an Xception-65 based DeepLabv3+ model was
trained to accurately segment real images into grass, clover, weeds, and soil pixels in
changing conditions. Then, based on the detected distribution of species in the imaged
canopy, the corresponding biomass composition was predicted with higher accuracy than
previous methods. (3) Robust large scale species distribution mapping of 225 ha grass
clover fields. Based on the improved accuracy and robustness of the proposed method,
29,848 spatially distributed images were semantically segmented to predict the relative
clover content at each sample, and then interpolated to maps.

2. Material

This study uses images from three sources: (1) images from a high-resolution mirror-
less system or digital single-lens reflex (DSLR) camera from plot trials, (2) images from
a high-velocity camera mounted on an ATV from large fields, and (3) synthetic images.
Each of these three image types has a purpose. The images from the high-resolution system
camera were taken in plot trials, and are used to find the correlation between dry weight
and image information. The images from the high-velocity camera on the ATV are used
to find clover grass variations at field level, and the synthetic images are used to create
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large amounts of realistic training data. Each of these image types will be covered in the
following sections.

2.1. Plot Trial Sites

The sample pairs of biomass samples and corresponding canopy images originate
from four grass clover plot trials located 60–250 km apart. Each plot trial was designed to
answer research questions unrelated to this paper but introduced a large variation with
regards to soil conditions, fertilization strategies, seed compositions, and herbicide usage.
Due to the variation in growth conditions and composition of crops, we consider that the
images are representative of most clover-grass fields. A comparison of the four sites is
shown in Table 1. The samples from plot trial sites A and B have previously been used
to evaluate grass clover segmentation performance [3,12] and were published as part of a
grass clover recognition challenge [16]. The extension of samples from plot trial site C and D
is a contribution of this paper and substantially extends the evaluation basis of image based
species distribution prediction in terms of sample quantity, weather conditions, locations,
and seeded clover and grass species. In total, 915 biomass samples with corresponding
canopy image were collected at these four sites.

Table 1. Comparison of the four plot trial sites. Plots in site A, C, and D were all established with a location-specific seed
mixture, followed by nitrogen application trials to induce a varied clover content across the plots. Plots in site B were
established with a wide range of commercially available seed mixtures, leading to a high variation between the plots,
but inconsistent representation of the four species in the plots.

Plot Trial Site A B C D

Seeded plant species
Lolium perenne X (X) X X
× Festulolium (X) X
Trifolium repens X (X) X X
Trifolium pratense X (X) X

Herbicides X
Soil type Loamy sand Sandy loam Loamy sand Coarse sand

Cuts per season 4 4 5 5
No. of plots at site 60 >200 48 48
Years since plot establishment 1–4 1–2 2 2
Sample years 2017 2017–18 2019 2019
Acquisition weather conditions

Sunny X X X X
Rain X X
Morning dew X X X X

Location
Latitude 56.4957 55.3397 55.5370 56.1702
Longitude 9.5693 12.3808 8.4952 8.7816

Camera system samples
Nikon D810A + 2× LED flash 179 83
Sony a7 + ring flash 60 113 180 240
Sony a7 + 2× speedlight flash 60

Total number of biomass samples 239 196 240 240

2.1.1. Biomass Samples in Plot Trials

Plant samples were cut with electrical cutters in plots of 0.5 × 0.5 m, in the same plots
as the images were taken. The harvested material was hand sorted into four categories:
red clover, white clover, grass, and weeds. Each sample category was weighed, dried at
60 °C for 48 h and weighed again to determine dry matter yield and botanical dry matter
species composition. The dry matter yield of sample categories with less than 5 g of fresh



Sensors 2021, 21, 175 4 of 28

weight was estimated assuming a 25% dry matter content. The sample weight distribution
across plot trial sites and seasonal cuts is shown in Figure 1.
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Figure 1. Distribution of biomass samples across quantity, plot trial site, and seasonal cut number. The harvested yield is
based on the sampled area of 0.25 m2 per biomass sample.

2.1.2. Image Acquisition in Plot Trials

Image acquisitions in plot trial C and D were carried out with a Sony (Tokyo, Japan)
A7 Mirrorless interchangeable-lens camera (MILC) with a Sony Sonnar T* FE 35 mm F2.8
ZA lens. With the camera mounted on a horizontal rod connecting two tripods, images
were captured facing down. Without moving the camera, two images were collected before
each biomass sample as shown in Figure 2a,b. The first image captured the undisturbed
canopy. The second image included the frame, defining the 0.5 × 0.5 m area to be cut,
in the image domain. By placing the frame on top of the vegetation, as opposed to the
ground, perspective transformations and height estimations could be omitted from the
proceeding processing steps. In addition, 420 biomass samples were photographed using
a ring flash to increase the visibility in the images. Due to failure of an external power
supply, 60 biomass samples were photographed using two speedlight flashes, mounted on
either side of the camera.

2.1.3. Image Preprocessing

All images were manually developed from raw formats, with guidance from a card-
board color calibration target. Image crops, corresponding to each biomass sample of
0.5 × 0.5 m, were then generated as demonstrated in Figure 2. To remove the challenge
of scale variance originating from changing canopy to camera distances, each crop was
linearly transformed to a square image of a fixed 3000 × 3000 pixels. To reduce edge
artifacts in plant classifications from missing context, each crop was extended 200 pixels on
all sides, but disregarded after the semantic segmentation.
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(a) Image of undisturbed canopy. (b) Subsequent image with cutting frame on top of vegetation.

(c) Image crop of (c) based on frame in (b). (d) Linear transform of (c) to a common
resolution of 3000 × 3000 pixels.

(e) 200 pixel border extension to
3400 × 3400 pixels.

Figure 2. Steps of image preprocessing from captured images to convolutional neural network (CNN)-inference
ready images.

