
sensors

Article

UAV-Based RGB Imagery for Hokkaido Pumpkin
(Cucurbita max.) Detection and Yield Estimation

Lucas Wittstruck 1,* , Insa Kühling 2 , Dieter Trautz 3, Maik Kohlbrecher 3 and Thomas Jarmer 1

����������
�������

Citation: Wittstruck, L.; Kühling, I.;

Trautz, D.; Kohlbrecher, M.; Jarmer, T.

UAV-Based RGB Imagery for

Hokkaido Pumpkin (Cucurbita max.)

Detection and Yield Estimation.

Sensors 2021, 21, 118. https://

dx.doi.org/10.3390/s21010118

Received: 4 December 2020

Accepted: 23 December 2020

Published: 27 December 2020

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional claims

in published maps and institutional

affiliations.

Copyright: © 2020 by the authors. Li-

censee MDPI, Basel, Switzerland. This

article is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC BY)

license (https://creativecommons.org/

licenses/by/4.0/).

1 Remote Sensing Group, Institute of Computer Science, Osnabrück University, 49074 Osnabrück, Germany;
thomas.jarmer@uos.de

2 Agronomy and Crop Science, Kiel University, 24118 Kiel, Germany; kuehling@pflanzenbau.uni-kiel.de
3 Faculty of Agricultural Sciences and Landscape Architecture, Osnabrück University of Applied Sciences,

49076 Osnabrück, Germany; d.trautz@hs-osnabrueck.de (D.T.); m.kohlbrecher@hs-osnabrueck.de (M.K.)
* Correspondence: lwittstruck@uni-osnabrueck.de

Abstract: Pumpkins are economically and nutritionally valuable vegetables with increasing popular-
ity and acreage across Europe. Successful commercialization, however, require detailed pre-harvest
information about number and weight of the fruits. To get a non-destructive and cost-effective
yield estimation, we developed an image processing methodology for high-resolution RGB data
from Unmanned aerial vehicle (UAV) and applied this on a Hokkaido pumpkin farmer’s field
in North-western Germany. The methodology was implemented in the programming language
Python and comprised several steps, including image pre-processing, pixel-based image classifica-
tion, classification post-processing for single fruit detection, and fruit size and weight quantification.
To derive the weight from two-dimensional imagery, we calculated elliptical spheroids from lengths
of diameters and heights. The performance of this processes was evaluated by comparison with
manually harvested ground-truth samples and cross-checked for misclassification from randomly
selected test objects. Errors in classification and fruit geometry could be successfully reduced based
on the described processing steps. Additionally, different lighting conditions, as well as shadows,
in the image data could be compensated by the proposed methodology. The results revealed a
satisfactory detection of 95% (error rate of 5%) from the field sample, as well as a reliable volume
and weight estimation with Pearson’s correlation coefficients of 0.83 and 0.84, respectively, from the
described ellipsoid approach. The yield was estimated with 1.51 kg m−2 corresponding to an average
individual fruit weight of 1100 g and an average number of 1.37 pumpkins per m2. Moreover, spatial
distribution of aggregated fruit densities and weights were calculated to assess in-field optimization
potential for agronomic management as demonstrated between a shaded edge compared to the rest
of the field. The proposed approach provides the Hokkaido producer useful information for more
targeted pre-harvest marketing strategies, since most food retailers request homogeneous lots within
prescribed size or weight classes.

Keywords: remote sensing; drones; random forest; low-cost sensor; winter squash; vegetables;
fruit size; fruit weight; Europe

1. Introduction

Pumpkins (Cucurbita spp.) are produced on 2 million ha of land worldwide and
becoming increasingly popular across Europe [1]. In Germany, the harvested area steadily
increased over the last two decades and reached more than 5000 ha in 2018 (Figure 1).
Whereas the global yield was on a constant level of about 13.3 t ha−1, in Germany, yields
are on a slight decrease was observed [1]. This could be due to a shift towards more
consumer-oriented production of smaller fruits (<1.5 kg).
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Figure 1. Development of cultivation area and yield in Germany (aggregated data on pumpkin, 
squash and gourds). Data source: Reference [1]. 

