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Abstract: In agriculture, early detection of plant stresses is advantageous in preventing crop yield
losses. Remote sensors are increasingly being utilized for crop health monitoring, offering non-
destructive, spatialized detection and the quantification of plant diseases at various levels of mea-
surement. Advances in sensor technologies have promoted the development of novel techniques
for precision agriculture. As in situ techniques are surpassed by multispectral imaging, refinement
of hyperspectral imaging and the promising emergence of light detection and ranging (LIDAR),
remote sensing will define the future of biotic and abiotic plant stress detection, crop yield estimation
and product quality. The added value of LIDAR-based systems stems from their greater flexibility
in capturing data, high rate of data delivery and suitability for a high level of automation while
overcoming the shortcomings of passive systems limited by atmospheric conditions, changes in light,
viewing angle and canopy structure. In particular, a multi-sensor systems approach and associated
data fusion techniques (i.e., blending LIDAR with existing electro-optical sensors) offer increased
accuracy in plant disease detection by focusing on traditional optimal estimation and the adoption
of artificial intelligence techniques for spatially and temporally distributed big data. When applied
across different platforms (handheld, ground-based, airborne, ground/aerial robotic vehicles or
satellites), these electro-optical sensors offer new avenues to predict and react to plant stress and
disease. This review examines the key sensor characteristics, platform integration options and data
analysis techniques recently proposed in the field of precision agriculture and highlights the key
challenges and benefits of each concept towards informing future research in this very important and
rapidly growing field.

Keywords: agriculture; sensor; electro-optics; remote sensing; fluorescence; multispectral; hyperspec-
tral; laser; food crop; LIDAR; spectroscopy; disease detection; heath assessment; artificial intelligence;
machine learning; precision agriculture

1. Introduction

Crop yield losses because of biotic and abiotic stresses affect roughly 10–30% of
global food production [1–3]. With an increasing world population and a variety of
factors reducing land and water resources, the answer to food insecurity is to increase
crop yields [2,4]. Timely disease identification and quantification inform management
decision-making to take preventative actions to reduce yield loss. Measurements on plants
also allows for crops’ sensitivity and resistance to disease to be evaluated in relation to
plant breeding, including the categorization of plant stresses. The use of pesticides as a
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protective measure can be excessive and expensive. Apart from the cost to production,
the use of pesticides comes with an increased risk of toxic residue on crops and to the
surrounding environment and ecosystems, as well as health implications for agriculture
workers [4]. To increase production cost efficiency and yield, management need the
information to be able to identify and quantify disease and pest epidemics accurately and
at the earliest possible stage. This allows for contained, localised treatment, reducing the use
of pesticides and potential yield losses. There are a variety of sensors and methodologies
that aim to provide biotic (disease) and abiotic (nutrition) plant stress detection to farmers.
These include in situ sampling techniques featuring fluorescence spectroscopy, visible and
infrared spectroscopy and fluorescence imaging, as well as remote sensing (RS) techniques,
such as multispectral imaging (MSI), hyperspectral imaging (HSI), thermography and light
detection and ranging (LIDAR). The full range of early disease detection techniques is
represented in Figure 1, categorised according to the stages of possible detection. The
role of proximal and remote sensors in precision agriculture is discussed in relation to
plant photosynthesis, phenotyping and soil quality. In addition, the key characteristics
that define sensor performance, such as wavelength selection, classification indices, data
analysis methods and platform integration, are explored.
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2. Background

Traditionally, plant disease detection has been conducted through manual field sur-
veys. These visual disease assessment practices have been criticized due to a large sub-
jectivity in the diagnosis and reliance on clearly visible symptoms often only present in
late-stage disease spread [1]. In situ sampling methods have demonstrated high levels
of accuracy at the leaf level, with a range of handheld devices commercially available.
However, in situ methods can be invasive, slow, costly and not a good spatial indicator of
disease spread. The use of RS technologies such as MSI, HSI and LIDAR, implemented on
a variety of platforms, has emerged to offer more objectivity in plant pathology analysis.
RS techniques have been shown to be an effective noninvasive tool in determining the
spatial distribution of diseases at the canopy level, particularly across large areas at low
cost [5]. The non-destructive, noninvasive measurements obtained by RS can be done
repeatedly and processed quickly, providing more objectivity in disease identification
and quantification than a visual assessment. Drones are widely employed in precision
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agriculture, crop management and farming. A large variety of sensors (including various
visual, multispectral and hyperspectral cameras, as well as LIDAR) are increasingly used
on drones to carry out extensive surveys of crop conditions. The advantages of drones
in agriculture are enhanced yields, time and cost savings, investment returns, flexibility,
Geographic Information Survey (GIS) mapping integration and imaging crop conditions.
Novel RS techniques like LIDAR are emerging to be the next generational leap forward in
precision agriculture, with platforms exploiting LIDAR 3D scanning/shape profiling as
well as more sophisticate techniques.

RS is generally defined as the measurement of objects at remote distances to acquire
useful information indirectly by radiance or irradiance of electromagnetic energy from the
surface of the Earth [6]. RS techniques are opposite to proximal sensing, which measures
spectral features obtained by handheld or contact devices. Information on the scanned
object, e.g., plant health, is retrieved by processing and analysing the acquired raw data
and some additional environmental conditions. RS can detect plant conditions and analyse
the spatial degree and patterns of plant characteristics using a noncontact method. Electro-
optical sensors are typically differentiated between active and passive depending on
whether energy is emitted from the device or not: In active sensors, signals are emitted,
and their reflection/backscattering is measured, whereas in passive sensors, ambient
irradiance such as solar radiation is exploited to detect the phenomenon of interest. Active
RS instruments include Radar and LIDAR, while passive sensors include various detectors
and imaging cameras which measure the reflected solar radiation in the wavelength
regions of the visible spectrum (VIS: 400–700 nm), near-infrared (NIR: 700–1100 nm),
shortwave infrared (SWIR: 1100–2500 nm) and thermal infrared (TIR: 3–15 µm) in the
electromagnetic spectrum.

Most of the literature in the early detection of plant disease had focused on MSI and
HSI techniques due to the maturity and implementations of these technologies. MSI and
HSI have been applied to many kinds of crops to detect diseases. These two methods
concentrate on the differences in the spectral signatures of infected and healthy plant
leaves. For some crop diseases, early detection is important for farmers to yield the
products economically and efficiently. As there are typically no visible symptoms at early
stages of most diseases and fungi located on abaxial leaves, most visible sensors cannot
detect early stages of diseases because the signatures are not sufficiently differentiated.

2.1. Plant Biology in Relation to Sensors

Plant health monitoring for precision agriculture encompasses the classification and
quantification of the disease. Classification can be divided into two levels of increasing
complexity: Detection and identification [1]. Detection is the distinction of healthy from
unhealthy, and identification is the diagnosis of a specific disease or symptom. Quantifica-
tion defines the spread and severity of the disease. The classification of plant diseases and
stress is based on abiotic and biotic factors, shown in Table 1, and how they relate to plant
physiological processes [7].

Table 1. Typical abiotic and biotic stress factors.

Abiotic Factors Biotic Factors

Nutrients Fungi
Pesticides Bacteria
Pollution Nematodes

Temperature Parasitic Plants
Light Virus

Sensors’ sensitivity to these various factors determine the effectiveness and accuracy
of disease classifications to the extent of pre-symptomatic detection, as demonstrated in
the literature [8]. Physiological changes in plants subject to biotic factors often result in
similar symptoms [9,10]. Abiotic factors can also cause similar physiological symptoms
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and interact with the biotic factors, highlighting the difficulty in diagnosis and advocating
the use of a multi-sensor approach, unlike the single sensor studies commonly found in
the literature [11]. Plant health monitoring sensors mostly rely on detecting deviations in
the leaf or canopy reflectance in the visible (VIS, 400 nm to 700 nm), near-infrared (NIR,
700 nm to 1100 nm) and shortwave infrared (SWIR, 1100 nm to 2500 nm) spectra. The
spectral properties of leaves in these bands are the result of how the plant absorbs, reflects,
emits, transmits and fluoresces under sunlight [11–15].

2.2. Wavelength Bands

The use of pigmentation as a plant health indicator is extensively used by in situ sam-
pling methods, as well as some RS applications, as they directly relate to the photosynthetic
and physiological properties. Electromagnetic radiation wavelengths are absorbed by
pigments, water and biochemicals, resulting in a reduction of reflectance in corresponding
spectral regions (Figure 2).
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From the deviations in the visible and reflected infrared spectrum, plant health can
be correlated and related back to abiotic and biotic stresses. In the visible infrared (VIS)
between 400–700 nm, the reflectance is primarily correlated to the photosynthetic pigments
like chlorophyll, (a and b), xanthophylls, anthocyanins and carotenoids [18]. Broadly,
chlorophyll content is main source of interest in the VIS. Identification of the ‘green peak’
between roughly 500–700 nm and ‘chlorophyll well’ in the red band are used to detect plant
stresses as shown in Figure 2. Between the VIS and near-infrared (NIR), the reflectance per
wavelength spikes, called the red edge, which is a feature common to all green leaves and
a useful plant health monitoring marker. In the NIR, the reflectance is related to the leaf
tissue structure. In the shortwave infrared (SWIR), the spectrum reflectance is dominated
by water absorption [19,20].
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2.3. Plant Breeding

The assessment of plant’s resistance to stress is very desirable from a breeding perspec-
tive. Traditional methods of plant breeding are complex, extremely time-consuming and
labour-intensive [21]. The selection of resistant cultivars is dependent on identifying the
relevant plant traits through genotyping and phenotyping methods, although this method
is also costly and slow, hence referred to as the phenotyping bottleneck [22]. The use of
optical imaging methods as a new phenotyping method is suggested as an innovative
technique to overcome the phenotyping bottleneck and improve breeding [22,23]. The
phenotyping of soybeans has been successfully demonstrated using fluorescence spec-
troscopy, demonstrating the benefit and accuracy of optical, non-destructive methods [24].
The use of thermography is promoted as a useful method to improve phenotyping for
drought adaption in maize [25]. Emerging techniques of extracting phenotypic parameters
through LIDAR shape profiling have been developed using the leaf area density and height
as key measurements [26]. Used in parallel with a thermal sensor, further insight into
the plant health can be gained by established spectral reflectivity indicating desirable
phenotypic parameters. Similarly, LIDAR shape profiling is used to assess to the canopy
and above-ground biomass as part of a high-throughput phenotyping platform, delivering
a non-destructive method and high correlation between the above-ground biomass and
the LIDAR predicted volume and canopy height and providing vertical analysis of the
biochemical properties, as explored with HSI LIDAR fusion by the authors of [27,28]. The
analysis of LIDAR’s application to phenotyping is less mature: While acknowledging the
variety and depths of information supplied by LIDAR in a short time frame at a low cost,
particularly in relation to plant structure, the authors of [29] warned of inherent flaws in
the methodology, the susceptibility of the technique to laser obscuration, inefficiencies
in retrieving physiological traits and incomplete plant representation. These factors sug-
gest that, in phenotyping, a LIDAR sensor will need to be paired with a complimentary
hyperspectral sensor to overcome the limitations.