2.2. Large Scale Image Acquisition in Farmed Fields

The primary desire of predicting the biomass composition from images is the pos-
sibility of estimating the species compositions at scales where manual plant fractioning
is unfeasible. To demonstrate the robustness of the proposed method in this context,
large scale image acquisitions were carried out at the three dairy farms, located in Jutland,
Denmark, with 25–68 km spacing in between. All fields were seeded with perennial rye-
grass and white clover following the growers’ conventional procedure. One farmer did
not use pesticides for weed control in his fields. Image acquisition was carried out in May,
a few days before the high-yielding first cut of the season, and, in October, with sparser
vegetation. A summary of the large scale acquisitions is shown in Table 2. The robust-
ness of the system is thus demonstrated in high and low yielding conditions, on both
conventionally and organically grown fields with a large difference in the occurrence of
weeds. Image samples from each of the four image acquisitions are shown in Figure 3b–e.
The image-based grass clover fractioning must therefore be able to handle the diversity
between these fields.
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(a) Large scale image acquisition platform.

(b) 2018-05-11. (c) 2018-05-14.

(d) 2018-10-12. (e) 2018-10-14.

Figure 3. The large scale image acquisition platform and sample images from each day of large scale
image acquisition. The difference in yield is noticeable from the larger leaf sizes in the first row,
and the visible soil in the bottom row. The images were captured at a velocity of 18 km h−1 without
motion blur due to the specially developed camera system.



Sensors 2021, 21, 175 7 of 28

Table 2. Summary of the large scale image acquisition per field.

Farm Field Area [ha] Acquisition
Time [mm:ss] Images Density

[Images ha−1]
Speed

[ha hour−1]

May 2018

A 1 11.3 44:35 2223 197 15.3
A 2 18.6 67:01 3398 183 16.7
A 3 8.1 23:04 1188 145 21.1
A 4 7.1 26:50 1330 185 15.9
B 1 14.2 49:58 2025 143 17.1
B 2 4.8 17:50 723 148 16.1
B 3 9.2 40:43 1202 135 13.6
B 4 2.2 10:50 1202 135 12.2

Oct 2018
A 1 11.3 34:38 1380 122 19.6
A 2 45.8 28:16 1422 31 97.2
A 3 16.9 49:25 2423 143 20.5
A 4 14.6 46:49 2170 148 18.7
A 5 12.5 44:11 2163 173 17.0
C 1 9.4 47:06 1878 200 12.0
C 2 20.5 78:12 3324 162 15.7
C 3 18.8 58:46 2999 160 19.2

2.2.1. ATV-Mounted Image Acquisition Platform

The image acquisition system, shown in Figure 3a, is based on a 5.0 megapixel USB3
Vision camera (Point Grey (Richmond, BC, Canada), GS3-U3-51S5C-C) and a 16 mm lens
(Edmund Optics (Barrington, IL, USA), 86-571). Artificial illumination was provided by a
ring flash (Alienbees (Paul C. Buff Inc, Nashville, TN, USA), ABR800), the ring flash was
modified by adding a light sensor to provide a trigger output for the camera based on the
illumination power of the ring flash. This is done to keep exposure time to a minimum,
opening the camera shutter just during the very peak of the illumination of the flash.
Keeping the exposure time short results in the illumination from the sun to become in-
significant, thereby keeping a constant illumination. Furthermore, it also eliminates motion
blur for travel velocity less than 70 km h−1. The camera is mounted in the center of the ring
flash, using a 3D printed adapter. The adapter is made with a series of spring elements to
center the camera inside the ring flash. The ring flash itself is mounted on three oil-spring
dampeners to protect camera and flash from mechanical shocks. The camera assembly is
mounted on the front of the ATV (Can-am, Outlander 500 XT) using aluminum extrusions
tied to the front and rear luggage racks. The camera is mounted approximately 0.9 m above
the ground. The camera system is controlled by a computer (Nvidia (Santa Clara, CA,
USA), TX2) running the Robot Operating System [17]. Images are geotagged based on
input from a real-time kinematic global navigation satellite system (RTK-GNSS)(Trimble
(Sunnyvale, CA, USA) BD920-W3G receiver with 23903-00 antenna, gpsnet.dk provided the
virtual reference station for RTK). Triggering of the flash is based on the location measured
by the GNSS, if the distance is larger 5 m from the last image location, a new flash is
triggered, which in turn triggers the camera.

2.2.2. Sampling Strategy

Each field was systematically traversed with the ATV-mounted camera at approxi-
mately 18 km h−1. The image sampling was triggered every 5 m in the driving direction
with a typical track-to-track distance of 6–12 m. In October, each field was additionally
sampled along the field border prior to the interior sampling.
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2.2.3. Image Preprocessing

The images were digitally developed from Bayer pattern images using the approach of
Malvar et al. [18]. To minimize the effects of vignetting and uneven lighting, an illumination
profile was made from the mean image of each of the four image acquisition days and
applied on the demosaiced images. Using the same color calibration cardboard as in
Section 2.1.3, a color profile was manually calibrated for each day. RawTherapee version
5.8 was used to correct the white balance, brighten shadows, and enhance the appearance of
the images. This included the use of exposure compensation, gamma correction, increased
contrast, and chromaticity in CIE L*a*b* space, brightening of shadows using built-in filters,
sharpening, edge enhancements, and micro-contrast.

2.3. Synthetic Image Dataset with Hierarchical Labels

Hierarchically labeled synthetic images provide a multitude of benefits compared to a
flat real dataset of similar manual labor. Namely: (1) 100% pixel accurate labels, (2) compute-
limited sample size as opposed to labor-limited, (3) controlled data distributions and biases,
(4) emphasis on under-sampled parts (e.g., clover flowers) using intra-class labels.

For training the convolutional neural networks for semantic segmentation, the pub-
licly available GrassClover dataset was used [16]. This dataset consists of 8000 photo-
realistic synthetic images of grass clover mixtures with hierarchical species and instance
labels. The synthetic images was made from a pool of 230 digitally cut-out plant samples
(149 clover samples, 55 rye grass samples, and 26 weeds.), used to populate soil images,
until a desired leaf area index was reached. The species sampling distribution was varied
per image to mimic real world variations in grass clover fields. A synthetic image sample
from the GrassClover dataset is shown in Section 3.3.2.

