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Abstract: With the development of wireless rechargeable sensor networks (WRSNs ), security issues
of WRSNs have attracted more attention from scholars around the world. In this paper, a novel
epidemic model, SILS(Susceptible, Infected, Low-energy, Susceptible), considering the removal,
charging and reinfection process of WRSNs is proposed. Subsequently, the local and global stabilities
of disease-free and epidemic equilibrium points are analyzed and simulated after obtaining the basic
reproductive number R0. Detailedly, the simulations further reveal the unique characteristics of SILS
when it tends to being stable, and the relationship between the charging rate and R0. Furthermore,
the attack-defense game between malware and WRSNs is constructed and the optimal strategies of
both players are obtained. Consequently, in the case of R0 < 1 and R0 > 1, the validity of the optimal
strategies is verified by comparing with the non-optimal control group in the evolution of sensor
nodes and accumulated cost.

Keywords: wireless rechargeable sensor network; cyber security; stability analysis; optimal control

1. Introduction
1.1. Research Background

Wireless sensor networks (WSNs) have attracted researchers’ attention worldwide
over the last few years. WSNs consist of sensor nodes that have data storing and data
transmitting capacities in the form of multi-hop or single-hop. Sensor nodes are randomly
deployed in unattended areas in order to monitor the physical environment in and around
their vicinity. WSNs have extremely wide applications that range from people’s daily
life to various manufacturing industries, and even military facilities, such as health care
services, bridge monitoring, intrusion detection, and security surveillance [1]. However,
WSNs suffer from various issues related to security [2] and short life cycle [3], due to the
vulnerability of the network structure and battery limitations.

Wireless rechargeable sensor networks (WRSNs), as an emerging technology, lie in
the breakthrough in wireless power transfer (WPT) technology. It solves the problems
of limited energy storage capacity and inconvenient battery replacement, which greatly
develop wireless sensor networks (WSNs). So far, WRSNs have carried out a large number
of relevant studies and applied research. In recent years, studies on WRSNs mainly focus
on charging scheduling and system performance optimizations [4–6] However, security
issues in WRSNs are seldom concerned by scholars. Malware, as a self-replicating malicious
code, once implanted in the networks can cause information leakage and even network
paralysis. Specifically, due to the particularity of rechargeability, rechargeable sensor nodes
also suffer from the Denial of Charge (DOC) attacks [7], which will cause catastrophic
consequence to real-time and pre-waring application fields [8]. Thus, research on WRSNs’
security is urgent and important.
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1.2. Related Work

The security of data transmission links(DTLs), as an essential part of data transmission,
is one of the security issues of WSNs. For example, a cloud using multi-sinks (CPSLP)
scheme has been proposed to solve the problem of source location privacy [9] in DTLs.
Similarly, in WRSNs, Shafie et al. [10] and Bhushan et al. [11] propose a novel efficient
scheme and Energy Efficient Secured Ring Routing (E2SR2) protocols, respectively, in order
to enhance the security performance of WRSNs. Besides, as the key hub of DTLs, security
on a cluster head draws academic attention [12,13].

Meanwhile, intrusion detection systems (IDSs) have been recognized as the most
effective means of detecting malicious attack (Blaster, SDBot, Fork bomb, etc. [14]). Specif-
ically, Cui et al. [15] propose a mobile malware detection systems. Jaint et al. [16] and
Thaile et al. [17] apply support a vector machine and nodetrust scheme in order to improve
the detection efficiency. Once the malware is detected, then a mitigation mechanism, such
as dismissing the affected nodes [18] or adopting diverse variants deployments [19], would
be activated.

The application of epidemic dynamics to study the propagation of malware (Worms,
Botnets, Rabbit, etc. [14]) in WSNs has received extensive attention and in-depth explo-
ration in the academic. When considering the malware carrier, patch injection mechanism,
and time delay, more suitable epidemic models have been proposed: SCIRS [20], SIPS [21],
SEIAR [22], etc. Furthermore, Table 1 lists some relevant literature from recent years.

Table 1. Researches on stability of epidemic model in Wireless sensor networks (WSNs).

Authors Model Characteristics Stability

J.D. HernándezGuillén et al. [20] SCIRS

Considering the carrier state,
population dynamics, and
vaccination and reinfection
processes

Local and global stability in
malware-free and epidemic points

S.G. Shen et al. [23] VCQPS
Considering both the heterogeneity
and mobility of heterogeneous and
mobile sensor nodes

Local and global stability in
malware-free point

Linhe Zhu et al. [24] SBD
Considering the nonlinear
incidence rate and time delay in
complex networks

Local and global stability in
rumor-free point

P.K. Srivastava et al. [25] SEIAR Considering the anti-malware
process

Local and global stability in
worm-free point

S. Hosseini et al. [26] SEIRS-
QV

Considering the impacts of user
awareness, network delay and
diverse configuration of nodes

Local and global stability in
malware-free point

D.W. Huang et al. [21] SIPS Considering the patch injection
mechanism

Local and global stability in
epidemic point

L.H. Zhu et al. [22] I2S2R
Considering the effect of time delay
both in homogeneous networks
and heterogeneous networks

Local and global stability in
malware-free and epidemic points

R.P. Ojha et al. [27] SEIQRV Considering both quarantine and
vaccination techniques

Local and global stability in
worm-free point

S.R. Biswal et al. [28] SEIRD Considering the early detection and
removal process

Local and global stability in
worm-free point

Differential games are also widely used in WSNs as a method for studying optimal dy-
namic strategies. For example, by using the differential game framework, Al-Tous et al. [29]
propose an efficient scheme for power control and data scheduling of energy-harvesting
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WSNs and Huang et al. [30] develop a virus-resistant weight adaption scheme for mit-
igating the spread of malware in the large-scale complex networks. Similarly, Table 2
summarizes a few related literatures.