2.4. Soil Monitoring

Beyond health monitoring, RS techniques in fusion with GPS and GIS are used to mon-
itor soil-related stressors and assist with land management. Crop yield can be effectively
related to the soil conductivity from which the electrical conductivity can be projected from
bands in VIS at 498 nm, 501 nm, 600 nm, 603 nm, 636 nm, 639 nm, 642 nm, 666 nm and
669 nm and in the NIR at 738 nm, 741 nm, 744 nm and 747 nm [16,30,31]. The information
in these narrow bands is suited for HSI sensor detection gathered before seeding and can
be correlated to soil properties such as moisture content, fertility, salinity, productivity
estimates and other soil chemical properties. Measurements conducted during the growth
season allow the detection of biotic and biotic stresses that impact crop yield, as discussed.
Leaf area index (LAI) is one of the main variables used as an indicator of crop growth and
yield as it correlates to the canopy reflectance. HSI has been validated by recent studies as
preferable in LAI measurement to MSI as narrow band indices provide a better evaluation
of LAI than in the broad range [17,32].

Increasingly, studies are investigating RS applications for soil analysis utilizing MSI
and HSI. Notably, using a UAV platform and HSI, a study demonstrated a method for
field-scale soil salinity monitoring, a major indicator of soil degradation and arable land
loss, and outperformed the analysis conducted using satellite based MSI [33]. UAV-based
HSI to determine soil moisture content as a key indicator of nutrient potential, on the other
hand, highlights the emerging focus on artificial intelligence (AI) algorithms such as the
random forest method and extreme learning as a means of soil moisture content estimation
on a regional scale [34].

The practices of reducing soil erosion, enhancing water management and improving
crop yields are crucial concerns in conservation agriculture. Three crop management
practices—lowest possible soil disturbance, permanent soil cover and crop rotations—are
proposed by conservation agriculture based on the Food and Agriculture Organization
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(FAO) definition [35]. The fertility of cultivated soils is related to the organic matter (OM)
contents. Soil organic carbon (OC) content is forecasted by reflectance measurements, which
are carried out in the lab with dried soil samples or in the field utilising spectroradiometers
or satellite imaging. Remote sensors attached to drones can capture spatial images at
specific altitudes to forecast soil OC on large-scale farmlands with bare soil before sowing
season. For example, a drone integrated with infrared and visible light sensors captured
aerial images to discover soil degradations by studying the appearance of gullies in the
soil [36]. This was carried out by comparing the updated images with a set of historical
images and satellite photographs. A fine spatial resolution image was used to quantify the
area of soil erosion through a slow and cost-effective process. Emerging techniques are used
to collect topographic data by drones to measure the quantity of soil volumes reduced via
erosion. Terrestrial laser scanning (TLS) and images from drones and ground-based sensors
are fused to obtain topography exploiting Structure from Motion (SfM) processing. Digital
surface models obtained with each of these methods are subtracted from an interpolated
pre-erosion surface model to evaluate the volumetric soil loss.

2.5. Classification Indices

The relationship between the collected data and classification of plant disease is
usually characterized by a vegetation index (VI), as outlined in Table 2, which highlights a
specific change in the spectral reflectance to distinguish between healthy leaves and those
subject to abiotic and biotic stresses. Similarly, the use of hyperspectral vegetation indices
specific to HSI was proposed [37].

Table 2. Common vegetation indices, adapted from [8].

Index Equation Plant Property

Normalized difference
vegetation index (NDVI) NDVI = R800 − R670

R800 + R670
Biomass, leaf area

Simple ratio SR = R800
R670

Biomass, leaf area

Structure insensitive
vegetation index SIPI = R800 − R445

R800 + R680

Ratio of carotenoids to
chlorophyll

Pigments specific simple ratio PSSRa = R800
R680

Chlorophyll content

Anthocyanin reflectance index ARI =
(

1
R550

)
−
(

1
R700

)
Anthocyanin

Red edge position
REP = 700 + 40(RRE − R700)

(R740 − R700)

RRE = R670 + R780
2

Inflection point red edge

Reproduced with permission from Elsevier [8].

2.6. Bidirectional Reflectance Distribution Function Measurement

The plant health assessment from spectroscopic sensors focuses on correlating the
reflectance to photosynthesis to assess health. Therefore, the plant health assessment
heavily relies on being able to take accurate measurements from the leaves. Understandably,
in RS, the reflectance of the leaf can be influenced by the angle of leaf relative to the
sensor, the ambient lighting spectrum and the intrinsic surface characteristics of the leaf
itself. Inherently, the viewing angle and angle of illumination affect the brightness of the
canopy, and subsequently, the crop identification, LAI and disease detection. The use of
the canopy’s bidirectional reflectance distribution function (BRDF) can help to analyse
the measurements made at non-optimal angles considering the surface characteristics of
leaf [38]. The BRDF is a measurement of the ratio of radiance from a small beam of radiation
compared to the incident flux density [38].

In practise, the BRDF model is comprised of an equation correlating the surface
physical properties to the observed reflectance as the light is subjected to scattering due to
the canopy structure as depicted in Figure 3 [39]. The radiance is a function of the viewing
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and illumination angles and the incident flux density. The relationship between the BRDF
of a canopy (ρ

(
Ω, Ω′

)
is the radiance, I(Ω), observed from direction (Ω), to the incident

irradiance, Ft [38].

ρ
(
Ω, Ω′

)
=

I(Ω)

Ft
(1)
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Variables exist in the canopy, including how the plants shade the leaves and how
the soil affects the reflectance. In fact, the leaves and soil themselves have their own
BRDF, transmittance distribution and scattering characteristics, which has led to a gener-
alised model for determining the BRDF for different canopies, mostly through geometric
assumptions and Beer’s law relationship considering the interception of light for photo-
synthesis [38]. BRDF models are desirable because they are a compact means of storing
and analysing large volumes of material, angular and spectral sampling data. The BRDF
models are then responsible for interpolating often incomplete data to inform a BRDF
prediction and for linking the BRDF to physical attributes such as the LAI [40].

3. Proximal Sensors

The most common way to assess plant health involves proximal sensors and destruc-
tive testing. Proximal sensors typically have high rates of classification accuracy but are
time-consuming and do not encompass spatial information, and disease detection typically
only occurs toward the late-stage, symptomatic spread of the disease. As Figure 4 shows,
the sensors can be divided into direct and indirect methodologies to detect plant diseases.
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3.1. Traditional Molecular Methods

A variety of molecular methods have been used for disease detection in plants. They
are invasive, slow, proximal methods which are ill-suited to large field applications. A
small overview is given below.

3.1.1. Serological Assays

Serological assays are an early disease detection technique that are used to detect
viruses. As the most prevalent assay, an enzyme-linked immunosorbent assay (ELISA) can
detect bacteria at 100 Colony Forming Units (CFU) per mL−1 depending on the sample
organism [1,42,43]. The advantage of serological assays is the range of diseases, bacteria
and fungi that can be detected. The technique is disadvantaged by expense, destructive
testing, low sensitivity, low detectability of diseases and storage of antibodies leading to
contamination [44].

3.1.2. Nucleic Acid-Based Methods

Nucleic acid-based methods are DNA- or RNA-based detection methods that generally
rely on polymerase chain reaction (PCR) variant techniques [1]. An example of one of these
methods is quantitative PCR (qPCR), a methodology that needs a sample to extract DNA,
which then needs to be stored, amplified and replicated [1]. The technique fundamentally
introduces errors as a result of the complexity of the methodology [45]. The unfeasible
nature of large-scale testing can lead to false negatives due to the nonuniform spread of
disease in plants, thereby creating a misinformed projection of plant disease spread. These
techniques are advantageous in comparison to serological assays, with higher accuracy,
faster detection times (within minutes, and lower cost [46]. Whereas molecular techniques
are specific and efficient, they are disadvantaged by uneven disease distribution, poor
sensitivity in certain materials and small sample sizes, which may not capture the true
extent of the situation. PCR-based methods lack suitability for in-field operation and
are also expensive and time-consuming [44,45]. These techniques are contrasted by the
evolution of RS in precision agriculture applications as they inherently overcome the
drawbacks of PCR-based and visual inspection methodologies.

3.2. Fluorescence Spectroscopy

Fluorescence spectroscopy is considered a cost-effective, fast and sensitive method [47].
The principles of fluorescence spectroscopy are based on the leaf properties reacting to
light. When light is absorbed by the leaf, three processes occur in competition: Photochem-
istry (photosynthesis PSII), heat dissipation and re-emitted fluorescence [12]. Since these
processes occur competitively, an increase in one of these processes causes a decrease in the
other one or two. Using this principle, changes in the chlorophyll reflectance are monitored
by handheld fluorometers, with deviations correlated to plant stress. Fluorescence spec-
troscopy uses an artificial light source to initiate the electron movement, which, in turn,
generates luminescence [44]. The relative intensity of the reflected light is then indirectly
related to plant diseases.

Fluorescence is particularly sensitive to external light, impacting in-field applica-
tions [48]. However, the introduction of Pulsed-Amplitude Modulation (PAM) artificial
excitation light helps filter ambient light from the measured chlorophyll fluorescence.
Fluorescence sensors are also critiqued as inefficient in detecting asymptomatic diseased
leaves [45], are sensitive to leaf auto-fluorescence [49] and decrease control over the spread
of a disease. Table 3 gives an overview of some of the research conducted using fluorescence
spectroscopy in the detection of plant diseases.
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Table 3. Sample research on plant pathogen detection utilizing fluorescence spectroscopy.