2.4. Image Annotation

The existing data-set of 15 labeled image crops by Skovsen et al. [16] is used for
evaluating the per pixel image recognition performance. In this data-set, 15 image crops
of 1000 × 1000 pixel were labeled per pixel into five classes: Soil, white clover, red clover,
grass, and weeds. Ten of those images originate from densely grown plot trial sites A
and B with biomass clover contents evenly distributed between zero and 100 percent.
The remaining five labeled images originate from sparsely vegetated grass clover fields in
October captured with the ATV platform.

3. Methods
3.1. Data-Driven Canopy Image Segmentation

Consistent with previous research in the field, the biomass composition of the mixed
crop is estimated based on the visible canopy in a top-down camera view [2,3,7,8,10,19].
Setup as a semantic segmentation task, where every pixel is discretely classified, every
biomass image is described by 9× 106 plant species classifications. The method of predict-
ing the species composition in the biomass is then based on the detected area of each crop,
corresponding to the number of pixels of the given image recognition class.

3.2. Neural Network Architecture

From demonstrated success in other domains, and the inherent use of multi-scale
feature processing, the DeepLabv3+ [20] with a backbone network of Xception-65 [21] was
selected. The key elements of the model architecture are illustrated in Figure 4. The encoder–
decoder architecture is designed to refine semantic segmentations along object borders,
by utilizing intermediate features at a spatial higher resolution. While this is commonly
used, the feature processing at multiple scales using a spatial-scale adjustable atrous filter
can potentially increase the robustness towards varying growth stages and plant sizes in the
grass clover domain. To further improve scale-invariance, each image is processed at three
scales, namely 100%, 75%, and 50%, and combined to a single semantic segmentation result.
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  Output

  Multi scale input

  Decoder

  Encoder

Atrous Conv
Xception 65

1x1 Conv

3x3 Conv
rate 6

3x3 Conv
rate 12

3x3 Conv
rate 18

Image
pooling

1x1 Conv

1x1 Conv

Upsample
x4

Concat 3x3 Conv Upsample
x4

Argmax
of mean
softmax 

Figure 4. Overview of the Deeplab v3+ [20] neural network architecture. Features from the Xception
65 [21] based backbone is concatenated at multiple scales in the encoder using spatial-scale adjustable
atrous filters. The decoder combines higher resolution features from within the Xception 65 with the
multi-scale features to produce a spatially improved semantic segmentation. To further improve scale-
invariance, images are processed at three image scales and averaged to a final class probability map.
The encoder–decoder model architecture is illustrated with similarities to the original publication [20].

3.3. Training Procedure

The convolutional neural network (CNN) architecture was trained in Tensorflow
version 1.15.0 based on the official deeplab model repository [22]. Changes were made to
(1) translate hierarchical labels into prospect classes during preprocessing, (2) introduce
intra-class loss weighting, and (3) extend the image augmentation pipeline.

Following the principle of Skovsen et al. [12], two separate model instances were
trained on the same hierarchical data and combined in a two-stage classification process:
Model 1 was trained to discriminate between soil, clover, grass, and weeds. Model 2 was
trained to discriminate between red clover and white clover without regards to image parts
outside of the two classes. Model 2 can thus be used for further classification of the areas
that model 1 has classified as clover, so that the clover species can be determined. In addi-
tion to the easier control of class biases, it also allowed the use of clovers without species
annotations in the training process. This increased the training material, which contributed
to the creation of a robust grass-clover segmentation model.

Although this structure doubles the total inference time, it permits a direct comparison
with the existing literature in the field when ignoring the second stage.

The models were initialized with weights from a pre-trained Xception65 trained on
ImageNet [23], followed by a deeplab3+ pretrainining on MS COCO [24].

Both models were trained with the same set of hyper parameters: Adam optimizer,
learning rate of 1× 10−5, weight decay of 4× 10−6, 20,000 iterations, atrous rates of 6, 12,
and 18, decoder output stride of 4 pixels, crop size of 768 × 768 pixels, and a batch size of
44, evenly distributed on clones on each of four Nvidia Quadro RTX 8000 GPUs.

The aim of this work was to create an image recognition model that handles images
from ordinary grown fields. However, training entirely on synthetic data introduces the
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risk of overfitting on a domain, different from the target domain. To reduce the decoupling
between the artificial and the real world, three strategies were employed, namely sub-class
weighting, aggressive image augmentation, and style-transfer augmentation. While sub-
class weighting and image augmentation were employed to improve the performance in
generic real world conditions, style transfer was introduced as a semi- or unsupervised
approach to deal with unfamiliar conditions, not present in the training dataset. In principle,
this could reduce the need to manually extend the training data when new sampling
conditions arise.

3.3.1. Sub-Class Weights

Based on the hierarchical data distributions of the training data [16], a default class
weighting scheme was applied to reduce biases towards over-represented (sub)classes and
give emphasis to rare cases.

wc = wce log
(

Nc

Nsum

)
(1)

where wc is the weight of class c, Nc is the total number of pixels in class c, Nsum is the total
number of pixels in the dataset, and wce is a hyper parameter to control emphasis of the
cross entropy loss.

In the case of red clover leaves and white clover leaves, which combined makes up
half of the image data, an extension was made to regularize the weights based on the
overall presence of clovers in the dataset. Weeds species were trained with a common
weight, based on the combined weed coverage.

The final class weights used for the training of the CNNs were 3.97, 1.46, 2.86, 6.07,
1.46, 6.68, 6.07, 6.07, 6.07, 8.58, 2.41, 13.28, 0.88, and 1.46 corresponding to soil, clover, grass,
weeds, white clover, red clover, dandelion, shepherds purse, thistle, white clover flower,
white clover leaf, red clover flower, red clover leaf, and unknown clover leaf, respectively.

3.3.2. Aggressive Image Augmentation

In order to make the GrassClover dataset consistent with the real images, the resolution
was initially set to fit a ground-sampling distance of 6 pixels per mm. However, to
increase the robustness of the semantic segmentation outside of the evaluated scope,
an aggressive augmentation strategy was introduced. The image scale of the training
images was uniformly scaled by 60% as illustrated in Figure 5a–c. This was designed to
(1) recognize grasses and clovers across growth stages, and (2) to simulate different camera
sensors sizes, focal lengths, and camera to canopy distances. To reduce the reliance on well-
developed images from manual calibrations, random augmentations of brightness, contrast,
hue and saturation were also applied. The augmentation span of hue and saturation is
visualized gradually in Figure 5e,f from left to right.
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(a) Image crop at 40% scale. (b) Image crop at 100% scale. (c) Image crop at 160% scale.