Table 2. Researches on differential game applied in WSNs.

Authors Participants Goal

H. Al-Tous et al. [29] An energy-harvesting (EH) multi-hop
wireless sensor network (WSN)

Adaptively changing the transmitted data
and power, efficiently utilizing the available
harvested energy and balancing the buffer of
all sensor nodes.

Y.H. Huang et al. [30] Virus and nodes with various weights Minimizing the total cost of the whole
network

L.T. Zhang, et al. [31] Device to Device (D2D) offloading
enabled mobile network and malware

D2D offloading enabled mobile network aims
to maximize the cost

S.G. Shen et al. [32] WSNs and malware
The systems aims to minimize the cost; the
malware aims to maximize the cost (the same
cost function)

G.Y. Liu et al. [33] WRSNs and malware WRSNs aims to minimize the cost; malware
aims to maximize the cost (the same cost)

L. Miao et al. [34] Intrusion prevention systems(IPS) and
the malicious attackers

IPS aims to minimize the cost A; attacker
aims to maximize the cost B (two different
cost functions )

H.W. Zhang et al. [35] Attacker and defender
Attacker aims to maximize the cost A;
Defender aims to minimize the cost B (two
different cost functions)

J.H. Hu et al. [36] Healthcare-based wireless sensor
network (HWSN)

HWSN aims to minimizing the transmission
cost

Y. Sun et al. [37] Edge nodes (ENs) ENs aims to minimize the resource
consumption

S. Eshghi et al. [38] Mobile WSNs and malware Mobile WNSs aims to minimize the cost by
using optimal patching policies

M.H.R. Khouzani et al. [39] Mobile WSNs and malware
By obtaining the optimal dissemination of
patches, the tradeoff between security risks
and bandwidth is minimized

S. Sarkar et al. [40] Multi-hop wireless networks By using the optimal routing and scheduling,
the throughput of the networks is optimized

However, as far as we know, the theories of epidemic dynamics and differential game
that are applied in WRSNs’ security are rarely studied. Therefore, this paper applies these
two theories to study the security of WRSNs to provide a novel perspective of solution.

1.3. Contributions

The main goal of this paper is to introduce a novel epidemic model when considering
the residual energy of sensor nodes and classify sensor nodes into five various states.
Moreover, charging process and removing process are taken into account. Furthermore, the
stability theory and differential game theory have both been applied in order to analyze
the characteristics of the evolution of sensor nodes in various states. Our contributions are
stated, as follows:
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• An epidemic model suitable for WRSNs is designed.
• Based on the next-generation matrix method, the basic reproductive number R0 of the

system is obtained.Subsequently, by applying the Routh Criterion, Lyapunov function,
and the other analytical methods, the local and global stabilities of the disease-free
equilibrium solution and the epidemic equilibrium solution are proved and simulated.
Moreover, the linear relationship between the state variables when the system tends
to be stabilized, and the positive relationship between R0 and the charging rate is
disclosed in the simulation section.

• Applying the Protryagin Maximum Principle, the optimal game strategy between
malware and WRSNs is given. Moreover, by comparing the evolution of sensor nodes
in various states and overall cost with the control group, the validity of the strategies
is verified in the case of R0 < 1 and R0 > 1.

The rest of the paper is organized, as follows: the main characteristics of the model are
present in Section 2; theorems of the local and global stability, and the optimal strategies
are proved in Section 3; the simulation results are showed in Section 4; and the conclusions
are presented in Section 5.

2. Modeling
2.1. Epidemic Modeling on WRSNs

The model presented in this manuscript is global and deterministic such that sensor
nodes are classified into five compartments: Susceptible (S), Infected (I), Susceptible
in Low-energy (LS), Infected in Low-energy (LI), and Dysfunctional (D), as shown in
Figure 1. Sensor nodes in S are vulnerable to malware; sensor nodes in I are compromised
with malware and perform malicious action; sensor nodes in LS and LI state are both in
dormant-like state; and, the sensor nodes in D state are completely incapacitated, owing
to irreparable hardware damage. Specifically, the dormant-like state indicates the sensor
nodes are forced to stop some running modules due to the low remaining energy, including
data transmission. Thus, sensor nodes in LI state do not have the risk of spreading malware.

Figure 1. Flow diagram of the Susceptible, Infected, Low-energy, Susceptible (SILS) Model.