Plant Disease Optimal Spectral
Range Data Analysis Classification

Accuracy 1 Reference

Orange trees Citrus canker 442, 532 nm Figure of merit [50]

Greenhouse plants
of Citrus limonia Citrus canker 532 nm Figure of merit [51]

Catharanthus
roseus LG Don

Infected by 10 types of
phytoplasmas

PCA, Multivariate
Data Analysis [52]

Citrus leaves Citrus canker 350–580 nm Figure of merit 94–95% [53]

Wheat Yellow Rust 550–690 nm
Quadratic

Discriminant
Analysis (QDA)

99%
(in conjunction

with MSI)
[54]

Orange tree Huanglongbing Excitation: 405 nm
Emission: 200–900 nm PLSR >90% [45]

Cucumber Leaves N/A (Phosphorus) 325–1075 nm PLSR, ANN, SVM 75% [55]

Ziziphus Quercetin 350–800 nm PLSR [56]

Soybeans N/A (phenotyping) Excitation: 405 nm
Emission: 194–894 nm

Regression and
PLSR 85–96% [24]

1 Classification accuracy is dependent on the scope of the research and time of testing.

4. Remote Sensing

Emerging RS techniques rely on detecting anomalies in photosynthetic parameters.
These alterations in pigment, chemical concentrations, nutrient, water uptake, cell structure
and gas exchange can then be observed by the subsequent change in reflectance character-
istics of the leaf or canopy [9]. The anomalous behaviour is then related back to a biotic or
abiotic stress. It must be emphasised that the observed and quantified changes in spectral
reflectance have an indirect relationship with the plant stressors. The data gleaned from
the sensors are typically compared using one of the many vegetation indices and undergo
significant data analysis to be classified between healthy and unhealthy, and between
specific diseases. Each extra step invariably introduces uncertainty into the methodology.
The results in the literature are highly nonuniform and difficult to compare quantitively as
the research is specific to a crop and disease combination and subject to external factors.
A unique spectral signature associated with each biotic or abiotic stress would enable a
direct causal link between reflectance and for example water stress (abiotic). However, the
absorption qualities of pigments and their overlap, for example, are affected by external
elements, such as the leaf internal structure, water content and surface properties. There-
fore, no single wavelength is unique to a single pigment concentration [9,57]. The lack of
success in this approach has led researchers to use correlation analyses to define distinctive
pathogen-specific spectral signatures, including a spectral index and ratio with discrimi-
nant analyses [9,58]. Conclusive optimal spectral signatures are clearly unsupported by
the literature. However, the same studies still show good agreement with the sensitivity of
certain spectral regions with high absorptions, corresponding to abiotic and biotic factors
like pigmentation [57]. A generalised approach to plant health monitoring using sensors
(in this case, hyperspectral) is shown in Figure 5.
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Parametric analyses of spectral signatures of diseased plants are not common. Instead,
researches have, for the most part, implemented nonparametric methods such as the
Principal Component Analysis, Support Vector Machines, Cluster Analysis, Partial Least-
Squares and Neural Networks [49]. A sample of these techniques is presented for each
method: Fluorescence is presented in Table 3; with MSI, and HSI, presented below. Overall,
a comparison of thermal, fluorescence and HSI advocates for a multi-sensor data fusion
approach to plant health monitoring [59]. A particular study investigating head blight on
wheat identified the major benefits and drawbacks of each system and further investigated
the specific combinations of the sensors. Thermography-based sensors visualised the
temperature differences between crops affected by biotic and abiotic stressors using IR
in the 7.5–12 µm wavelength band. Chlorophyll fluorescence-based techniques in the
visible spectrum, while extensively used, have been limited by the need for dark adaption
to reduce the sunlight effect on the measurement. HSI was highlighted by the study
as being the most objective of the three techniques but is limited by the complexity of
the information it gathers and classifies. In Table 4, the three techniques are evaluated
by the authors of [59]. The study concluded that the combination of thermography and
hyperspectral sensors, or chlorophyll and hyperspectral sensors, improved the accuracy of
the system to 89% from 78%.

Table 4. Summary of parameters from sensors [59]. (CC BY 4.0).

Sensor Index Equation Indicator

Thermography
Maximum temperature difference MTD = max −min temperature Biotic stresses in early stage

Average temperature difference ∆T = average air temperature −
average measured temperature Biotic stresses in early and late stages

Chlorophyll fluorescence imaging

Maximal fluorescence yields Fm Fast chlorophyll fluorescence kinetics

Maximal PSII quantum yields (Fv/Fm) Fv/Fm = (Fm − F0)/Fm Maximal photochemical efficacy of
photosynthesis II

Effective PSII quantum yield (Y[II]) Y[II] = (Fm’ − F)/Fm’ Photochemical quantum yields at
steady state

Hyperspectral Imaging

Normalized differences vegetation index
(NDVI) NDVI = (R800 − R670)/(R800 + R670) Biomass, leaf area

Photochemical reflection index (PRI) PRI = (R531 − R570)/(R531 + R570) Pigments, photosynthetic efficiency

Pigment-specific simple ration (PSSR)
PSSRa = R800/R680 Chlorophyll a
PSSRb = R800/R635 Chlorophyll b
PSSRc = R800/R470 Carotenoid

Water Index (WI) WI = R900/R970 Water content

4.1. Multispectral Imaging

Multispectral imagery (MSI) uses sensors that measure reflectance across a broad
band of the electromagnetic spectrum. The broad band from MSI sensors is composed of
3–10 distinct band measurements in each pixel from the images the sensor gathers [48].
In contrast, hyperspectral sensors measure reflectance in multiple narrower bands. MSI
is more suited to providing a spatial pattern of diseased areas, while HSI can make line
spectrum analysis. In Table 5, a sample review of previous research shows the variation of
MSI on different plants and diseases, with the data analysis conducted across a multitude of
methods. MSI has a much lower data set than HSI because the wavelengths of interest are
predetermined [60]. The algorithmic difference between the two techniques is displayed in
Figure 6.

4.2. Hyperspectral Imaging

Hyperspectral sensors (also called imaging spectrometers) are the next generation in
spectral imaging, surpassing MSI radiometers prevalent in notable systems like LANDSAT,
SPOT and IKONOS. These MSI examples are often used as the baseline to determine the
accuracy of a HSI system. The information drawn from HSI is referred to a hyperspectral
image data cube.
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Table 5. Sample research on plant pathogen detection utilizing multispectral imaging.

Plant Disease Optimal Spectral Range Data Analysis Classification Accuracy 1 Reference

Avocado Laurel wilt (LW) 10–580, 10–650, 10–740, 10–750,
10–760 and 40–850 nm

Multilayer perceptron (MLP)
and Radial basis function

(RBF)
[61]

Bell pepper
Powdery mildew (PM)

and Tomato spotted wilt
virus (TSWV)

520–920 nm

Principal component
analysis (PCA), Linear

discriminant analysis (LDA)
and Quadratic discriminant

analysis (QDA)

[62]

Cassava (Manihot
esculenta Crantz)

Cassava Mosaic virus
Disease (CMD) 531 and 570 nm

Regions of interest (ROI),
Receiver operating

characteristic (ROC)
[63]

Cassava (Manihot
esculenta Crantz)

Cassava Mosaic virus
Disease (CMD) 684, 687, 757.5, 759.5 nm

Fraunhofer line
discrimination (FLD),

Pseudo-colour mapped
(PCM) and Regions of

interest (ROI)

[64]

Grapevine Powdery mildew (PM) 540, 660, 800 nm Regions of interest (ROI) [65]

Creeping bentgrass
(turfgrass) Rhizoctonia solani 760–810 nm Linear Regression Analysis <50% [66]

Wheat Yellow Rust 861, 543 nm Self-Organising Maps
(SOM), MANOVA 95% [67]

Rice plants Snails N/A ANN 91% [68]

Grapevines Flavescence dorée 455–495, 540–580, 658–678,
707–727, 800–880 nm

Pix4D software, univariate
and multivariate

classification approach,
RMSE

80–90% [69]

1 Classification accuracy is dependent on the scope of the research.
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The HSI sensor continuously collects multiple images across numerous wavelength
bands such that the spatial location (the X and Y coordinates correspond to the ground
dimensions), which is represented by the pixel resolution of the sensor, compiles the data
of all the measured wavelengths (the Z axis) [16]. HSI is a reflectance-based technique
that offers more continuous coverage of the spectrum range than MSI (typically between
350–2500 nm) and can have a spectral resolution of <1 nm [11].



Sensors 2021, 21, 171 12 of 39

In the HSI model, different surfaces, such as the tree canopy or food crops, are
represented by first- and second-order spectral statistics. The first- and second-order
statistics of the spectral reflectance of each surface type can then be transformed in the
spectral image process. In this process, the mean vector and covariance matrix of each
surface reflectance type or class are used to evaluate the system’s performance. The HSI
model is composed of the image condition module, the sensor module and the processing
module.

The image condition module describes the radiation transfer in the atmosphere as this
accounts for the absorption, reflection and scattering that will affect the HSI performance.
As a result of these influences, the radiance at the sensor, Lλ, is composed of three main
elements: Direct reflection; path radiation, Lλ, path; and radiation reflected outside of the
target, as shown in Figure 7 [70].

Lλ = Lλ,s·X + Lλ, path +
(

Lλ,1 − Lλ,path

)
·Xe (2)

where Lλ,s is the radiation at the surface, X is the vector of the surface reflectance, Xe is the
vector from the background and the final term, (Lλ,1 − Lλ,path)·Xe, eliminates the direct
reflection. The mean, Lλ, and the covariance, ∑Lλ

, can subsequently be calculated.
In the sensor module, the incident radiation passes through a detector, is amplified

and is then evaluated for all of the spectral and spatial characteristics. The sensor module
contains a spectral model, a spatial model and an error model.

The mean and covariance of the spatial model is related to the reduction in radiation
and image degradation based on the coefficient of radiation reduction, A, the number of
bands, σ, and the weight matrix, Ws.

Ls
Lλ

= A·Lλ (3)

∑s
Lλ

= [WsσA] (4)

The spectral model contains the centre wavelength as well as the adjacent wavelengths
radiation [70]. The effect of these adjacent wavelengths needs to be accounted for in the
mean, S, and the covariance, ∑S, where B is a linear transformation matrix of the spectral
response functions.

S = B·A·Lλ (5)

∑
S

= BWs A ∑Lλ
AT BT (6)

The error model consists of noise sources such as quantification error; dark-current
noise, ndark; radiometric error, erad; read-out noise and photon noise, as shown as a mean
and covariance.

Y = (1 + erad)S + ndark (7)

∑Y = (1 + erad)
2B·Ws A ∑Lλ

AT BT + ∧dark + ∧pho + ∧read + ∧quant (8)

These mean and covariance statistics for the three main models make up the spectral
signal statistics from which the data processing can extract useful data.