(d) Label crop at 40% scale. (e) Hue aug. span. (f) Saturation aug. span.

(g) Original crop. (h) Style transferred crop.

Figure 5. Illustration of image augmentations applied on the synthetic image crops during training of
the model. (a–f) represent online augmentations throughout the training process; (g,h) represent style
transfer of dew artifacts, used for offline-augmentation of synthetic images in subsequent fine-tuning
of the 1st stage model.

3.3.3. Style Transfer Augmentation to Create Weather Condition Invariance

Changing weather conditions during the acquisition of the 915 biomass sample pairs
introduced diverse visual effects. This means that some plants have strongly reflective
leaves due to rain or morning dew, as illustrated in Figure 6, where sunny, rainy, and dew
conditions are compared. To increase the robustness of the trained model, and improve
invariance towards moist and reflective leaves, style transfer was used to transfer the
texture of moist leaves to training images containing dry leaves.

The publicly available implementation of GLStyleNet [25] was used to perform the
style transfer. The hyper parameters were initially tuned to transfer weather-induced
artifacts from real to synthetic images, while ensuring consistency across plant species and
positions in the synthetic image. Since class label images were not augmented, consistency
in the content before and after the style transfer was important to not introduce label errors
in the training data.

Thirty-two images with severe reflections from morning dew were selected to provide
image styles. Using GLStyleNet, 493 synthetic image crops of 1600 × 1600 pixels were then
augmented to express wet weather conditions in an unsupervised approach.
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Figure 6. First row: Illustrative 900 × 900 pixel image crops of the weather conditions effect on image
quality depending on droplet size. (left) Sunny condition without droplets. (center) Although the
large droplets from rain are visible, the captured leaf texture is comparable to sunny conditions.
(right) In dewy conditions, especially the clover leaf texture appearance is highly affected by the
specular reflections from the camera flash. Second row: The semantic segmentation results with a
model trained with traditional image augmentation. Third row: The semantic segmentation results
when including style transferred dewy conditions into the synthetic training data. Green is grass,
red is clover, and blue is soil and background.

Model 1, which handles classification of soil, clover, grass, and weeds, was subse-
quently fine-tuned for 6000 iterations at a learning rate of 5× 10−6 on a combined dataset
of the GrassClover synthetic images and style transferred synthetic images. Here, the style
transferred images represented 6% of the training data.

3.4. Validation in Large Scale Mapping

The 29,848 images, distributed across 16 fields, as shown in Table 2, were processed
with the 1st stage model in full resolution of 2054 × 2456 pixels to segment the images into
grass, clover, weeds and soil. Due to omission of red clover in the fields, the 2nd stage
model was not included for large scale mapping. Using QGIS v.3.2.3, the relative clover
content of each image position was interpolated to a 5× 5 m grid within the field boundary
of each mapped field. Given the large number of samples, at approximately 150 samples
per hectare, ordinary kriging interpolation, inverse distance interpolation, and linear inter-
polation resulted in comparable species maps. However, due to the relationship between
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soil conditions and species competition, and the long tradition of kriging interpolations for
soil characteristics mapping, ordinary kriging was used.

Evaluation of the large scale biomass composition mapping in crop mixtures intro-
duces new challenges for the research community. With mapped areas five orders of
magnitude larger than the manually fractioned biomass samples of 0.25 m2, the biomass
composition at field scale cannot be performed manually through fractioning into plant
species. Sparsely distributed biomass samples, providing the exact biomass composition in
sub-m2, might not be representative to a larger region due to local variations at multiple
scales in the mixed crop.

No images from the ATV-based image acquisition platform have corresponding
biomass samples. As a consequence, the predictive performance from canopy image
to biomass composition, specifically for that camera system, cannot be evaluated directly.
In order to validate a consistent segmentation accuracy of Model 1 on the ATV-based
images, three other approaches were used: (1) Test on five pixelwise labeled image crops
of 1000 × 1000 pixels of varied clover content. These images are included as part of the
GrassClover semantic segmentation test set. (2) Qualitative semantic segmentations of the
five image crops along with ground truth labels and previous work. (3) Qualitative results
of semantic segmentation for each of the four days of data acquisition with a variation in
both biomass quantity and composition.

4. Results

The result section is ordered into sections regarding semantic segmentation of images,
biomass composition prediction using images, and large scale mapping using images.

4.1. Semantic Segmentation

The two cascaded models were evaluated for pixelwise classification on the Grass-
Clover dataset [16] evaluation server with results stated in Table 3. The 1st stage model is
segmenting the images into grasses, clovers, weeds, and soil, followed by the 2nd stage
model, classifying the clovers into species. Making use of the separation between the 1 and
2nd stage, a cascaded model can consist of any 1st and 2nd stage models, independent
of CNN architecture or training procedure. In this way, a 2nd stage DeepLabv3+ model
can be substituted by a previous FCN-8s 2nd stage model to isolate the contributions of
each work.

The baseline FCN-8s based model [12] reached a mean Intersection over Union (IoU)
of 55.0%. The DeepLab3+ST cascade demonstrated a notably improvement of the mean
IoU of 13.8 percentage points, primarily driven by high improvements in both grass,
weeds, and soil segmentations. Employing a DeepLabv3+ST→ FCN-8s cascade further
improved the mean IoU by 2.6 percentage points to a mean IoU of 68.4%. Since all edge-
sensitive segmentations are performed in the first stage, with the exception of overlapping
clover species, the FCN-8s model appears to generalize better to the task of clover species
discrimination, but at a general cost of spatial accuracy in semantic segmentation.