The origin of pumpkin domestication was in the Americas, where several Cucurbita 
species were cultivated in the pre-Columbian era; together with maize, they were later 
brought to Europe [2]. Breeding progress for earliness and adaptation to temperate cli-
mate helped to spread the cultivation across higher latitudes. Curcubita has manifold 
forms and properties, and the very popular “Hokkaido” pumpkins belong to the Curcubita 
maxima species within the “Hubbard” varietal group [2]. Whereas, in Europe, only a few 
species are produced for professional food retailing, most of the manifold pumpkins (or 
winter squash) are cultivated by private gardeners and in developing countries by local 
farmers from landraces and saved seeds. 

There are two main directions of cultivation: for human consumption of the whole 
plant or for high-quality oil production (from the seeds), as well as a smaller share as 
medical plants due to their secondary ingredients (e.g., high amount of carotenoids) [2,3]. 
The seeds are a high-energy source and known as snack in some regions of the world [4]. 
The production for European food retail is focusing on small individual fruits since about 
0.5 to 1.5 kg. Large pumpkins (>2.2 kg) can successfully be commercialized around Hal-
loween for carving. 

Due to a more diverse fruit development in pumpkin fields compared to crops 
planted in higher stand densities, precise yield predictions are difficult but of great inter-
est for logistic planning and marketing activities. Non-destructive pre-harvest yield esti-
mations with detailed information about size, weight and number of fruits can help farm-
ers to improve their commercialization strategies. Unmanned aerial vehicle (UAV)-based 
remote sensing approaches are a cost-effective way to gain such information. 

In recent years, high-resolution UAV data have become an import source for many 
agricultural applications, such as plant detection [5,6], plant monitoring [7,8], or yield pre-
diction [9,10]. Especially, as drones and basic RGB camera systems have been getting more 
affordable, the use of drone systems has increased in the agricultural sector. 

Current studies have demonstrated the suitability of UAV data to detect and count 
fruits for yield estimation, including strawberries [11], apples and oranges [12], citrus 
fruits [13], or melons [14]. However, from our state of knowledge, almost no studies are 
available on the detection of pumpkin fruits for yield estimations from UAV data. The 
main challenges in the above-mentioned papers were related to the detection of single 
fruits which overlap [11] or were partially hidden under leaves [13]. To overcome those 

Figure 1. Development of cultivation area and yield in Germany (aggregated data on pumpkin,
squash and gourds). Data source: Reference [1].

The origin of pumpkin domestication was in the Americas, where several Cucurbita
species were cultivated in the pre-Columbian era; together with maize, they were later
brought to Europe [2]. Breeding progress for earliness and adaptation to temperate climate
helped to spread the cultivation across higher latitudes. Curcubita has manifold forms and
properties, and the very popular “Hokkaido” pumpkins belong to the Curcubita maxima
species within the “Hubbard” varietal group [2]. Whereas, in Europe, only a few species
are produced for professional food retailing, most of the manifold pumpkins (or winter
squash) are cultivated by private gardeners and in developing countries by local farmers
from landraces and saved seeds.

There are two main directions of cultivation: for human consumption of the whole
plant or for high-quality oil production (from the seeds), as well as a smaller share as
medical plants due to their secondary ingredients (e.g., high amount of carotenoids) [2,3].
The seeds are a high-energy source and known as snack in some regions of the world [4].
The production for European food retail is focusing on small individual fruits since about
0.5 to 1.5 kg. Large pumpkins (>2.2 kg) can successfully be commercialized around
Halloween for carving.

Due to a more diverse fruit development in pumpkin fields compared to crops planted
in higher stand densities, precise yield predictions are difficult but of great interest for
logistic planning and marketing activities. Non-destructive pre-harvest yield estimations
with detailed information about size, weight and number of fruits can help farmers to
improve their commercialization strategies. Unmanned aerial vehicle (UAV)-based remote
sensing approaches are a cost-effective way to gain such information.

In recent years, high-resolution UAV data have become an import source for many
agricultural applications, such as plant detection [5,6], plant monitoring [7,8], or yield
prediction [9,10]. Especially, as drones and basic RGB camera systems have been getting
more affordable, the use of drone systems has increased in the agricultural sector.

Current studies have demonstrated the suitability of UAV data to detect and count
fruits for yield estimation, including strawberries [11], apples and oranges [12], citrus
fruits [13], or melons [14]. However, from our state of knowledge, almost no studies are
available on the detection of pumpkin fruits for yield estimations from UAV data. The
main challenges in the above-mentioned papers were related to the detection of single
fruits which overlap [11] or were partially hidden under leaves [13]. To overcome those
restrictions, the studies used techniques from the currently very successful field of deep
learning, allowing the shape of a fruit to be learned using a neural network. However, these
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models usually require a large amount of training data to outperform classical methods [15]
and are very computationally expensive to train.