Sensor nodes in S transform to I once the attached malware starts running. New
infectious sensor nodes are generated with α2 I(t)S(t) and α2 represents the transmission
coefficient. In addition to the new sensor nodes, which are governed by Λ, some of
the sensor nodes in I are repaired and converted to S at rate α1. Owing to electricity
consumption, sensor nodes in both S and I drop to low-energy at rate µ. Meanwhile, when
considering rechargeable battery equipped in sensor nodes and charging sensor nodes
by multiple wireless charging vehicles [41], low-energy sensor nodes rise back to their
previous states, since their batteries are full of electricity again. Detailedly, in order to
simplify the model, assuming that the charging rate C is a constant. The model is simplified
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by assuming the same mortality µ in each compartment. In the Abbreviation Section, a
brief description of the parameters is shown.

As a consequence, the dynamics of the system is governed by (1)–(5):

˙S(t) = Λ− [α2 I(t) + µ + γ]S(t) + α1 I(t) + CLS(t), (1)

˙I(t) = [−α1 − µ− γ + α2S(t)]I(t) + CLI(t), (2)

˙LI(t) = −(C + γ)LI(t) + µI(t), (3)

and

˙LS(t) = −(C + γ)LS(t) + µS(t), (4)

˙D(t) = γ[S(t) + I(t) + LS(t) + LI(t)]. (5)

Moreover, N(t) = S(t) + I(t) + LS(t) + LI(t) and constrained by:

˙N(t) = Λ− γN(t). (6)

As t tends to infinity, considering LS(t) = N(t) − S(t) − I(t) − LI(t), the feasible
region obtained is

Ω = {(S, I, LI) ∈ R3| 0 ≤ S, I, LI ≤ Λ
γ
}.

Then, we use the following (7)–(10) to define its boundary:

F1 = {(S, I, LI) ∈ R3| S + I + LI =
Λ
µ

, 0 ≤ S, I, LI ≤ Λ
γ
}, (7)

F2 = {(S, I, LI) ∈ R3| S = 0, 0 ≤ I, LI ≤ Λ
γ
}, (8)

F3 = {(S, I, LI) ∈ R3| I = 0, 0 ≤ S, LI ≤ Λ
γ
}, (9)

and

F4 = {(S, I, LI) ∈ R3| LI = 0, 0 ≤ S, I ≤ Λ
γ
}. (10)

Considering the following equations:

(Ṡ(t), İ(t), L̇I(t))F1 · (1, 1, 1) = −µS(t) ≤ 0, (11)

(Ṡ(t), İ(t), L̇I(t))F2 · (−1, 0, 0) = −Λ− C[N − I(t)− LI(t)] ≤ 0, (12)

(Ṡ(t), İ(t), L̇I(t))F3 · (0, − 1, 0) = −CLI(t) ≤ 0, (13)

and

(Ṡ(t), İ(t), L̇I(t))F4 · (0, 0, − 1) = −µI(t) ≤ 0. (14)

Consequently, Ω is compact and invariant [42], and the solutions of Ω exist and are
unique [43].
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2.2. Computation of the Steady States and the Basic Reproductive Number R0

Considering the limit system, we obtain:

˙S(t) = Λ− [α2 I(t) + µ + γ]S(t) + α1 I(t) + C[N − S(t)− I(t)− LI(t)], (15)

˙I(t) = [−α1 − µ− γ + α2S(t)]I(t) + CLI(t), (16)

and

˙LI(t) = −(C + γ)LI(t) + µI(t), (17)

where N = limt→∞ N(t) =
Λ
γ

.

The solutions of the above system are the steady states of (1)–(5). This system has two
solutions:

1. The disease-free steady states E0 = (S0, 0, 0), where

S0 =
CΛ + γΛ

Cγ + γµ + γ2 . (18)

2. The endemic steady state E∗ = (S∗, I∗, LI∗), where

S∗ =
(α1 + µ + γ)(C + γ)− Cµ

α2(C + γ)
, (19)

I∗ =
[(µ + γ)(C + γ)− Cµ][(α1 + µ + γ)(C + γ)− Cµ]−Λα2(C + γ)2

−α2(C + γ)[(α1 + µ + γ)(C + γ)− Cµ] + α1α2(C + γ)2 , (20)

and

LI∗ =
µ[(µ + γ)(C + γ)− Cµ][(α1 + µ + γ)(C + γ)− Cµ]−Λµα2(C + γ)2

−α2(C + γ)2[(α1 + µ + γ)(C + γ)− Cµ] + α1α2(C + γ)3 . (21)

Furthermore, the basic reproductive number R0 can be obtained by the next generation
matrix method [44].

Set

F =

(
α2S(t) 0

0 0

)
(22)

and

V =

(
α1 + µ + γ −C
−µ C + γ

)
. (23)

Thus

R0 =F ·V−1 =
α2S0(C + γ)

(α1 + µ + γ)(C + γ)− Cµ

=
α2Λ(C + γ)2

[(C + γ)(µ + γ)− Cµ][(α1 + µ + γ)(C + γ)− Cµ]
.