Figure 7 compares the FCN-8s model from [15] and the DeepLabv3+ST models on five
images with corresponding ground truth annotations from the large scale image acquisition
platform. Since clover species discrimination on the mapped fields is peripheral due to
a single seeded clover species, only the first stage is compared. Although the FCN-8s
model detected most clovers and grasses, the rugged overextended grass segmentations
and missed clover leaves led to a general underestimation of the clover content. The pre-
dicted clover coverage of the canopy in each image, noted in white, was consistently
better predicted with the DeepLabv3+ST model. The improved scale-invariance using
the DeepLabv3+ST model is believed to be an important step to handle even the small-
est clovers in the images. The clearest discrepancies between the ground truth and the
DeepLabv3+ST model are (1) the misclassified weed in the third row, (2) disagreement in
the decision boundary between grass and background for dry grasses, most apparent in
row 4, and (3) misclassifications of clover stems as grasses.
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Table 3. Mean and per class Intersection over Union for semantic segmentation on the GrassClover test set on the evaluation server.
The baseline result is provided by the two hierarchically trained FCN-8s models [12]. ST represents the additional fine-tuning on
style-transfer augmented image samples. The best result in each category is marked in bold type.

Cascaded CNN Models Intersection over Union [%]

1st Stage
Model

2nd Stage
Model Mean Grass White Clover Red Clover Weeds Soil

FCN-8s [16] FCN-8s [16] 55.0 64.6 59.5 72.6 39.1 39.0

DeepLabv3 +
ST DeepLabv3+ 65.8 78.5 62.3 75.0 51.4 61.6

DeepLabv3 +
ST FCN-8s [16] 68.4 78.5 70.5 80.1 51.4 61.6

Figure 8 demonstrates qualitative examples of the DeepLabv3+ST→ FCN-8s cascaded
semantic segmentation on biomass samples from each of the four plot trial sites. Without
directly comparable ground truth images, errors in the 1st stage segmentation are difficult
to spot. Even the heavily occluded leaves in the third row are being correctly detected
and segmented. The errors in the output of the 2nd stage are more obvious. As described
in Table 1, plot trial site C was established without red clovers—here, the majority of the
clovers were falsely classified as red clover. In the remaining images, the clover species
appeared to be better separated, with a couple of clovers being misclassified in each plot.
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Image Ground truth FCN-8s Deeplabv3+ST

0.0 % 0.1 % 0.0 %

40.3 % 31.5 % 37.0 %

40.6 % 34.5 % 39.2 %

78.9 % 68.2 % 71.2 %

98.2 % 89.6 % 96.6 %

Figure 7. Comparison between ground truth labeled images crops of 1000 × 1000 pixels and corresponding semantic
segmentations from FCN-8s and Deeplabv3+ models. The images originate from the fall acquisition using the large scale
image acquisition platform and vary in clover content. Each row represents one image. The derived clover coverage, relative
to the detected canopy, is written in white text. Red is clover, green is grass, blue is soil+background, orange is weeds,
and grey is unknown. The predictions from the Deeplabv3+ based model are consistently closer to the ground truth than
the FCN-8s based model.
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Figure 8. Qualitative samples of semantic segmentation on four plant samples of varied yield and
biomass compositions using DeepLabv3+ST followed by FCN-8s for clover species discrimination.
First Column: Input red green blue (RGB) image of 3000 × 3000 pixels. Second column: 1st-stage
pixelwise classification of image into soil (blue), clover (red), grass (green) and weeds (orange). Third
column: 2nd-stage pixelwise classification of image into soil (blue), red clover (purple), white clover
(yellow), grass (green), and weeds (orange).

Figure 8. Qualitative samples of semantic segmentation on four plant samples of varied yield and biomass compositions
using DeepLabv3+ST followed by FCN-8s for clover species discrimination. First column: Input red green blue (RGB)
image of 3000 × 3000 pixels. Second column: 1st-stage pixelwise classification of image into soil (blue), clover (red), grass
(green) and weeds (orange). Third column: 2nd-stage pixelwise classification of image into soil (blue), red clover (purple),
white clover (yellow), grass (green), and weeds (orange).
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4.2. Biomass Composition Prediction

Biomass composition predictions was made for all 915 biomass samples from the
cascaded model predictions, similar to those shown in Figure 8. In addition to evaluating
the end-goal of predicting the biomass species composition in grass clover mixtures,
it allowed the semantic segmentation models to be tested indirectly on a much more
diverse dataset which included four locations, three seasons, three camera setups, multiple
seed mixtures, and different weather conditions.

Table 4 compares the coefficient of determination (R2) between the predicted canopy
segmentations and the corresponding biomass fractions using a first order linear model on
four different model cascade combinations. Focusing on the 1st stage image segmentation
into clover, grass, and weeds, there was a clear improvement moving from the FCN-8s
model to the DeepLabv3+ of 4.5 percentage points for clover fraction predictions. Since the
grass fraction prediction was not improved, the improvement presumably came from better
separation of clovers, weeds, and soil in the biomass images.

The introduction of style-transfer augmentation of synthetic data to improve weather
condition invariance, as described in Section 3.3.3, contributed to a major improvement on
the results. An increased R2 of 2.7, 3.2, and 10.8 percentage points were observed for clover,
grass, and weeds prediction, respectively. Similar to the semantic segmentation results
of Table 3, the DeepLabv3+ did not improve the clover species prediction performance.
Figure 9 shows four of the canopy segmentation to biomass fraction correlation plots of
the DeepLabv3+ST → FCN-8s model cascade, from which the presented R2 originates.
The linear correlations from canopy image to the secondary biomass fractions of weeds and
specific clover species were not too reliable, in part due to the varying vertical distributions
of the fractions in the sward. However, the correlation of the primary fractions of clovers
and grasses demonstrated a convincing robustness across the four locations, three seasons,
three camera setups, multiple seed mixtures, and changing weather conditions.

Table 4. Comparison with Skovsen et al. [16] on the same dataset using coefficient of determination between analyzed canopy cover
and relative biomass content for each class of species. Contrary to Table 3, this evaluation includes all 915 biomass samples in the
comparison to maximize the extent of experimental sites, camera systems, seeded compositions, weather conditions, and seasons. The
best result in each category is marked in bold type.