The aim of this study was to develop a pipeline to detect and count Hokkaido fruits
for yield prediction using high resolution UAV RGB imagery. Therefore, we used classical
methods from the field of machine learning and computer vision, which have been success-
fully applied in object detection tasks [10,16]. In order to address the issue of overlapping
and close-by fruits, we implemented a simple conditional and thresholding strategy to
split those fruits. For shape reconstruction, we used geometric features. Besides this, the es-
timated number and yield distribution of the fruits within the study area was investigated
and evaluated to derive agronomic implications.

2. Materials and Methods
2.1. Field Management

The experimental site was located on a 0.25 ha field in North-western Germany
(52.33◦ N, 7.97◦ E WGS84, 65 m asl) close to Osnabrück on a Stagnic Cambisol soil type,
following the World Reference Base (WRB) classification [17] with low to medium yield
potential. The climate is characterized as temperate oceanic (Cfb according to Köppen-
Geiger classification) [18] with a mean annual air temperature of 9.4 ◦C and 883 mm annual
precipitation. The experimental growing season received average precipitation but with
a considerably uneven distribution, and temperatures were 1.6 ◦C above the long-term
average (Figure 2).
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The previous crop on the field was maize, and all agronomic operations are listed in
Table 1. The Hokkaido pumpkins (Cucurbita max. Duchesne cv. Uchiki Kuri) were planted
as seedlings in growth stage 12 according to BBCH [20] with a semi-automated planting
machine in mid-May. Harvest took place at maturity after 130 days.
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Table 1. Agronomic management during the cropping season 2017. DAP: days after planting.

Date DAP Management

30 March −48 Tillage:
Primary soil cultivation by moldboard plough (25 cm depth)

15 May −2 Fertilization:
60 kg N ha−1, 60 kg P ha−1, 60 kg K ha−1

16 May −1 Tillage:
Seedbed preparation by cultivator with crumbler roller

17 May 0 Planting:
Cultivar Uchiki Kuri, 10.000 plants ha−1, 2 m row width

24 May 7 Weed regulation: once a week, 5 times
Between rows by harrow, in row manually

7 June 21 Fertilization:
15 kg N ha−1, 15 kg P ha−1, 15 kg K ha−1

24 September 130 Harvest

2.2. UAV Image Data

High-resolution UAV image data were acquired on 23 June 2017 under cloudless
weather conditions to ensure similar illumination conditions. For the aerial survey, a DJI
Phantom 4 was used, which features an on-board RGB camera with a sensor resolution of
12 megapixels and a focal length of 5.74 mm. A flight altitude of 46 m above ground level
was chosen. This allowed a spatial resolution of 1 cm and an overall flight time of about
7 min to cover the study area.

For georeferencing, ten field targets were placed evenly in the study area, which were
used as ground control points (GCP) in the post-processing step. The target centers were
located using a differential GPS (bi-frequency GNSS receiver) based on the German SAPOS
correction service for precise positioning in Real-Time Kinematic (RTK) mode.

The flight was conducted at noon so that shadowing was reduced to a minimum.
During the flight, we used GPS and GLONASS positioning (p-mode) for platform stability.
The camera was oriented vertically using the integrated three-axis gimbal. A total of
106 images were acquired with a side and front overlap of 75%, respectively.

2.3. Field Sampling

After the UAV flight, a total of 100 randomly selected Hokkaido pumpkins were
measured for diameter and height, and the exact position of each pumpkin fruit was
located by differential GPS. The diameter refers to the largest horizontal extension of the
pumpkin, whereas the height is determined by the distance between the stem and the
blossom end. During harvest, which was carried out a few days after the flight, another
40 pumpkins were measured following the same collection procedure. For yield estimation,
we also determined the weights of these pumpkin fruits.