(24)

3. Dynamic Analysis

In this section, the local and global stabilities of both the disease-free point E0 and the
epidemic equilibrium point E∗ were fully proved. Moreover, an attack-defense game was
built to analyze the confrontation between malware and WRSNs.
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3.1. Local Stability Analysis

Theorem 1. The disease-free equilibrium point, E0, is locally asymptotically stable if R0 < 1.

Proof. The eigenvalues of the following matrix

F−V =

(
α2S0 − (α1 + µ + γ) C

µ −(C + γ)

)
(25)

are
λ1 = 0.5(−b +

√
b2 − 4c), (26)

and
λ2 = 0.5(−b−

√
b2 − 4c), (27)

where b = (C + γ)− [α2S0 − (α1 + µ + γ)] and c = [(C + γ)(α2S0 − α1 − µ− γ) + Cµ].
The real parts of the two eigenvalues are both negative if R0 < 1. Besides,

∂[−µS(t)− γS(t) + C(N − S) + Λ]

∂S
= −µ− γ− C < 0. (28)

Thus E0 is locally asymptotically stable [45]. On the contrary, E0 is unstable if
R0 > 1.

Theorem 2. The epidemic equilibrium point, E∗, is locally asymptotically stable if R0 > 1.

Proof. First of all, the truth E∗ exists if and only if R0 > 1 is simple to prove.
Subsequently, the characteristic polynomial of the Jacobian matrix of the state functions

(1)–(4) in E∗, when R0 > 1 is

P(λ) = P1λ3 + P2λ2 + P3λ1 + P4λ0, (29)

where
P1 = 1 > 0, (30)

P2 = µ + 2γ + 2C +
α2

2(C + γ)(Cγ + γµ + γ2)(R0 − 1)
(Cγ + γ2 + µγ)(Cα1 + α1γ + µγ + Cγ + γ2)

+
Cµ

C + γ
> 0, (31)

P3 = γ(µ + γ) +
α2

2(C + γ)2(Cγ + γµ + γ2)(R0 − 1)
(Cγ + γ2 + µγ)(Cα1 + α1γ + µγ + Cγ + γ2)

+
Cµ

C(C + 2γ + µ)
> 0, (32)

and

P4 =
µCα2

2(C + γ)(Cγ + γµ + γ2)(R0 − 1)
(Cγ + γ2 + µγ)(Cα1 + α1γ + µγ + Cγ + γ2)

> 0. (33)

Moreover, a simple calculus shows P2P3 − P1P4 > 0. Thus, if R0 > 1, applying the
Routh criterion [46], the local asymptotically stability of E∗ follows.

3.2. Global Stability Analysis

Theorem 3. The disease-free equilibrium point, E0, is globally asymptotically stable if R0 < 1.

Proof. In this proof, the method of Lyapunov function is considered. In general, in the
Lyapunov stability analysis [47], the Lyapunov function needs to be positive definite,
except for the stable point, and its first derivative needs to be negative definite.
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When considering the Lyapunov function V = (C + γ)I(t) + CLI(t), we obtain:

˙V(t) = (C + γ) ˙I(t) + C ˙LI(t)

= (C + γ){I(t)[α2S(t)− (α1 + γ + µ)] + CLI(t)} − C(C + γ)LI(t) + CµI(t)

≤ (C + γ)I(t)[α2S0 − (α1 + γ + µ)] + CµI(t)

= I(t)[(C + γ)α2S0 − (C + γ)(α1 + γ + µ) + Cµ]

= I(t)(R0 − 1)

(34)

In addition,
dV
dt

= 0 if and only if R0 = 1 and I(t) = 0. Moreover, (S, I, LI) tends

to E0 when t tends to infinity, and the maximum invariant set in {(S, I, LI) ∈ Ω :
dV
dt

=

0} is E0. Thus, Theorem 3 has been proved, after considering the La-Salle Invariance
Principle [48].

Theorem 4. The epidemic equilibrium point, E∗, is globally asymptotically stable if R0 > 1.

Proof. First of all, by referencing [49], the system is uniformly persistent. According
to [50], there exists an absorbent compact. Besides, according to Theorem 2, E∗ is the
unique equilibrium point if R0 > 1.

The second additive compound matrix of Jacobian matrix is given, as follows:

J[2] =

 θ1(t) C C
µ θ2(t) θ3(t)
0 α2 I(t) θ4(t)

. (35)

where
θ1(t) = α2 I(t)− 2µ− 2γ− C− α1 − a + α2S(t), (36)

θ2(t) = −α2 I(t)− µ− 2γ− 2C, (37)

θ3(t) = −α2S(t) + α1 − C, (38)

and

θ4(t) = −α1 − µ− 2γ− a− C + α2S(t). (39)

Set Pf as the directional derivative of the diagonal matrix P = diag(1,
I

LI
,

I
LI

), then:

Pf P−1 = diag(0,
İ
I
− L̇I

LI
,

İ
I
− L̇I

LI
). (40)

Set the matrix B = Pf P−1 + PJ[2]P−1 =
θ1(t) C C

µ θ2(t) +
İ
I
− L̇I

LI
θ3(t)