Cascaded CNN Models Relative Biomass R2 [%]

1st Stage Model 2nd Stage
Model Total Clover Grass White Clover Red Clover Weeds

FCN-8s [16] FCN-8s [16] 84.1 87.2 61.1 53.5 46.1

DeepLabv3+ DeepLabv3+ 88.6 87.3 64.8 44.9 53.8

DeepLabv3 + ST DeepLabv3+ 91.3 90.5 64.4 45.8 64.6

DeepLabv3 + ST FCN-8s [16] 91.3 90.5 67.9 51.4 64.6
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(d)
Figure 9. Visualization of the correlation between the predicted visual canopy fractions and the corresponding dry matter
fractions. The top row represents 915 biomass samples. The second row represents a reduced set of 752 biomass samples,
due to omitted clover species annotations in most biomass samples from plot trial site B. (a–d) represent clover, weeds,
white clover, and red clover fractions, respectively.

4.2.1. Evaluation of Generalization

Computer vision techniques can often be overfitted to the evaluated conditions in a
degree that penalizes generalizability. This is especially true in areas of expensive sample
acquisition, such as biomass sampling and cumbersome fractioning of mixed crops. As a
consequence, the evaluated samples are often limited in quantity or variation. To evaluate
the generalizability of recent methods, the 915 biomass samples were organized according
to (1) acquisition date, (2) experimental site, and (3) seasonal cut no. The correlations
between the detected canopy clover fraction and the biomass clover fraction for each set of
samples were then determined, as shown in Table 5. While a low correlation in a single
acquisition can indicate difficult weather conditions (e.g., site A, cut 4), a drop in correlation
when including all cuts or sites indicates a lack of generalization.

Morphological filtering from Mortensen et al. [9], similar to [5–8], provided a good
predictor on individual acquisition dates, particularly in mixtures of ryegrass and white
clover (site C, R2 ≈ 88%). When red clover was added in the mixture (site A, B, and D)
the average correlation was significantly reduced (R2 ≈ 65%). The inherent sensitivity to
scale in morphological filtering was likely insufficient to equally detect the different sized
leaves of the two clover species. When used for multiple acquisition dates, the average
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correlation was reduced to R2 = 48.2%, R2 = 51.4% and R2 = 36.9%, across cuts, sites and all
samples, respectively.

The deep learning based FCN-8s model from Skovsen et al. [16], similar to [3,12]
demonstrated better use as a predictor on each of the 18 acquisition dates, individually.
However, the biggest improvement, compared to morphological filtering, was the greatly
improved generalizability. With a correlation across all 915 biomass samples of R2 = 84.1%,
the data driven approach, albeit cumbersome to train, provided a single model, suitable
for multiple locations and species compositions for the duration of the productive season.

The DeepLabV3+ST further improved the predictive performance from the analyzed
canopy image. Compared to FCN-8s, the biggest improvements for individual sites were
those of lower correlations (R2 < 80%), but all acquisitions demonstrated a higher cor-
relation. Five out of the eighteen acquisition dates demonstrated an R2 < 90%, but four
of those were sampled in rainy (site D, cut 2; site D, cut 5) or dewy (site A, cut 4; site B,
cut 4; site D, cut 5) weather conditions. Across all 915 biomass samples, the DeepLabv3+ST
demonstrated an R2 = 91.3%, and, within the common mixture of ryegrass and white clover
(site C), the correlation was increased to R2 = 94.6%. The presence of red clover in the
mixtures had a small impact on the correlation, but this was more likely the result of a
harder task, than unbalanced detection of the two clover species.

4.2.2. Comparison with Previous Studies

Table 6 compares the presented results in relation to previous studies in image based
biomass clover fraction prediction. As published results are highly dependent on the
evaluated dataset, this comparison includes a dataset description along with the method.
To support fair comparisons across the datasets, important factors related to (1) occlusions
(biomass range), (2) scale invariance (biomass range), (3) image quality (GSD), and (4) gen-
eralizability (no. cuts and evaluation sites) were included. While Table 6 highlights the
strong dependency on a good dataset, it provides valuable insights into design choices
such as image quality.

Table 5. Detailed comparison of the DeepLabv3+ST model with the FCN-8s model from
Skovsen et al. [16] and the extended morphological filtering from Mortensen et al. [9] on the 915
biomass samples. The relative clover content prediction is evaluated using coefficient of determina-
tion between the detected clover fraction of canopy cover and relative clover content in the biomass,
decomposed into individual experimental sites and seasonal cuts. The generalizability of each
method can be observed by the drop in predictive performance moving from individual acquisition
dates to aggregations across seasonal cuts and experimental sites.

Relative Clover Biomass R2 [%]
Cut 1 Cut 2 Cut 3 Cut 4 Cut 5 All Cuts

M
or

ph
.fi

lt
. Site A 71.8 81.3 79.9 36.3 - 19.1

Site B 65.6 68.1 69.9 22.5 - 64.8
Site C 92.7 89.2 75.5 91.5 88.9 54.8
Site D 67.9 65.3 61.5 81.8 68.0 54.2

All sites 36.4 26.4 59.3 58.3 76.4 36.9

FC
N

-8
s

Site A 74.1 87.8 87.8 56.9 - 74.4
Site B 90.7 84.3 87.3 79.6 - 84.9
Site C 95.0 91.2 93.4 95.3 94.8 92.8
Site D 90.9 84.8 92.6 91.2 68.7 86.1

All sites 88.4 79.9 89.9 86.1 79.0 84.1

D
ee

pL
ab

v3
+ Site A 82.1 94.4 95.1 67.0 - 87.8

Site B 92.5 92.6 90.6 87.6 - 90.2
Site C 95.5 93.4 95.4 97.5 95.6 94.6
Site D 92.0 87.2 94.1 91.6 70.6 89.8

All sites 91.2 90.7 92.8 91.4 85.3 91.3
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Table 6. Comparison with previously published results on image based prediction of biomass clover fractions. For fair
comparison, only mixtures with similar species are compared. Due to the scarcity of published results on ryegrass, white
clover, and red clover mixtures, only mixtures of ryegrass and white clover (site C) were included in this comparison. When
a data source is referenced, the corresponding R2 is reprinted from the data source. wc and rg is white clover and ryegrass,
respectively. BM is biomass. GSD is ground sampling distance.