The performance metrics of the HSI system is made up of three algorithms. One
compares the spectral characterization accuracy based on the mean difference between
the starting known reflectance and the received reflectance of the target. The second
compares the probabilities that the sensor makes a detection opposed to a false detection.
The third calculates the total error based on the total probabilities of a false alarm or missed
detection [70].

In both MSI and HSI, the images are improved by lowering the unwanted intensity
and improving the definitions of object boundaries by means of nonlinear diffusion for
greater classification accuracy [71]. The nonlinear diffusion equation smooths the image
by diffusing the noisy original intensity inside the image structures and reducing the
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variability of the intensity in the structure while retaining the areas of the high-intensity
gradient at the edges of the structure [71].

∂u(x, t)
∂t

= ∇·(g(∇u(x, t))∇u(x, t) (9)

Here, the resultant smooth image is u(x, t), with the spatial coordinates x = (x, y) at
a scale of t, and g is the nonlinear diffusion coefficient, the goal of which is to measure
the dissimilarity between image gradients of two vector weighted pixels [71]. The hyper-
spectral image is described as a matrix, V, consisting of vectors, vi, related to the spectral
signature ith pixel where xy is the total number of pixels [71].

V = [v1, v2 . . . vxy]
T (10)

The image gradient, which uses a semi-explicit scheme that improves the smoothness
and functionality, can then be described accordingly [71].

(I − µGn)Vn+1 = Vn (11)

µ =
∆t

∆x∆y
(12)

where I is an identity matrix and G is a function of diffusion coefficients, normalized by the
number of spectral bands, mz.

gn
k+1 = g


∣∣∣∣∣∣vn

k+1 − vn
k

∣∣∣∣∣∣
mz

 (13)

The key difference between HSI and MSI is that HSI can scan each pixel in broad-
ranging wavelengths, encompassing more spectrum bands. This overcomes some of the
inadequacies of MSI which are observed in accurately detecting plant biochemical prop-
erties and identifying optimal spectral ranges [20,48,57,72]. Identification of the optimal
spectral ranges by HSI maximises the data collection of more relevant data. Research has
demonstrated the benefits of HSI in improving accuracy, see (CC BY 4.0).

Table 6, the nature of the technique and the desired information means that all of the
bandwidth spectral information is unnecessary [11,57,73,74].

Table 6. Comparison of remote sensing imaging techniques adapted [76]. (CC BY 4.0).

Features Molecular
Methods

Fluorescence
Spectroscopy

Multispectral
Imaging

Hyperspectral
Imaging LIDAR

Spatial information
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Figure 7. Radiance at the sensor from target reflection adapted from [75].

Like MSI, HSI benefits from rapid image data processing which crucially includes
spatial information, making it more suitable to large-scale agriculture applications while
still providing specific and accurate canopy-level information [77–80]. In each pixel, the
reflectance spectrum is collected by HSI, as depicted in Figure 8, and within each image, the
intensity of the reflected wavelength can be examined depending on the pixel quality. The
spatial and spectral resolution influences the accuracy of the HSI system, with commercial
CCD sensors available with >14 megapixels. For example, example a 1.3-megapixel camera
with a 17 mm lens, 45 cm above a leaf, can make a data cube of 89.1 × 89.8 µm/pixel in the
X and Y dimensions, with airborne sensor demonstrating a 1 × 1 m spatial resolution from
a 1000 m altitude [81].
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The data accumulated by HSI is quite extensive and, as discussed, excessive in com-
parison to MSI. The nature of HSI demands a high spectral resolution to detect small
spectral deviations, allowing better analysis. However, due to the desired level of pre-
cision, the HSI technique is susceptible to spectral autocorrelation, where neighbouring
narrow wavebands cause overlap and redundancy in the data [57]. To unpack the highly
dimensional HSI data, data mining techniques are utilized to carry out the spectra analysis
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automatically and resolve the redundancy issue. The different types of techniques used
are listed in Table 7. This approach allows plant genotypes to be characterized and the
stages of the disease to be automatically identified and displayed, and displays the spectral
deviations over time, which is useful for tracking the growth cycle of crops. The image
processing involved in HSI is comprised of file reduction and sub setting, usually through
principal component analysis (PCA), then defining the spectral library, the known data set
which the data will use to then classify. There are many HSI image classifiers that use AI
algorithms as well as vegetative indices for plant disease classification [81].

As depicted in Table 6, several studies have criticized the functionality limitations of
MSI sensors in capturing surface properties both in spatial and spectral aspects [16]. By
gathering data of adjoining narrow bands, HSI sensors can discern finer features that may
be overlooked by the broad-band approach of MSI [16]. As a result, there is an increased
classification accuracy in the use of HSI in comparison to MSI [83–85]. Because the HSI
technique captures all of the wavelengths at each point, wavelength band selection can
occur in post-processing, instead of narrowing the band selection before data collection as
in MSI. This is especially advantageous for researchers and where gaps in the literature
exist. In comparison to fluorescence-based models, HSI demonstrated a disease detection
error of 11% relative to the 16% achieved by fluorescence-based models. A combined
approach further reduced that error to only 6% [86].

HSI is disadvantaged by high cost, system fragility and complexity [16,69,87]. The
restriction of the monitoring to narrow bands is to be further investigated since, depending
on the scope of the application, wide-band measurements are more expensive, and the
large data volume creates data overlap and strain on the system [11]. The literature is
definitive in relating optimal spectral ranges to crop stresses, and the entire spectrum is
not needed provided the application is sufficiently defined. Excessive data also impact the
system in terms of data storage capacity, are computationally expensive and saturate radio
datalinks [17]. Excessive data are somewhat offset by pre-processing feature extraction
techniques. These feature extraction methods typically comprise independent component
analysis, discrete wavelet transform (DWT), PCA, kernel PCA, derivative analysis, locally
linear embedding, lambda by lambda correlation plots, partial least squares, vegetation
indices and isometric feature mapping, as briefly described in Table 2 in the classification
indices section and broadly in application in Table 7 [37,87]. These techniques reduce the
dimensionality of the data and data redundancy and extract the useful data without identi-
fying the redundant wavelengths. Using R2 values, the 15–20 hyperspectral narrowband
(HNB) can achieve the same classification accuracy of the 240 HNB [88]. The optimal HNBs
are selected based on the corresponding physical significance in vegetation. This approach
is necessary when considering Hughes’ Phenomenon, in which each of the HNBs require
training samples to ensure confidence in the classification [88]. Researchers need to balance
the need for more HNBs, and therefore large training data, by removing overlapping HNBs
within the system.

A review of the application of neural networks to HSI data was conducted, demon-
strating the accuracy in disease detection by HSI [49]. The removal of the approximately
88% redundant data from HSI by data mining was performed by the authors of [37] to
reduce data redundancy and dimensionality without eliminating unique data. HSI is
relatively expensive due to its composition of narrow band filters, very sensitive detectors,
spectrometers and 2D sensor arrays [16].

In disease detection, HSI is clearly advantageous in being able to acquire large amounts
of data from which a lot of useful information can be extracted. However, there is limited
maturity in the image processing systems, which limits feature extraction. Hence, few
good automated systems are found in the literature [81]. Additionally, the HSI is still
relatively expensive and requires substantial expertise to utilize, and the application to
assess plant disease severity has not been fully explored and lacks adequate methods to
process multiple diseases [81].
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Table 7. Sample research of plant pathogen detection utilizing hyperspectral imaging.

Plant Disease Optimal Spectral
Range Data Analysis Reference Classification

Accuracy 1

Cotton Herbicide drift 325–1075 nm Partial least squares
regression (PLSR) [89]

Cotton Verticillium wilt 620–700, 1001–1110,
1205–1320 nm Severity Level (SL) [90]

Strawberry Anthracnose
crown rot (ACR) 350–2500 nm

Fisher discriminant analysis
(FDA), Stepwise

discriminate analysis (SDA)
and k-nearest neighbour

(kNN)

[91]

Tulips Tulip breaking
virus (TBV) 430–900 nm Fisher’s linear discriminant

analysis (LDA) [92]

Oil palms Ganoderma 460–959 nm One-way ANOVA [93]

Oil Palms Ganoderma 430–900 nm Lagrangian interpolation,
MNF [94] 73–84%

Soybean 800 nm Image intensity data (1-y) [9]

Grapefruit Citrus canker 450–930 nm SDK, SID [95] 96%

Apple trees Venturia inaequalis
(apple scab)

1350–1750, 2200–2500,
650–700 nm

Logistic regression, PLSR,
logistic discriminant

analysis, and tree-based
modelling

[96]

Rice plants

Brown
planthopper and

leaf folder
infestations

445, 757 nm Linear correlation [97] R = 0.92

Wheat Yellow Rust 550–690 nm Kohonen maps,
Self-Organizing maps, QDA [86] 99%

Barely
N/A (Nitrogen
and phosphorus

content)
450–700 nm PLSR [98] 75%

Apples Apple
bruises/fungal 430–930 nm [99]

1 Classification accuracy is dependent on the scope of the research.

4.3. Thermography

Thermography is a passive technique in plant disease detection which exploits surface
temperature measurements of leaves/crops/canopies to identify deviations indicative
of abiotic or biotic stress. Thermographic cameras target the thermal infrared spectra,
converting the pixels into temperature values, and the relative condition is then related to
the leaf transpiration and water content [11]. Thermography is suitable for use in proxi-
mal and remote sensors and for pre-symptomatic diagnosis [100,101]. At a canopy level,
thermography techniques are useful in wet conditions and in the detection of diseases that
occur heterogeneously. However, the application of thermography is vulnerable to envi-
ronmental conditions and lacks precision. Diagnosis of plant diseases from thermographic
measurements of leaf transpiration is not very clear, although the implementation of sensor
fusion is suggested as a future development [102]. Additionally, research has highlighted
the suitability of infrared thermography in the detection of water stress across different
genotypes, such as maize, soybean and cotton [103,104].
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4.4. LIDAR

Active measurement systems like LIDAR are suggested as an alternative to the short-
comings of passive systems [105,106], as the latter are limited by the availability of ideal
ambient lighting, impact of atmospheric conditions, changes in illumination and viewing
angles and canopy structure, among other factors. Laser-based techniques mostly avoid
problems associated with light, allowing for night measurements. One of the key benefits
of LIDAR is its ability to take measurements during the day and night, a driving factor
for its implementation in NASA’s Active Sensing of CO2 Emissions over Nights, Days
and Seasons (ASCENDS) mission. In this case, Differential Absorption LIDAR (DIAL)
made it possible to the gap in knowledge of oceanic carbon sinks at night [107]. As LIDAR
measures range, height errors are reduced while spatial reflectance properties and leaf
biochemistry can be obtained. In fact, several sources of bias are removed due to this
interaction of the surface and atmosphere [107]. Additionally, with a small laser footprint,
LIDAR measurements can be taken between gaps in thick clouds. LIDAR systems in air-
borne platforms offer greater flexibility in capturing data; have a high rate of data delivery,
increase elevation accuracy, particularly in difficult terrain; and are capable of a high level
of automation [108].