0 α2 I(t) θ4(t) +
İ
I
− L̇I

LI

. (41)

Set
B11 = θ1(t), (42)

B12 =
(

C C
)
, (43)
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B21 =
(

µ 0
)
, (44)

and

B22 =

 θ2(t) +
İ
I
− L̇I

LI
θ3(t)

α2 I(t) θ4(t) +
İ
I
− L̇I

LI

. (45)

Supposing that (S, I, LI) is a vector in R3, then the norm of vector that is defined in
R3 is

|(S, I, LI)| = max{|S|, |I|+ |LI|}. (46)

Note that the Lozinskii measure of B is given by the following expression:

µ(B) ≤ max{g1, g2}. (47)

where g1 = µ(B11) + |B12|, g2 = |B21|+ µ(B22)
According to [51],

g1 = −α2 I(t)− 2µ− 2γ− 2C− α1 + α2S(t), (48)

g2 = −3µ− 2γ− C− α1 + α2S(t). (49)

Supposing that C > µ, then g1 < g2. Thus, µ(B) ≤ g2.
Subsequently,

q = lim
t→∞

supsup(S(0),I(0),LI(0))∈int(Ω)

1
t

∫ t

0
µ(B)ds ≤ −3µ− 2γ− C− α1 < 0. (50)

Consequently, applying the theorem in [52], the statement is proved.

3.3. Optimal Control Strategies

According to differential game theory [53], let us impose a set of hypotheses as follows.

(a) The game in this paper consists of two parties, i.e., malware and WRSN.
(b) Both of the parties have controllable means. Among them, ν(t) = {ASI(t), ALII(t)}

represents the strength of spreading malware, i.e., ASI(t), and the controls from LI to
I, i.e., ALII(t). µ(t) = {DIS(t), DLSS(t)} describes the strength of removing malware,
i.e., DIS(t), and the controls from LS and S, i.e., DLSS(t). Thus, (1)–(3) are replaced as:

˙S(t) = Λ− [α2 ASI(t)I(t) + µ + γ]S(t) + α1DIS(t)I(t) + CDLSS(t)LS(t), (51)

˙I(t) = [−α1DIS(t)− µ− γ + α2 ASI(t)S(t)]I(t) + CALII(t)LI(t), (52)

˙LS(t) = −(CDLSS(t) + γ)LS(t) + µS(t), (53)

and

˙LI(t) = −(CALII(t) + γ)LI(t) + µI(t). (54)

(c) Define X(t) = {S(t), I(t), LS(t), LI(t), D(t)} as a set of state variables.
(d) The attacker (i.e., malware) aims at maximizing J(·) and the defender (i.e., WRSNs)

aims at minimizing J(·), and
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J(t, X(t), µ(t), ν(t)) =
∫ t f

t0

[CI I(t)]dt + ∑
i∈X(t)

Ci(t f )
i(t f ), (55)

where CI indicates the cost incurred by I nodes at time t, Ci(t f )
indicates the terminal

cost of corresponding state, and i(t f ) indicates the number of corresponding state at
the terminal moment.

Theorem 5. There is an optimal control set (µ∗(t), ν∗(t)) = ({D∗IS(t), D∗LSS(t)}, {A∗SI(t),
A∗LII(t)}) such that

J(t, X(t), µ∗(t), ν∗(t)) = maxνminµ J(t, X(t), µ(t), ν(t)) = minµmaxν J(t, X(t), µ(t), ν(t)) (56)

and the values of A∗SI and D∗IS follow (57)–(60)

A∗SI(t) =
{

maxASI(t) ∆1 > 0
minASI(t) ∆1 < 0

(57)

A∗LII(t) =
{

maxALII(t) ∆2 < 0
minALII(t) ∆2 > 0

(58)

D∗IS(t) =
{

maxDIS(t) ∆3 < 0
minDIS(t) ∆3 > 0

(59)

D∗LSS(t) =
{

maxDLSS(t) ∆4 < 0
minDLSS(t) ∆4 > 0

(60)

where ∆1 = [λI(t)− λS(t)]α2S(t)I(t), ∆2 = [λI(t)− λLI(t)]CLI(t), ∆3 = [λS(t)− λI(t)]
α1 I(t) and ∆4 = [λS(t)− λLS(t)]CLS(t).

Proof. The saddle point in the game exists and it is unique [53]. Subsequently, referenc-
ing [54], the game has a value V, such that

V = maxνminµ J(t, X(t), µ(t), ν(t)) = minµmaxν J(t, X(t), µ(t), ν(t)) = J(t, X(t), µ∗(t), ν∗(t)). (61)

In view of (1)–(5) and (55), the Hamiltonian function is constructed as:

H(t, X(t), λ(t), µ(t), ν(t)) =λS(t) ˙S(t) + λI(t) ˙I(t) + λLS(t) ˙LS(t) + λLI(t) ˙LI(t)

+ λD(t) ˙D(t) + CI I(t)
(62)

where λ(t) = {λS(t), λI(t), λLS(t), λLI(t), λD(t)} is a set of co-state variables.
By applying the Pontryagin Maximum Principle [55], the constraints of the co-state

variables are formulated, as follows.