Method Data Source
BM Range

[1000 kg
ha−1]

GSD
[mm−1]

No.
Samples

No.
Cuts

Eval.
Sites

Species
Mixture

Clover
R2 [%]

Morph. filtering [8] [8] < 2.8 2 24 3 1 wc, rg 85

FCN-8s [2] [2] 1.0–3.3 2–3 70 2 1 wc, rg 79.3

LC-Net [2] [2] 1.0–3.3 2–3 70 2 1 wc, rg 82.5

Morph. filtering [9] Site C 0.2–5.4 6 240 5 1 wc, rg 54.8

FCN-8s [16] Site C 0.2–5.4 6 240 5 1 wc, rg 92.8

DeeplabV3 + ST Site C 0.2–5.4 6 240 5 1 wc, rg 94.6

The morphological filtering implementations in [8,9], resulted in correlations of
R2 = 85% and R2 = 54.8%, respectively, on two different datasets. While the difference
is high, the extended biomass range and number of seasonal cuts in the second dataset
demonstrated the main shortcomings of the method. Himstedt et al. [8] referred to this
shortcoming as a need for self-adjusting parameters for the method to be applicable under
variable field conditions.

The FCN-8s implementations in [2,16], presented correlations of R2 = 79.3% and
R2 = 92.8%, respectively, on two different datasets. While the latter dataset was more
extensive in terms of biomass range and number of seasonal cuts, the perceived image
quality was also higher. The most natural explanation for the difference in correlation is the
higher image resolution and quality, which would allow for improved species recognition
in shaded parts of the canopy and along leaf edges. However, due to the data driven
approach of deep learning model optimization, part of the difference might originate from
suboptimal training data or hyper parameters during model training.

The LC-Net implementation in [2] improved the R2 correlation by 3.2 percentage
points, relative to the FCN-8s architecture on the same dataset. This improvement was
contributed to (1) better spatial accuracy of image segmentations using an encoder–decoder
architecture, and (2) incorporating local context features in form of a local context pyramid
pooling (LCPP) block [2].

The DeepLabv3+ST model implementation in this work surpassed all previously
published results in ryegrass and white clover mixtures with an R2 = 94.6% on the extensive
dataset of 240 biomass samples across five seasonal cuts. Although the DeepLabv3+ model
architecture was not directly compared with the LC-Net model, the combination of dataset
and model improved the correlation by 12.1 percentage points.

4.2.3. Test Set Validation

To test the predictive clover content accuracy of the proposed DeepLabv3+ST model
on unrelated test locations, the biomass samples were split into four folds, corresponding to
the four plot trial sites. Based on a first order linear model, fitted to the data from three sites,
the clover fraction for each biomass sample at the fourth site was predicted. The results for
each plot trial site are shown in Figure 10. With a mean absolute prediction error ranging
from 4 to 6.9 percentage points, the prediction accuracy was not heavily degraded from
testing at a separate location. At plot trial sites A, C, and D, the biomass sample predictions
were evenly distributed above and below the true values, suggesting a good fit, and that
an increase in acquired samples (e.g., on a densely sampled field) would lower the average
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prediction error. Although each plot trial site differed in the seeded species composition,
this had no visible effect on the derived clover content prediction in the tests.
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Figure 10. Test of biomass clover fraction prediction at each plot trial site, based on a first order linear model fitted to the
remaining three sites. The site-specific mean absolute error, denoted MAE, is printed in each subfigure.

4.3. Biomass Yield Prediction

Comparable to the biomass fraction estimates of clover, weeds, red clover, and white
clover in Figure 9, the biomass yield was plotted relative to the detected canopy cover in
Figure 11. Similar to the multispectral normalized difference vegetation index (NDVI),
the coverage saturated at biomass yields above 2000 kg ha−1. Locally, at each plot trial
site, the detected canopy coverage explained a gradual increase in yield, with the most
clear trends at sites C and D. The difference in trends between the sites is thought to
originate from a combination of species composition, growing conditions (i.e., water,
soil and weather), establishing method, and cutting height. By leaving the interpretation
up to the agricultural advisor or crop consultant, we demonstrate field maps of canopy
coverage in Section 4.4.
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(c) Plot trial site C
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Figure 11. Comparison between the predicted visual canopy coverage and the corresponding yield in the biomass samples.
The data are visualized for each plot trial site individually to emphasize local trends. (a–d) correspond to plot trial sites A,
B, C, and D, respectively.

4.4. Large Scale Mixed Crop Mapping

Using the 1st stage DeepLabv3+ST model, each large scale acquired image was seman-
tically segmented as demonstrated in Figure 12. From each segmented image, the clover
coverage, relative to the canopy coverage, was extracted, along with the canopy coverage
relative to the image size. The two metrics are exemplified for each subfigure of Figure 12.
Based on the 29,848 canopy images collected over 16 fields of a combined 225 ha (Table 2),
two sets of maps were made, corresponding to each of the two extracted metrics.

Twelve of the clover content mapped fields are shown in Figure 13. The maps are
interpolated, but the individual sample predictions are overlayed for comparison. In May,
corresponding to Figure 13a–g, three fields (d–f) demonstrated a high amount of clover,
suggesting a reduced need for applied nitrogen fertilizer. Two fields (b,c) were consistently
low in clover. The first field (a) contained a stripe of increased clover content—the result of
a no-nitrogen-application experiment in the preceding spring. In October, four (i–l) of the
five fields were recently established, and were mapped preceding their first yielding season
to determine the need for nitrogen application from the start. Two fields (k,l) demonstrated
insignificant amounts of clover. This was possibly due to clover establishment failure,
pointing to a need for either supplementary clover seeding, or to maximize the nitrogen
fertilization to maintain a high-yielding field. One field was mapped in both periods (a,h),
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five months apart. In this period, the clover content in the center of the field increased
dramatically, while diminishing close to the field border.

(a) 27.3 % clover coverage.
98.0 % canopy coverage.

(b) 38.9 % clover coverage.
98.5 % canopy coverage.

(c) 30.6 % clover coverage.
67.3 % canopy coverage.