Practical difficulties of in-field implementations such as complex canopy structures,
colour variations, textures, lighting conditions, shadows and heavy post-processing costs
are key limitations of VIS-based crop monitoring systems, which have led to the develop-
ment of a dual LIDAR UGV-based system acting in a pseudo stereo vision as an alternative
low-cost, high-accuracy system [109]. Hyperspectral data combined with LIDAR shape
profiling on a UAV platform is utilized to quantify the photosynthetic processes in forest
vegetation [110]. Using data fusion, the 3D LIDAR point cloud data and hyperspectral
reflectance data are combined to predict the biochemical traits present at the canopy level
that are highly correlated. Despite difficulties in the vertical estimation of biochemical
traits, research has concluded that the fusion of spectral imagery and LIDAR has a wide
set of applications, including biochemical traits, tree species mapping and biomass estima-
tion [110]. This is undercut by the difficulty in combining the two sets of disparate data,
only achieved with significant advanced image processing. Using DIAL technology in
an airborne platform, local biomass and carbon levels can be estimated. By integrating
a LIDAR plant height detecting sensor with a passive optical NDVI sensor, the system
can better estimate biomass and explore complex in-field relationships in tall fescue [111].
Unlike the carbon dioxide wavelength approach described, these methods typically re-
volve around using LIDAR volumetric measurements and canopy height measurements to
determine variations.

Carbon Dioxide Absorption Spectroscopy

Using DIAL, it is possible to detect nonvisible symptoms of agricultural diseases
based on the CO2 concentration over the canopy. Ambient CO2 over canopies does not
change in the early morning or at night, whereas it decreases significantly at midday (about
12 pm) with a changeable amount of 411−2.5 = 408.5 ppm [112]. Therefore, it is important
to detect the changeable amount by sensors because it is an indication of CO2 absorption
from plants. The amount of absorbed CO2 is maximized by healthy plants. However, the
amount of absorbed CO2 is reduced by stressed plants. Sensors are required to measure
these small changes. Stressed plants are caused by a lack of water, excess of fertilisers,
increased salt in the root zone and diseases. In addition, CO2 absorption consumed by
plants is necessary to generate food and energy for their growth and cellular respiration. In
field conditions, CO2 concentration over or in the canopy is extremely dynamic due to the
diffusion and turbulence processes.

Carbon dioxide sensors for the agricultural sector have a few distinctions among the
conventional industrial sensors regarding the determination of environmental parameters.
The sensors are essential for performance under extraordinary conditions of temperatures,
pressure and humidity. The agricultural environment is difficult to completely define,
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with numerous microorganisms and other biological species impacting the parameters
under study [113]. The agricultural sensors need to be capable of handling highly variable
processing and of supporting users in interpreting the calculation data as clearly as possible.
The accuracy of monitoring CO2 is becoming significant in various agriculture applications,
e.g., CO2 soil respiration, gas exchange, observing atmospheric gas, in the alcohol and
beverage industry [114], the scanning of biogas composition [115] and the identification of
freeze damage in orange fruits [116]. The sensitivity of CO2 concentration detection is a
powerful invention which we can apply to measure the anomalies of CO2 concentration
associated with stressed plants. In Table 8, the fluorescence-based model is compared with
the how LIDAR measurements of CO2 absorption are used to discern plant health.

Table 8. Fluorescence- and carbon dioxide-based models of plant health.

Parameter Fluorescence Model CO2 Model

Irradiance Solar Laser Emitter
Radiance Canopy Noise

Spectrum Window Interval
Oxygen absorption

680–698 nm
750–780 nm

CO2 absorption cross-section
1568–1675 nm

Function-based Gaussian Beer Lambert

Measured object Small amount of fluorescence signal from
background reflectance

Molecular absorption within transmitted
beam

Variations of CO2 concentration in fields are extremely complex based on the factors of
soil respiration, plants photosynthesis and air turbulence. The CO2 concentration changes
of soil and plants are much easier to detect than air turbulence changes. However, LIDAR
techniques can solve air turbulence problems with a remarkably fast measurement process.

4.5. LIDAR Shape Profiling and 3D Scanners

A typical LIDAR shape profiling system (also commonly known as a 360 scanner)
architecture is shown in Figure 9, identifying some of the key components of the system.
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The LIDAR sensor is used to measure the relative position of an object in five dimen-
sions, which are the x, y (ground dimensions) and z (height above canopy) coordinates
and the time and the intensity of the reflected light by which laser source emits light and
the detector receives the reflected light [117]. In fact, the distance from the laser source
to the target is calculated by two types of techniques: The time of flight method for the
pulse-based light source and phase modulation method for continuous wave light. These
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two methods are distinctive in that multiple range measurements from a single pulse
are recorded by pulse-based methods, while a single range measurement is offered by
continuous wave methods [118]. The spatial information has been employed to enhance
comprehensive forestry applications. However, little research has been conducted on the
intensity of the reflected light due to problems calibrating intensity [119,120]. Optical
remote sensing methods have widely applied reflected information in many applications,
whereas the potential of intensity information from laser scanners has little been stud-
ied. Multispectral laser scanners give a comprehensive array of wavelengths for current
technical enhancements [117,121,122].

Several vegetation applications primarily based in laboratory conditions have been im-
proved using multispectral laser systems. The dual-wavelength Spectral Ratio Biospheric
LIDAR, which indicates the modifications of ratio between the red and near-infrared wave-
length regions from a phenology cycle of a tree canopy, was studied by Rall and Knox [123].
The Multi-wavelength Airborne Polarimetric LIDAR, which utilises a dual wavelength
(532 nm and 1064 nm), can differentiate reflected spectrum among tree species [124]. Others
have proposed the Multispectral Canopy LIDAR approach, designed as a prototype of
the airborne sensor which employs a single tuneable laser to allow the measurement of
NDVI and PRI [125]. A multispectral LIDAR system was developed, based on a labora-
tory prototype, to measure at four wavelengths (556 nm, 670 nm, 700 nm and 780 nm) to
detect nitrogen stresses on rice leaves by modifying the optical properties and reflected
spectrum [126]. However, excluding systems that include a scanning mechanism, all of
the systems have not been obviously operated in the field, which limits their instant value
and feasibility for in situ calculations of vegetation canopies [126]. The capacity of laser
reflectance ratios (in the range of 9–11 µm wavelength) has been illustrated in research in
order to distinguish healthy and stress plants. However, particular biochemical properties
and different types of stress were not distinguished by the relationships between these
ratios [127]. Leaf biochemical properties are potentially measured by a multispectral laser
scanner, although the study was carried out with a tiny number of samples [128]. The
accuracy of LIDAR measurements is limited to shorter ranges in comparison to imaging
sensors. Some factors, i.e., remarkable fluctuations of laser energy on the focal plane and
some nonlinear propagation influences (bleaching and thermal blooming), are caused by at-
mosphere turbulence, which also generates serious attenuations of laser beams propagating
in the atmosphere [129–131].

The integrated path differential absorption (IPDA) LIDAR technique transmits (at
least) two laser pulses with similar wavelengths, as demonstrated by NASA’s space-based
ASCENDS mission platform to detect CO2 and O2 concentrations. The approach allows
for greater flexibility, is less wavelength-dependent, removes the scattering effects of thin
clouds and surface scattering and is also used in conjunction with the DIAL technique [107].

4.6. Bistatic LIDAR System Concept

LIDAR absorption spectroscopy systems have been proposed as a feasible method to
remotely sense the atmospheric components as the laser beam at the detector can discern
the characteristics of the medium the beam passed through [105]. The use of the DIAL
measurement principle takes advantage of the wavelength-selective absorption properties
of molecular species. LIDAR can be classified as monostatic or bistatic based on the use
of a single aperture (monostatic) or separate apertures (bistatic) to transmit and receive.
Most common DIAL systems are monostatic (single-pulsed), but these require complex and
expensive components to detect the very weak backscatter by aerosol particles [132]. As the
bistatic LIDAR layout reduces cost, size, weight and power compared to monostatic LIDAR
one, a bistatic LIDAR system has been proposed as a cost-effective solution that can be
integrated on small drones for the early detection of crop diseases [132,133]. The extension
of this method to the agricultural sector was evaluated to measure CO2 concentrations
associated with photosynthesis and respiration [105,134].
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The bistatic LIDAR system consists of a transmitter that emits a continuous wave or
pulsed laser beam of precisely known power characteristics. The amount of laser energy
that arrives from the transmitter, which is less than the emitted LIDAR radiation because
atmospheric molecular/aerosol concentrations absorb or scatter the radiation (as shown in
Figure 9), is measured by the receiver. Generally, the power of a transmitted laser beam is
attenuated and scattered by the atmosphere before it is received by the detector. Rayleigh,
Mie and nonselective scattering are the primary wavelength attenuation types. Direct and
scattered light from the sun or other sources also affects the receiver measurement.

Two individual wavelengths are used in the DIAL technique. They are divided in
the “on” and “off” absorption lines. The on-absorption line is chosen corresponding to a
major vibrational band of the targeted molecular species. The off-absorption line is selected
close to the first wavelength but away from the vibrational band of the targeted molecular
species so that the difference in cross-sections ∆ψ , ψ(λON)− ψ(λOFF) is maximised [135].
Applying the DIAL principle allows these parasite factors to be neglected as they affect
both wavelengths used by the system. This relationship of attenuation effects of different
aerosol and molecular species is typically calculated by Beer–Lambert’s law as given by:

τλ =
PRX
PTX

= e−γ·z (14)

where the transmittance, τλ, is characterized by the ratio of received power, PRX , to trans-
mitted power, PTX . Here, γ is the scattering coefficient and z is the path length.

γ(λ) = αm + βm + αa + βa (15)

The scattering coefficient is made up of α(λ), a molecular αm and aerosol absorption
coefficient, αa; and scattering coefficient, β(λ), a molecular, βm and aerosol scattering
coefficient, βa, at a selected wavelength. The scattering caused by visible light (δVIS) can
be neglected based on Sabatini et al. [108]. Molecular scattering (βm), aerosol absorption
(αa) and aerosol scattering (βa) are also ignored due to DIAL measurement principle. The
molecular absorption (αm) is calculated as followed:

αm(λ, l) = ∑
λ2∫

λ1

σi(λ, P, Θ) · dλ ·
..