˙λS(t) = [λS(t)− λI(t)]α2 ASI(t)I(t) + [λS(t)− λLS(t)]µ + [λS(t)− λD(t)]γ (63)

˙λI(t) = [λS(t)− λI(t)]α2 ASI(t)S(t) + [λI(t)− λS(t)]α1DIS(t) + [λI(t)− λLI(t)]µ− CI (64)

˙λLS(t) = [λLS(t)− λS(t)]CDLS(t) + [λLS(t)− λD(t)]γ (65)

˙λLI(t) = [λLI(t)− λI(t)]CALI(t) + [λLI(t)− λD(t)]γ (66)

˙λD(t) = 0 (67)

Besides, the terminal constraints of the co-state variables are formulated as:

λi(t f ) = Ci(t f )
(68)
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where i ∈ X(t).
Consequently, the optimal strategies are obtained by

H(t, X∗(t), λ(t), µ∗(t), ν(t)) ≤ H(t, X∗(t), λ(t), µ∗(t), ν∗(t)) ≤ H(t, X∗(t), λ(t), µ(t), ν∗(t)). (69)

As a consequence, in the optimal case, when [λI(t)− λS(t)]α2S(t)I(t) > 0, the mal-
ware exerts maximum effort to infect vulnerable sensor nodes; otherwise, it does not
propagate. When [λI(t)− λLI(t)]CLI(t) < 0, the malware exerts the minimum effort to
influence the charging process to LI nodes; otherwise, the LI nodes accept the charging
requests. Moreover, when [λS(t)− λI(t)]α1 I(t) < 0, WRSNs exert the maximum effort to
clear the malware; otherwise, the networks does nothing in removing malware. When
[λS(t) − λLS(t)]CLS(t) < 0, WRSNs exert the maximum effort to charge the LS nodes;
otherwise, LS nodes do not charge.

4. Simulation

Theorem 1 to Theorem 5 have been further verified here. In Section 4.1, the stable
solutions of the system (1)–(5) are obtained and proved, while the impact of charging is
analyzed by observing the variation of I nodes. In Section 4.2, the optimal solutions are
displayed by comparing with the groups without optimal controls. All of the simulations
are based on MacOS Catalina (Intel Core i5, 8 GB, 1.8 GHz) and MATLAB 2017b.

4.1. Stability Analysis

This part aims to test Theorem 1 to Theorem 4. Firstly, eight two-dimensional feasible
regions are constructed through the combinations of various state variables to analyze
their relationships. Subsequently, suppose that Λ = 0.1, γ = 0.005, µ = 0.05, α2 = 0.001,
α1 = 0.01, and C = 0.05. Therefore, whether R0 < 1 or R0 > 1, the total number of sensor
nodes is constant at 20 (i.e., S(t) + I(t) + LS(t) + LI(t) ≤ 20), including the initial value
(i.e., S(0) + I(0) + LI(0) + LS(0) = 20).

4.1.1. Disease-Free Equilibrium Stability

Here, four different state combinations (i.e., (S(t), I(t)), (LS(t), LI(t)), (S(t), LS(t)),
and (I(t), LI(t))) are given in order to testify the disease-free equilibrium point, as shown
in Figure 2. At this moment, R0 = 0.5360 < 1. Theoretically, S(∞) = 10.47, I(∞) =
LI(∞) = 0, and LS(∞) = 9.52, according to (18). Practically, the simulation results that are
shown in Figure 2 conform to Theorems 1 and 3.

The evolution in (S(t), I(t)) and (LS(t), LI(t)) are similar and so do (S(t), LS(t)) and
(I(t), LI(t)), as depicted in Figure 2. In Figure 2a,b, the curve starts from the boundary
and finally converges to (10.47, 0)((9.52, 0)). Specifically, as illustrated in Figure 2a,b, the
curve in the feasible region is attracted by I = −1.0028S + 10.5(LI = −0.9979LS + 9.5).
When malware only exists on LI nodes, a peak in the number of I nodes appears after
a period of time. The peak decreases as the initial number of S nodes increases, and it
eventually stays around at 3. At the same time, the number of I nodes always shows a
downward trend, and it is cleared when t → ∞. In Figure 2c,d, the curve is attracted
by LS = 1.1240S− 2.2479(LI = I), and finally converges to (10.47, 9.52)(0, 0). From the
beginning, an increase in the number of S(LS) or I(LI) nodes must lead to a decrease in the
number of LS(S) or LI(I) nodes, as shown in Figure 2c,d. Subsequently, the number of S and
LS nodes increase simultaneously, while the number of I and LI decrease simultaneously.
Consequently, in WRSNs, only S and LS nodes exist.
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Figure 2. Evolution of sensor nodes when R0 < 1. Different colors indicate that the curves start at
different boundaries. So do Figures 3–5.

Figure 3. Variation of S, I and LI nodes when R0 < 1.