(d) 35.8 % clover coverage.
82.6 % canopy coverage.

Figure 12. Pixelwise classification of the four large scale image acquisition samples from Figure 3. Blue is soil+background,
red is clover, green is grass, and orange is weeds. The caption for each subfigure exemplifies the two automatically predicted
metrics used for large scale mapping.

The same twelve fields were similarly mapped for canopy coverage in Figure 14.
In May, only one field (d) did not demonstrate a consistent canopy coverage, explained by
a patch of wetland (cropped out of the map) with muddy surroundings. In October, the
coverage maps were not saturated, and demonstrated insights in the locally established
mixed crop. Reduced crop growth was visible in the headland of (i). Field (k) stood out
with a clearly lower canopy coverage, repeating the suggestion of reseeding the field. Some
artifacts from sampling along the field tracks are visible in two fields (i,j), in the form of
broad vertical stripes. This is caused by periodic sampling in local variations caused by
tractors or implements. Most other fields were sampled either at an angle, or perpendicular
to the field tracks to reduce this problem.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 13. Visualization of the visual clover fraction in a subset of the large scale mapped fields. Fields (a–g) were sampled
in May. Fields (h–l) were sampled in October. Each square unit represents a 5 × 5 m interpolated clover fraction. Each dot
represents the visually predicted clover fraction in a corresponding image.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 14. Visualization of the predicted canopy coverage in a subset of the large scale mapped fields. Fields (a–g) were
sampled in May. Fields (h–l) were sampled in October. Each square unit represents a 5 × 5 m interpolated value.

5. Discussion

With the popularity of deep learning and data driven methods, improvements in
state-of-the-art model architectures for general computer vision can often be transferred
to agronomy. However, as the complexity in the experimental design increases, so does
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the difficulty in obtaining, reproducing, and comparing results. In the chain of events
from biomass sampling, to image acquisition and computer vision, inaccuracies at a single
point reduce the observed result in the end. With the introduction of data driven models,
additional potential sources of error have been introduced in the form of insufficient train-
ing data, inaccurate image labels, and suboptimal model hyper parameters. While deep
learning can provide great improvements for computer vision in agronomy, as demon-
strated in this work, care must be taken to: (1) acquire a representative dataset, adequately
spanning the problem at hand, and (2) recognize the impact of camera systems and optimal
lighting for computer vision tasks. Although we have presented state-of-the-art results
in image based prediction of the biomass clover fraction; this is also the result of a high
quality dataset not being the limiting factor in the analysis. With the recent release of
the GrassClover dataset [16], we hope to see it being used as a common reference for fair
comparisons of future computer vision methods on mixed crops.

The proposed transition from a VGG16 [13] based FCN-8s [11] model to an Xception-
65 [21] based DeepLabv3+ [20] model for grass clover segmentation greatly improved the
biomass predictive accuracy. However, the reduced model generalization for detecting
clover species suggested that the improved model was increasingly sensitive to conditions
outside of the grass clover training data. This might explain the reported lack of scaleability
in [2], the observed gains from using style transfer to expand the variability in the training
data, and the inferior accuracy in discriminating clover species. Due to the nature of transfer
learning, the two model backbone architectures cannot be compared directly. However,
as the VGG16 and the Xception-65 model backbones contain approximately 138M and
41M parameters, respectively, it is possible that pretraining on ImageNet leads to more
specialized feature extractors in the smaller, newer model. While agronomy is only vaguely
represented in ImageNet, more specialized features for ImageNet are not necessarily a
benefit when dealing with small datasets in agronomy. The DeepLabv3+ was additionally
pre-trained on MS COCO for semantic segmentation, to pre-train the extensive model
parameters surrounding the Xception-65 backbone in the encoder–decoder architecture.
While this additional pretraining might have deteriorated the backbone parameters, it is
likely that the rest of the DeepLabV3+ model was limited in generalization caused by the
relatively smaller complexity of image classes in MS COCO.

With the increased reliability of accurate clover content predictions from images,
camera based prediction systems are in rising demand. In contrast to manually fractioned
biomass samples or inconsistent visual inspections, computer vision opens up for large
scale research experiments in the form of (1) hundreds or thousands of plots, or (2) plot
sizes large enough to be used for satellite imagery. Albeit the prediction error is not zero in
the proposed method, an increased number of repetitions will not only reduce the average
image prediction error, but also reduce the consequence of random events occurring in the
physical research plots.

The detailed evaluation of model generalization in Table 5 cemented one of the major
improvements that deep learning has contributed to this field. The demonstration of a
single model to be used in any of four different species mixtures, at biomass levels ranging
from 50 to 7500 kg ha−1 and without day to day adjustments, was not possible nine years
ago. Although future investigations are still needed to evaluate the need for high quality
image data, this work has demonstrated the feasibility of automated species distribution
mapping of mixed crops.

6. Conclusions

It has been shown that the Xception-65 based DeepLabv3+ model architecture can
significantly outperform the earlier VGG16 based FCN-8s model for semantic segmentation
of grass clover images into grass, clover, weeds, and soil. With an extended data augmen-
tation scheme, including style transfer for environmental effects, the DeepLabv3+ model
increased the semantic segmentation Intersection over Union (IoU) by 13.4 percentage
points. The increased image segmentation IoU greatly improved the R2 of predicting the
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relative biomass composition from the color images. Evaluated on 915 canopy images
with corresponding biomass samples, collected at four different experimental sites across
three seasons, the grass and clover fractions were predicted with an R2 of 90.5% and 91.3%,
respectively, between the two domains. In mixtures of only ryegrass and white clover,
the correlation for clover fraction prediction was increased to a new state of the art of
R2 = 94.6%.

Based on the evaluation of 29,848 spatially distributed high quality images across
225 ha, the local clover fraction of 16 grass clover fields was mapped, as well as the projected
leaf area index. With the demonstrated large scale capabilities of highly accurate biomass
composition predictions in mixed crops, it has been shown that computer vision sensors
can provide reliable, valuable metrics into both research and management of mixed crops
in real world conditions, without the need for ongoing hyper-parameter adjustments.
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