[Ni] (16)

where λ1 = CWL− FWHM
2 [nm]; λ2 = CWL + FWHM

2 [nm]; CWL = center wavelength
of the laser diode [nm]; FWHM = full-width half maximum of the laser diode band
width [nm]; σi(λ, P, Θ) = absorption cross-section of ith molecular gases along the laser
beam as a function of wavelength (λ) in nm, pressure (P) in atm and temperature (Θ) in

K based on HITRAN2016 database [cm2 ·mol−1];
..

[Ni] = molecular volume concentration
of ith gases

[
mol · cm−3]; αm(λ, l) = total absorption coefficients of molecular gases as a

function of wavelength (λ) in nm and the baseline of transmitted beam (l) in cm [cm−1].
The connection between photodetector energy for the master wavelength, PRx(λON), and
for the non-master wavelength, PRx(λOFF), in a direct path can be calculated as [131]:

RON/OFF =
PRx(λON)

PRx(λOFF)
=

τON
τOFF

= exp
{
−[ψacs(λON)− ψacs(λOFF)]

∫ l

0

..[
NCO2

]
(l)dl

}
(17)

Using the scattering coefficient in Equation (3), the net CO2 concentration (
..[

NCO2

]
)

can be determined by the following equation:

..[
NCO2

]
=

ln[PRx(λOFF)/PRx(λON)]

l[ψacs(λON)− ψacs(λOFF)]
(18)
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The DIAL measurements mainly focus on molecules vibrational absorption associated
with laser wavelengths. This signal analysis enables an estimate of the CO2 concentra-
tion. Various DIAL systems can be integrated with RS systems due to the emergence of
lightweight, powerful laser sources and systems. Active monostatic configurations are
employed with DIAL configurations for atmosphere sounding that measures not only the
elastic backscatter produced along the external path but also the radiance of the illuminated
Earth surface in the direction of the airborne system. In addition, numerous DIAL systems
have been improved to measure the concentration/column density of different significant
molecule species based on the development of powerful tuneable lasers [131,136–152].

LIDAR Laser Beam Propagation in the Atmosphere

The performance of LIDAR is underpinned by the attenuation of the laser beam
through the atmosphere based on the characteristics of the atmosphere and the power and
wavelength of the beam. At low output powers, these propagation behaviours are linear,
while at sufficiently high output powers, the behaviours are nonlinear [153]. The linear be-
haviours include absorption, scattering and atmospheric turbulence. The nonlinear effects
include thermal blooming, beam trapping, bleaching and atmospheric breakdown [153].

Molecular line absorption is a dominant cause of attenuation dependence on the laser
wavelength. In this case, the laser encounters one (or several) molecular species at the
specified wavelength as it propagates through the air. The energy from the laser is then
attenuated by the molecular species in its path. Knowing how the wavelength corresponds
to a certain molecular species (high-resolution data is available in programs such as HI-
TRAN), the attenuated energy can be calculated and used to determine concentrations of
various molecular species present in the medium.

Continuum absorption describes a type of molecular absorption as a result of molecu-
lar clusters. A part of this type of attenuation is atmospheric scattering, where a directional
change leads to a reduction in the beam intensity, especially over large paths. There are
different types of scattering, which are characterized by the physical size of the scatter.
In small air molecules, attenuation leads to Rayleigh scattering, and for aerosol-sized
molecules, it leads to Mie scattering. For even larger-scale molecules, the scattering can be
described by diffraction.

Rayleigh scattering often has a much larger effect on the propagation than molecular
absorption in the VIS and NIR and is characterized by the scattering cross section in the
equation below [153].

σs =

(
e2

m

)2
ω4

6ε2
0πc4[

(
ω2

0 −ω2
)2

+ (Γω)2]
(19)

which characterizes the scattering of a single dipole radiator by the electron charge, e,
the natural frequency, w0, and a damping coefficient. Mie scattering considers the case
where the wavelength of the laser beam is scattered by particles of similar sizes. The size,
dielectric constant, shape and absorptivity of the particle is accounted for in Mie scattering.
To calculate the atmospheric attenuation coefficient, it is important that the quantities of all
the different sizes of aerosol particles are known, which can be difficult. Mie scattering is
dependent on atmospheric conditions such as humidity [153].

− dI
I

=
Kπa2NAdz

A
= Nσ(a, λ)dz (20)

which describes the decrease in beam intensity as a factor of the attenuation factor, K,
and the Mie attenuation coefficient. Propagation through the effects of precipitation is
significantly attenuated and is dependent on the specific atmospheric condition, which the
authors of [154] explored.

The beam is also subjected to propagation through atmospheric turbulence where
turbulence energy is introduced in large scales. Turbulence is inherently nonhomogeneous
and non-isotropic, making it difficult to model with dynamic vertical profiles dependent
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on weather factors such as wind speed, pressure, temperature and humidity. In describing
beam attenuation from turbulence, the refractive index structure coefficient is considered
as the most important parameter [153]. The coefficient uses the pressure and temperature
difference at two points as described below [155].

Cn =
[
79.10−6 p

T

]
CT (21)

CT =

√
(T1 + T2)

2 1
3
√

r
(22)

The turbulence effects on the laser beam, illustrated in Figure 10, are affected by the
transmitted beam properties, the refractive index structure coefficient and the inner and
outer scale of the turbulence. The turbulence can cause ‘beam wander,’ where the laser
beam is deflected by turbulence cells that are larger than the beam diameter In this case,
the beam diameter remains the same, but the beam is deflected from its path. When the
turbulence cells are smaller than the beam diameter, the diffraction and refraction occurs,
distorting the beam intensity profile. Both cases can occur simultaneously [153].
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These types of attenuation are linear as the laser beam does not affect the air it passes
through. However, for beams with high irradiance, attenuation induces thermal changes
in the air it passes through, resulting in nonlinear effects as the temperature affects the
density and index of refraction, in turn altering the beam’s irradiance distribution [153].
These types of effects include thermal blooming, where the temperature at the centre of the
beam rises, causing an expansion resulting in a defocusing of the beam [153].

The system performance at peak irradiance for nonlinear effects such as atmospheric
turbulence, random jitter, thermal blooming and diffraction is given in terms of the output
power, P, the attenuation coefficient, γ, and the contributions of diffraction, jitter and
turbulence given by (a2

d + a2
j + a2

t ).

IP =
Pe−γz

π(a2
d + a2

j + a2
t )

(23)

Additionally, aerodynamic effects can produce optical anomality’s as a result of the
viscous flow of laminar and turbulent boundary layers, as well as the inviscid flow. In
the mid-IR, turbulent surface boundary layers are likely to cause optical aberrations for
high-powered lasers. In this case, increases in the Mach number and Reynolds number
result in more complex interactions and optical aberrations for airborne laser systems [131].

4.7. Hyperspectral and LIDAR RS Fusion

As discussed, the canopy scale introduces variables that degrade sensors’ ability to
distinguish important relationship between the reflectance spectrum and plant health.
The combined use of passive HSI and active LIDAR has demonstrated several benefits,
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enabling the system to filter out peripheral spectral information in the canopy. The analysis
of pigmentation was shown to improve above the canopy with the addition of LIDAR [156]
by utilizing LAI canopy measurements derived from the LIDAR sensor to extrapolate
HSI sensor data of the foliar chlorophyll concentrations and to quantify the whole canopy
chlorophyll concentration [57,157,158]. The ability of LIDAR to give complementary data
on leaf biochemistry and vegetation type to passive systems is significant in plant disease
detection [106]. The development of hyperspectral LIDAR systems is an expanding area of
research as illustrated by the consistent integration and testing shown in the research [29].

The trends shown in research show that the identification of molecular gases in
LIDAR applications is of research interest for both HSI–LIDAR data fusion in agriculture
applications. The most recent developments have used the laser propagation principles in
Ramen scattering to identify and quantify nitrogen and oxygen molecules as a means of
determine atmospheric composition. Most applications of HSI–LIDAR data fusion focus on
LIDAR 3D scanning technology as means of calculating tree height for biomass estimation.
This approach underutilizes the data that could be retrieved by the LIDAR sensor, which
can perform similar plant health analysis as HSI, through an understanding of the laser
propagation properties of LIDAR. This approach makes the LIDAR sensor much more
versatile in a precision agriculture application, and combining the LIDAR sensor with the
HSI technique would mitigate some of the shortcomings of the HSI, such as variations
in the canopy that BRDF techniques have to be used to compensate for. Further research
into in-field LIDAR-based chemical detection is required to fully exploit any potential data
fusion, but there are clear benefits of increased accuracy by taking the reflectance based
(HSI) and molecular absorption based (LIDAR) combination in the context of challenging
environments in agriculture applications.

5. Food Quality Analysis
5.1. Fluorescence Spectroscopy

Fluorescence spectroscopy was used to estimate the ripeness of mandarins [47,159].
Here, the fruit maturity was indicated by ratio of sugar content to acid content through
fluorescence spectroscopy analysis of the peel. The ratio of sugar to acid content strongly
influenced the taste, making it a much more desirable quality to analyse instead of size
and firmness [159]. Research has also explored pigmentation and flavonoids in apples
as an indicator of fruit quality with the utilization of a fluorescence sensor [23]. The
study concluded that chlorophyll fluorescence was a good gauge of food quality related
properties, flavanols, anthocyanins and chlorophyll in apples. The use of fluorescence
spectroscopy was found to help monitor the ripening process and, more subjectively, to
assess the colour quality (determined by the anthocyanin measurement) for market viability.
Proximal sensing using fluorescence spectroscopy was used in monitoring grape maturity
by the authors of [160,161]. Again, the anthocyanin measurement was emphasised for
maturity. The advantages of the spectroscopy approach was highlighted through a more
detailed maturity grading of peaches [162].