Figure 3 illustrates a three-dimensional diagram of the system(15)–(17), where the
feasible region is in the triangular pyramid area. Note that Figure 2a,d are two feasible
region planes in Figure 3. Similarly, the curve gathers together, and then finally converges
to (10.47, 0, 0). In summary, a smooth transitional period exists before the system reaches
equilibrium. During the period, malware is eliminated from the network gradually and
the numbers of S and LS nodes maintain a steady growth. In the end, the malware is
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totally cleared in the WRSNs, and the numbers of S and LS nodes remain unchanged under
constant charging power.
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Figure 4. Evolution of sensor nodes when R0 > 1.

Figure 5. Variation of S, I and LI nodes when R0 > 1.

4.1.2. Epidemic Equilibrium Stability

Similarly, the same four combinations are applied here, as depicted in Figure 4. Sup-
pose that the values of coefficients, except for α2 = 0.005, remain constant, as stated in
Section 4.1.1. At this time, R0 = 2.6799 > 1. Substitute the coefficients into (19)–(21), we
obtained S∗ = 3.91, I∗ = 6.57 and LI∗ = 5.97. Moreover, the results that are presented in
Figure 5 confirm Theorem 2 and Theorem 4.
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When compared with Figure 2, when R0 > 1, the equilibrium points appear inside the
region, but not the boundary. In terms of evolution trends, Figure 4a,c and Figure 4b,d are
close. It is worth noting that the prerequisite for the existence of the epidemic equilibrium
point is that at least one I node exists. When compared with the case R0 < 1, at this time,
the number of I(LI) nodes is no longer reduced. The curve that is shown in Figure 4a,b
eventually converges to (3.91, 6.57) (3.55, 5.97). In particular, when the initial number of
I(LI) nodes is less than 6.57(5.97), the number of I(LI) nodes will increase significantly
after a gentle decline, as shown in Figure 4a,b. The curve that is presented in Figure 4a,b
is attracted by S = −1.1330LS + 11(LS = −1.1352LI + 10), and it finally converges to the
equilibrium point along it.

When compared with the case R0 < 1, the evolution curves of (S(t), LS(t))((I(t),
LI(t))) are similar at first. However, when the curves gather, they do not just show a
single evolution trend, but the increase and decrease appear at the same time, as shown in
Figure 4c,d. In Figure 4c,d, the curve begins from the boundary and it converges to (3.91,
3.55) (6.56, 5.97), when t→ ∞.

Figure 5 illustrates the limit system (15)–(17) in three-dimensional way. Similarly,
Figure 4a,d are the planes into the triangular pyramid region. Similar to the case R0 < 1,
the evolution of S, I, and LI nodes has a smooth transitional period before reaching the
equilibrium point. During the transitional period, when the number of S > 3.91, the trend
drops to (3.91, 6.57, 5.97); when the number of S < 3.91, the trend rises to (3.91, 6.57, 5.97).
In summary, in the case R0 > 1, if malware propagates on a large scale in WRSNs, after
a period of time, the numbers of I and LI nodes will decrease along a specific trajectory.
Meanwhile, the numbers of S and LS nodes increase along a specific trajectory, and finally
converge to (3.91, 6.57, 5.97). Conversely, when few malware exists in WRSNs, over a
period of evolution, the numbers of S and LS nodes decrease along the specific trajectory,
and the numbers of I and LI increase along the specific trajectory, and finally converge to
(3.91, 6.57, 5.97).

4.1.3. Influence of the Charging Rate C

The influence of charging rate is discussed detailedly by comparing the quantity of I
nodes with various C, as shown in Figure 6. Based on (55), C directly affects R0, thereby
affecting the prevalence of malware. As C increases, the peak of the quantity of I nodes
keeps growing and gradually saturates, as shown in Figure 6a. Under ten sets of C, only
C = 0.05 and C = 0.15 clear the malware. After simple calculation, we find, as C increases,
that R0 grows likewise, as illustrated in Figure 6b. Specifically, R0 = 1.000, when C = 0.207,
which indicates, when t→ ∞, that the malware is eliminated if C < 0.207 and prevalent if
C > 0.207.
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Such results reveal that, in WRSNs, in the confrontation with malware, the higher
charging power, the higher peak of malware propagation. This inspires us to properly
control the charging rate in order to prevent the prevalence of malware.

4.2. Optimal Control

In this section, we further classify Theorem 5 into three aspects: evolution of state
variables, overall cost and variation of control variables. The coefficients remain constant
as set in Section 4.1. Moreover, set CI = 0.05, S(0) = 19, I(0) = 1, LS(0) = 0, LI(0) = 0,
ASI(0) = 1, ALII(t) = 0, DIS(0) = 1, and DLSS(0) = 0. In particular, this section analyzes
the two cases of R0 (i.e., R0 < 1 and R0 > 1). Furthermore, the optimality of the strategies
(57)–(60) is highlighted by comparison with the non-optimal control groups .

Evolution of State Variables

In this part, the evolution of state variables under four cases is discussed, as shown in
Figure 7.

Case 1: R0 < 1 with optimal control, as shown in Figure 7a;
Case 2: R0 < 1 without optimal control, as shown in Figure 7b;
Case 3: R0 > 1 with optimal control, as shown in Figure 7c; and,
Case 4: R0 > 1 without optimal control, as shown in Figure 7d.
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Figure 7. Evolution of sensor nodes under four different cases.

The evolution trends of S and LS nodes are very close in the four cases. Specifically,
when t = 30, in Case 1, S = 10.45 and LS = 8.6469; in Case 2, S = 10.4412 and LS = 8.6379;
in Case 3, S = 9.2643 and LS = 8.5908; and, in Case 4, S = 9.3334 and LS = 8.0666. When
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R0 < 1 (i.e., Case 1 and Case 2), the number of I nodes always keeps decreasing. However,
when R0 > 1 (i.e., Case 3 and Case 4), the number of LI nodes shows increasing signs. As
for LI nodes, the number keeps rising in all four cases. Detailedly, when t = 30, in Case 1,
I = 0.2328 and LI = 0.6702; in Case 2, I = 0.4883 and LI = 0.4326; in Case 3, I = 0.9919
and LI = 1.1530; and, in Case 4, I = 1.5960 and LI = 1.0039.

The results indicate, in the consecutive attack-defense confrontation game, that the
number of I nodes decays faster than that of the control groups. Therefore, the Susceptible,
Infected, Low-energy, Susceptible (SILS) model under dynamic optimal controls is more
conducive to the clearance of malware in WRSNs.

4.3. Overall Cost and Optimal Controls

In this part, the four cases stated above are explained further in two aspects, including
accumulative costs and variation on control variables.

Figure 8 illustrates the cost under the four cases. From Figure 8, it can be seen that
the cost with optimal control is lower than that of the control group all of the time, which
indicates the validity. Specifically, in Case 1, the cost finally reaches 81.9044; in Case 2, the
cost finally reaches 98.4576; in Case 3, the cost finally reaches 162.8256; and, in Case 4, the
cost finally reaches 196.9237. The cost depends on the number of I nodes based on (55).
Thus, the cumulative cost is another embodiment of variation on the number of I nodes. It
can be seen, even under optimal control, that the number of I nodes when R0 > 1 is still
greater than that when R0 < 1.
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Figure 8. Overall cost.

Figure 9 depicts the variations of the control variables when R0 < 1 and R0 > 1
obtained from (57)–(60). Among them, Figure 9a shows the variation of DIA(t), Figure 9b
shows the variation of DLSS(t), Figure 9c shows the variation of ASI(t), and Figure 9d
shows the variation of ALII(t).

For WRSNs, its purpose is to minimize the cost. Therefore, whether R0 < 1 or R0 > 1,
WRSNs are sparing no effort to remove malware, as depicted in Figure 9a. However, the
charging process is not always performed. After charging started, in the case of R0 > 1,
owing to the excessive growth of malware, the charging of LS nodes stops immediately, as
shown in Figure 9b.

Regarding malware, its aim is to maximize the cost. Thus, in both cases, malware is
being copied and propagated almost all of the time, as depicted in Figure 9c. Similarly,
LI nodes do not always receive charging requests. If the sharp decline in the number of I
nodes appears (i.e., t = 3 when R0 < 1 and t = 19 when R0 > 1), charging LI nodes will
cause more malware to be removed, which is unconducive to the spread of the malware.
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Figure 9. Variation of control variables.

5. Conclusions

A novel model, namely SILS, has been proposed when considering the remaining
energy of WRSNs in this paper. In SILS, sensor nodes are divided into five states: suscepti-
ble, infected, susceptible in low-energy, infected in low-energy, and dysfunctional. After
theoretically proposing local and global stability, we further verify them by simulations.
The simulation results indicate some characteristics of the SILS model: before reaching the
equilibrium point (E0 or E∗), there exists a phenomenon that the number of S(I) and LS(LI)
nodes increases or decreases linearly simultaneously. Besides, the positive relationship
between charging rate C and basic reproductive number R0 is revealed, which enlightens us
to adjust the charging rate C reasonably. Meanwhile, the threshold of C is obtained, which
is, if C is higher than the threshold, malware will be prevalent, and below the threshold,
malware will be eliminated. In addition to analyzing the stability, by constructing a game
model, we further analyze the attack-defense methods of malware and WRSNs, and derive
the optimal strategies for both players. At the same time, by comparing the cases R0 > 1
and R0 < 1, the simulation results show that the optimal controls can effectively inhibit the
growth of I nodes and reduce the overall costs.

This paper discusses a static, homogeneous network. However, with the continuous
development of the Internet of Things industry and the integration of various terminal
devices, heterogeneous network technology has become mainstream and it is one of
our future research areas. At the same time, the convenience that is brought by the
mobile technology has became increasingly prominent, such as mobile base stations and
mobile chargers. However, the potential safety hazards that are caused by the mobile
devices cannot be ignored. Moreover, with the investigation of the actual situation and
the deepening of the mathematical model, various random model problems will be raised,
which are also the trends in our future research.
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Abbreviations
The following abbreviations are used in this manuscript:

Symbol Description
Λ Birth rate
γ Death rate
µ Depletion rate
α1 Removal rate
C Charging rate
α2 Transmission rate
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