5.2. Multispectral Imaging

By incorporating MSI data obtained from a UAV with a handheld fluorescence spec-
trometer, researchers were able to assess grape maturity, acidity and sugar content [161].
A comparison of MSI with HSI in analysing the presence of canker disease on grapefruit
finding significant advantages in MSI’s simpler image data analysis structure [60]. MSI
was also used in the assessment of apple firmness [163] and of firmness and maturity in
peaches [164]. Airborne MSI and thermal imaging was used to assess fruit water stress and
quality of peaches, oranges and nectarines in relation to different irrigation regimes based
on the PRI [165].
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5.3. Hyperspectral Imaging

Beyond disease classification and quantification, HSI is increasingly used to assess
food quality under constrained laboratory conditions (proximal sensing). In comparison to
MSI, HSI is especially useful in identifying the optimal wavelengths [76,99] to correlate
the reflectance change to a biotic change, as demonstrated with the detection of bruise
spots, fungal and faecal contamination of apples by the authors of [99,166–169], as well
as the identification of chilling injury in cucumbers [170], fungi in corn [171], and bruises
in strawberries [172] and even in relation to the quality of chicken carcasses [77]. To truly
take advantage of the HSI capabilities, it is essential to examine the available information
in the spatial dimensions and use HSI more extensively in RS canopy-scale applications.
Using a combination of HSI and LIDAR on a UGV platform, it was found that the maturity
of mangoes could be assessed based on the detection of dry matter in peaches, greatly
improving in situ measurements [173].

5.4. LIDAR

LIDAR sensor applications in fruit quality are currently focused on counting and
tracking the fruit. A unmanned aerial vehicle (UAV)-based platform utilizing a multi-
sensor approach of LIDAR, MSI, thermal imaging and navigational sensors was used to
extract plant health data [174] including the plant morphology, canopy volume, NDVI, LAI
and fruit counts. Multi-sensor data fusion approaches allowed researchers to rebuild the
canopy dimensions and differentiate between the heights of different species of trees, a
key indicator in plant phenotyping. MSI and LIDAR were also used to accurately identify
plant stressors. Additionally, using a support vector machine classifier, the UAV platform
could count and track the fruit of the cultivars. This helps predict the yield and informs the
growers’ decision-making.

6. Remote Sensor Platforms

True exploitation of RS for precision agriculture invariably lies with the application to
a canopy scale to fully appreciate the spatial information advantages, especially for large
agriculture areas. Whereas the in situ and RS sensor technologies have been extensively
tested in heavily controlled circumstances, in-field airborne applications are increasingly
demonstrating their usefulness in time saving both in processing and for large areas, spatial
information and accuracy. One potential drawback is the diminishing resolution of MSI,
HSI and LIDAR sensors as the distance between the sensor and target area is increased.
However, this can be actively managed as part of the flight mission planning. Gleaning
the reflectance of the entire canopy also introduces factors such as the variation in leaf
layers (LAI); the orientation of the leaves, called the leaf angle distribution (LAD); weather;
shadows and non-leaf elements like soil [57]. These factors complicate the relationships
between spectral reflectance and plant health.

The prevalence of agricultural robots or unmanned ground vehicles (UGVs) is notable
in applications such as seed identification, field scouting and harvesting [175–177]. Of
interest, in the scope of this review, the in-field information can be used in health assess-
ments. UGV platforms need to perform in complex, variable environments while being
multipurpose and cost-effective to be viable. As a result, UGV platforms typically feature
advanced sensors, including obstacle avoidance, high-accuracy navigation systems and
3D mapping systems. Computer vision-based or stereo-based cameras are commonly
used for relative positioning and determining the crop row locations, building maps and
collision avoidance [178], with the trend of advocating the use of 3D LIDAR sensors that
better adapt to complex outdoor environments. Resolving this localization and navigation
problem is central in the effectiveness of UGVs [179]. This approach was applied to maize
plants but was limited by the resolution of the sensor, as seen in Figure 11. The approach
was able to detect the plant and the ground to map their locations using the point cloud
and use machine learning to identify different plant species.
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Using a similar approach, utilizing 3D LIDAR in the mapping of forest areas on a UGV
platform demonstrated the ability of UGV platforms in uneven, complex terrains while
providing an efficient approach for the calculation of tree locations and diameters [180].
UGVs such as VINBOT are used for yield estimation, in this case, in vineyards, where the
UGV excelled at carrying heavy sensors (>50 kg). As a result, the UGV design must have
a low centre of gravity for platform stability but requires elevated sensors to acquire the
relevant data [181].

UAV, aerial and satellite RS platforms for plant disease detection are continuously
improving their spatial and temporal resolutions, thus increasing the number of suitable
applications for precision agriculture. The distinction between platform suitability is
heavily biased toward the mission specificity, spatial scale and cost. The advantages of each
remote sensing platform are summarized in Table 9. Ground and handheld platforms are
used for high spectral resolutions. Aerial and space platforms are more applied for spatial
information at reduced spectral resolutions. Aerial platforms are also expensive but can be
much more flexible than satellites [182]. Satellites offer greater worldwide coverage than
aerial platforms but are limited by their orbit. Space-based platforms are suitable for large
areas at the expense of resolution, as discussed in research, and are susceptible to clouds.
Space-based platforms are expensive, and are also constrained by the orbit, which dictates
when measurements can be taken [183]. This issue of the timing of measurements can
be critical in some vegetation. NASA has demonstrated LIDAR CO2 column absorption
capabilities on ground-based, aerial and space-based platforms [107]. Both aerial and space
platforms can be severely hampered by weather and cloud coverage.

Table 9. Comparison of remote sensing platforms [183]. (CC BY 4.0).

UAV Aerial Satellite

Mission

Range Poor Good Optimal

Flexibility Optimal Good

Endurance Poor Optimal Optimal

Cloud cover
dependency Optimal Good Poor

Reliability Average Good Optimal

Processing

Payload Average Good Optimal

Resolution Optimal Good Average

Precision Optimal Good Average

Processing time Average Good Good
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UAVs have been demonstrated to be competitive, with more well-tested imagery
acquisition platforms such as aerial and satellite in large part due to low operational
cost, high resolution and mission flexibility. The flexibility of UAV was highlighted for
vineyard diseases that occur in small heterogenous areas, which are observable only for
brief periods [69]. Detecting plant disease and monitoring food quality are of significant
interest in vineyards. It is noted that, in heterogenous environments, in comparison to
the UAV platform, imagery resolution using aerial and space-based platforms is low and
provides an inaccurate representation of the field [183].

UAV-based platforms in precision agriculture have been used and validated for the
detection of water stress [184], biomass estimation [185], measurement of the LAI [186]
and detection and classification of plant diseases [187]. UAV-based visual sensors have
shown high levels of accuracy in the disease detection of a variety of species [177]. A
UAV with MSI high-resolution cameras was used to characterize the progression and
severity of rice diseases through NDVI, showing its success as a quick and accurate disease
detection and highlighting the flexibility of the UAV platform and advances in resolution
enabling the method to monitor and assist in plant breeding [188]. Recently, a UAV-based
platform was developed utilising multispectral and hyperspectral cameras for plant health
detection [189]. The results were used in conjunction with UGV platforms to estimate yield
and to isolate infected plants, with the potential for removal of weeds and unhealthy plants
through a UGV robotic arm. Measuring the water stress is a common application for UAVs
in precision agriculture, with the combined use of thermal, hyperspectral and fluorescence
sensors being experimentally validated and used to improve irrigation practises [190].
There are a variety of different UAV platforms, including fixed wing, single rotor, multirotor
and balloon, offering different capabilities and suitability to precision agriculture. There are
advantages and disadvantages of each of the distinct UAV platforms in the implementation
of MSI, HSI, thermal sensors and other active sensors [18]. Largely, the study concluded
that integrating sensors to the UAV is needed to overcome weight, navigation and vibration
considerations.

Plant disease detection techniques are driven by governing body regulations such as
the European and Mediterranean Plant Protection Organisation (EPPO) to avoid crop yield
losses. An example of this work demonstrates how MSI data from a UAV platform can be
combined with proximal sensors to assess fruit quality [161]. The high spatial resolution of
UAV imagery in the range of 1–10 cm accuracy [183,191], as well as the low operational
cost and flexibility of the platform, have led to use in small farm applications [192]. A
study also compared UAV, aerial and space-based platforms, using MSI to determine the
NDVI of two Italian vineyards [183]. The study characterised the comparative RS platforms
performance, as shown in Tables 9 and 10. The UAV platform obviously suffered from
range, endurance and payload performance in comparison to the others. However, the
study extolled the flexibility, resistance to cloud cover, high resolution and precision of
the UAV platform, particularly in relation to fragmented farm areas. The cost analysis
performed by the same study found that UAVs were cost-effective in image acquisition for
areas smaller than 5 hectares [183].

UGV and UAV Cooperative Approaches

UGVs are advantageous over other platforms in their ability to carry many sensors
that can be heavier and bulkier than UAV applications which are used for high-resolution
data acquisition. Conversely, the UGVs struggle in complex unstructured environments,
are usually slow moving and are hindered by ground obstacles. The research suggests a
trend toward cooperative UGV and UAV systems for improved coverage and resolution. In
this model, the UGV performs complimentary data acquisition and acts as a mobile charger
for the UAV, delivering it to deployment locations as seen in Figure 12 [189,193–195].
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Table 10. Comparison of remote sensing platforms using multispectral imaging for detection of
grape disease [183]. (CC BY 4.0).

Platform Spectral Wavelength Altitude Resolution (Pixels)

UAV 520–600, 630–690, 760–900 nm 150 m 2048 × 1536

Aerial

415–425, 526–536, 545–555, 565–575,
695–705, 710–720, 745–755, 490–510,

670–690 770–790, 790–810, and
890–910 nm

2300 m 2048 × 2048

Satellite 440–510, 520–590, 630–680, 690–730,
and 760–850 nm 630 km 12,000 (pixel linear

CCD per band)
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7. Data Analysis Methods

Adopting the right combination of sensors, platforms and data analytics in agricul-
ture helps reducing the proportion of manual operations and leads to improved yields
through the effectiveness and efficiency gains that only wide-area remote measurements
can achieve. This ongoing evolution is increasingly driven by the application of AI to
perform nonstandard tasks, which expand the range of activities that can be performed
in precision agriculture to allow for data-driven decision-making from the operators. For
instance, it is functionally essential for RS sensors such as HSI, MSI and LIDAR to utilize
machine learning (ML) techniques to sort, segment and classify the large amount of data ac-
quired. Correlating the spatially and temporally distributed data from one or more sensors
to definitive classifications and diagnoses indicating plant health is achieved through a
variety of different ML techniques, typically tailored to the specific crop, conditions, sensor
and platform. ML in precision agriculture has expanded with increased sensor resolution
and has been paired with modern algorithms to allow for multi-data fusion. AI techniques
are used in two distinct ways in remote sensing platforms: For mission control (navigation,
obstacle avoidance, etc.) and for processing the data from the sensors into interpretable
information for the operators. The methods used to filter the raw spectral data and quantify
it into statistical data from which disease classification can be inferred greatly influence the
accuracy of the system and warrant further exploration. As observed in the literature (see
Tables 3, 5 and 7), numerous research studies have aimed to develop superior data analysis
methods in plant health applications. These studies have prioritized the accuracy of the
system over other considerations, such as cost, real-time analysis, suitability for in-field
testing and suitability for a remote sensing platform. The following is a short overview of
the most prominent data analysis techniques used in plant health monitoring sensors.

Future work in data analytic methods for precision agriculture should examine AI data
fusion, and the use of digital twins and meta-reasoning as methods to improve the accuracy
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and efficiency of RS systems. The observed research clearly trends toward a multiple sensor
data fusion approach in the health monitoring of crops. The use of appropriate techniques
to collate the data from different sensors in order to improve the classification accuracies is
of significant interest. As observed in the section concerning HSI–LIDAR (3D scanner) data
fusion, the data collected does not really overlap. The HSI system measures the reflectance,
which is used to discern information about the photosynthetic efficiency, and the LIDAR
3D scanner usually measures the heights of the crop to measure biomass. The combination
of these results provides more information. However, both HSI and bistatic LIDAR are a
measure of photosynthetic efficiency, and with their combination, there is opportunity to
share information between the sensors to better improve each technique.

The application of meta-reasoning to the data analysis techniques is an emerging
technique designed to measure the efficiency of the data analysis. Meta-reasoning examines
and controls the resources and time that the data analysis takes for each task. This optimizes
the decision-making and quality of the result.

7.1. Partial Least Squares Regression

Partial Least Squares Regression (PLSR) uses a linear multivariate model to relate and
model the structure of two data matrices [196]. PLSR accuracy increases with the number of
observations and variables, even when the data is noisy, collinear or incomplete. In this way,
PLSR overcomes the problem of overfitting encountered with increasing observations [197].
The spectral PLSR method was shown to quickly and accurately predict the photosynthetic
capacity. However, this accuracy is susceptible to variation in the genotypes of a single
species of crop [198]. PLSR was used to determine the nitrogen and phosphorus content
in barley plants using HSI of the canopy, with an accuracy of 81% for phosphorus, 74%
for nitrogen and 75% for predicting the growth stage [98]. However, in cucumber leaves,
the phosphorus content was not able to be accurately determined by PLSR methods with
an in situ spectroradiometer due to a high nonlinearity correlation, resulting in the use of
SVM and ANN [55]. In determining the plant biochemical properties, it was found that
PLSR was an effective methodology but was less accurate than SVR. However, SVR was
less accurate when the data became highly collinear [199].

7.2. Principal Component Analysis

PCA is used as predictive modelling tool in correlating large sets of data. PCA reduces
the dimensionality of the data and minimizes data loss by the creation of uncorrelated
variables the maximize variance [200]. The PCA transforms the current set of data to a new
coordinate system. Then, a covariance matrix is developed, which, in turn, determines the
eigenvectors and eigenvalues. These eigenvalues are then used to classify the data.

PCA is a common data analysis method in plant disease detection. The PCA method
was used in the detection of diseases in the Catharanthus roseus leaves, which highlighted
the benefits of PCA as an unsupervised clustering method that does not require a priori
data set knowledge [52]. Research conducted on greenhouse pepper plant diseases using
MSI found that PCA was not as effective in binary plant health detection and required im-
plementation of a method using a priori knowledge [62]. This discrepancy in performance
was blamed on the small colour difference between healthy and diseased leaves, since PCA
is reliant on the variance of the data.

7.3. Self-Organizing Maps

A Self-Organizing Map (SOM) is an Artificial Neural Network (ANN) that takes high
dimensional data and transforms it into a 2D map that places similar data points closer
together [201]. As in most ANN, the SOM operates in a training mode dependent on
training sample data sets and a mapping mode that converts new inputs into the visible
map space. The quality of the training data set in similarity to the expected types of data
determines the efficacy of SOM. The SOM is a rectangular grid which uses an iterative
process to move the nodes of the grid toward the data where the grid moves toward the
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training data. This process is defined iteratively, where the Euclidean distance equation
determines the similarity between points and weight vector where the best matching unit
is found, and the weight vector is iteratively updated.

Wv(s + 1) = Wv(s) + θ(u, v, s)·α(s)·(D(t)−Wv(s)) (24)

where Wv is the weight vector, s is the iteration, θ is the neighbour function, α is a learning
restraint and D(t) is input vector.

SOM has been used in data fusion applications to reduce the disease classification
error of yellow rust in wheat using MSI and HSI sensors [86]. The analysis was also used to
categorize grape leaf colours as a pre-processing technique to aid support vector machines
(SVM) to then classify between three types of disease [202].

7.4. Artificial Neural Networks

ANN is a supervised learning technique that consists of a neuron net structure orig-
inally aimed at mimicking human brain problem-solving. Due to its structure, ANN is
used to infer functions from the observed data, which learns a pathway to the output. In
this example, the input can take multiple pathways to output with the hidden component,
a weighted function (usually sigmoid) that uses a priori knowledge. The inputs, p, to
the neuron are multiplied by a weight, w, the sum making the bias weight, then passed
through a transfer function σ(γ) to obtain the output.

σ(γ) =
1

(1 + e−γ)
(25)

σ(γ)→
{

1 when γ→ +∞
0 when γ→ −∞

(26)

ANN is used in the classification of fungal disease and other common anomalies in
rice plants [68,203], the estimation of phosphorus content in cucumber leaves [55] and in
the general image classification of the healthy and unhealthy leaves [204].

7.5. Support Vector Machines

Along with ANN, SVM is a typical algorithm used to classify plant diseases from the
feature extraction process depicted in Figure 13.
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SVM is a supervised technique that uses given sets data of at least two classes. With
each new data set, the SVM measures the distance between the new points and the given
data to classify it. A main variant of SVM is hard margin classifiers, which are especially
useful in multi-dimensional data applications such as HSI and MSI. The SVM classification
uses parallel hyperplanes based on the biggest margin between the hyperplanes.

yi(w, xi − b) > 1 for i = 1 to n and min||w|| (27)
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where b is the bias, i indexes the n training data and w is normal to the hyperplane.
SVM has been widely adopted in the literature due to its proven performance in

highly dimensional problems with small data sets [206]. The authors of [206] studied
SVM in comparison to ANN classification, and found a significant improvement in plant
disease classification for SVM over ANN [206]. SVM is used consistently in plant disease
detection classification, with integration into genetic algorithms to improve the accuracy of
the classification as suggested by the authors of [207].

7.6. K-Nearest Neighbours

K-Nearest Neighbours (KNN) is a widely used classification method with a learning
algorithm based on the similarity of data points. Using a training dataset, once the algo-
rithm makes the classification and groupings, the algorithm training is complete. This is a
nonparametric algorithm, where the closeness to a number of known K points and voting
process are used to classify the new data. Euclidean distance function is a common method
to evaluate the closeness to the nearest points

d =

√√√√ k

∑
i=1

(xi − yi)
2 (28)

The KNN is simple and easy to implement. However, the method becomes inefficient
when analysing large amounts of data.

7.7. Regions of Interest

Regions of interest (ROI) segmentation is used to define the borders or boundaries
of an object and to describe an area in a compartmentalized way. ROI segmentation is
essential for applying machine learning techniques for plant disease detection. In one study,
researchers investigated the ROI applications based on colour variance between healthy
and diseased parts of the plants [208]. The study found that the use of ROI techniques
could achieve early disease detection at a rate of 91% and overcome the challenges of
indistinct diseases boundaries. The use of ROI in the disease detection process, after image
acquisition and some pre-processing, involves segmenting the images by means of ROI,
which then leads to feature extraction and classification via means of SVM, as shown in
Figure 5 [209]. This technique uses boundary and spot detection algorithms to locate an
infected area, usually through K-Means clustering. From the clusters, the ROI are selected.

8. Conclusions

This review examined current and likely future electro-optical remote sensing applica-
tions for precision agriculture, with a focus on novel methods for early detection of plant
diseases and the increasing adoption of spectral analysis in food quality assessment. The
way in which plant diseases spread and cause subsequent deterioration of the plant deter-
mines the efficacy of each of the detection techniques discussed. For in situ applications,
the sensitivity of thermography and fluorescence to ambient light reduces the accuracy
and practicality of these techniques. Techniques reliant on spectral information must
undergo a complex analysis to eliminate erroneous data due to the complex interactions
with the environment. In consideration of the discussed techniques and their advantages
and disadvantages, the evidence clearly points to a data fusion approach that combines
multiple spectral techniques to improve the classification accuracy and to reduce the effects
of external/environmental factors impacting the quality of data collected. Whereas the
narrow band approach of HSI allows greater flexibility in distinguishing spectral areas of
interest, the HSI sensor is particularly susceptible to erroneous data due to data overlap and
is a costly/complex solution. The MSI system, in contrast, requires greater understanding
of the spectral bands of interest before implementation. The added value of emerging
LIDA-based systems is in their greater flexibility in capturing data as LIDAR systems
are not as limited by atmospheric conditions, changes in light, viewing angle or canopy
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structure. The implementation of a low-cost, lightweight bistatic LIDAR system on a RS
platform should be considered for future research, especially in the context of HSI-LIDAR
data fusion. LIDAR is noted for its wide-ranging applications across all sensor platforms
and, in combination with hyperspectral imaging, would likely be the most robust of the
remote sensors. Driven by market demands, future work should be aimed toward food
quality analysis using various combinations of remote sensors. The greatest hinderance for
RS techniques is their indirect nature in correlating spectral or molecular data to a definitive
diagnosis. The adoption of AI techniques for the spatially and temporally distributed big
data acquired by RS is one of the biggest impacting factors on the accuracy of plant disease
diagnosis. Comprehensive comparative studies of AI-based data fusion techniques in the
precision agriculture context are needed to determine the best combination of sensors,
platforms and crops, especially in the multi-sensor approach. Among the various sensor
platforms, UAVs clearly fill a gap between the limitations of handheld and rover-carried
sensors in large areas and of high-altitude and satellite sensor resolutions. The overall
accuracy and resolution of UAV based sensors in precision agriculture should be further
investigated, emphasising the disparities between leaf level and canopy level data acquisi-
tion. A multi-sensor approach, taking advantage of both traditional techniques and the
emerging benefits of LIDAR-based in-field CO2 absorption measurements, is an area that
requires further research to be able to improve early plant disease detection, soil analysis,
phenotyping and fruit quality analysis. These multi-sensor systems will adopt AI-based
data fusion algorithms to efficiently and accurately process the variety of spatially and
temporally distributed data acquired in the field.
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