2.4. Methodology for Fruit Identification

The methodology of this work consisted of numerous steps, including image pre-
processing (1), pixel-based image classification (2), classification post-processing for single
fruit detection (3–4), and fruit quantification (5). All steps of the methodology were
implemented in the programming language Python (version 3.7). An overview of the
proposed pipeline is illustrated in Figure 3.
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In the first step, we created an orthophoto mosaic from the collected UAV images
based on photogrammetric processing using the Agisoft Metashape software (Version 1.5.3).
In addition, the image was georeferenced using the located in-field targets. Then, we
processed the collected UAV images with the Agisoft Metashape software (Version 1.5.3),
including image stitching and georeferentiation using in-field targets. For fruit detection
and counting, a classification approach was initially used. Therefore, representative pixels
of the classes fruit and non-fruit were manually digitized from the generated orthomosaic.
The samples were then divided equally into a training and test set. For each class, 1000
pixels were randomly selected from the test data to evaluate the classification algorithm.

The pixel-based classification of the Hokkaido fruits was based on a binary random
forest (RF) algorithm, which consists of large number of decision trees, whose individual
results are combined into a single classification result. Since multiple decision trees are
used, this approach is considered to be robust against overfitting, as well as unbalanced
class sizes [21]. The RF enhances common decision trees using the methods of bagging
and random feature selection. The first implies that each decision tree is assigned only
to a random selection of training data, whereas the random feature selection reduces
the number of input variables randomly [22]. The classification relies on the assignment
probabilities of all trees, which are determined by a majority vote. This means that a certain
input is assigned to that class, which is predicted by most of the trees.

In this study, the RF classifier was instantiated with a total of 500 trees, since studies
have shown that the error term remains nearly constant with this number of trees [23]. To
separate the classes within a decision tree, we used the Gini Index, which measures the
average gain of class purity by splits of a given variable [24]. The accuracy assessment of
the classification model was based on the independent test data. The classification quality
was determined using a confusion matrix, including overall accuracy (OA), producer’s
accuracy (PA), and user’s accuracy (UA).

In order to overcome misclassifications in the binary classification map, we applied a
sequence of morphological filters. The idea behind this approach was to remove isolated
pixel with high uncertainty, as well as to increase the homogeneity of the segmented fruit
objects in shape and size. Morphological filters are Boolean filters, which are very effective
for smoothing binary images [25]. In this context, two basic morphological operators
are often used: erosion and dilation. The dilation filter expands the size of an object by
adding pixels at the object boundary, which also allows gaps within objects to be closed.
In comparison, the erosion filter reduces the size of the foreground. Therefore, objects
of small size are removed, and object boundaries are sharpened [26]. Both operations
produce a homogeneous appearance of objects, depending on the shape of the object and
the given filter size. However, the application of this operators also leads to a change
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in object size. To keep the approximated object sizes, the operators opening and closing
are often applied, which uses the operators erosion and dilation in sequence. Opening is
defined as the application of erosion, followed by a dilation. Closing is determined as dilation,
followed by erosion. Opening and closing have the same smoothing properties as erosion
and dilation, respectively [25]. In this work, we initially applied the opening operation to
eliminate classification noise, followed by closing for smoothing the remaining objects. For
the morphological filtering, a kernel size of 3 × 3 pixel was specified.

Even with the application of morphological filtering, the derivation of the correct
shape and size of the segmented Hokkaido fruits can be limited if they are partially covered
by leaves or stems. To reconstruct the actual shape of the segmented fruits, the geometric
form of an ellipse was applied to every segmented object.

The ellipse was chosen because the Hokkaido fruit is normally round-shaped, and its
height is usually smaller compared to its diameter. This results in an oval shape, which
can be approximated by an ellipse. To apply the ellipses to the segmented objects, every
object had to be identified in the image first. This was accomplished by using the method
findContours by Suzuki et al. [27] of the open-source computer vision library (OpenCV).
In the next step, for every fruit object, an ellipse was approximated using the fitEllipse
algorithm. This function uses the principle of least squares to fit an ellipse to a selection of
points on a given two-dimensional plane [28].

Based on the segmentation steps presented, nearby fruits could be classified as joint
objects. For the quantification of the Hokkaido fruits, it was essential to split an object
accordingly to the number of fruits it represents. In order to select those objects, two
conditions were tested: Firstly, the aspect ratios of the applied ellipses were calculated. It
was assumed that several fruits within an ellipse result in a stretched geometry, leading to
an increased aspect ratio, as illustrated in Figure 4 (left). Secondly, the difference between
the fruit ellipses and their corresponding object segmentation after the morphological
filtering was calculated. Here, the approximation errors of the ellipses compared to the
more precise object segmentations should be highlighted to reveal spaces between the
nearby fruits, as shown in Figure 4 (middle). For both conditions, threshold values were
applied to identify objects with multiple fruits.
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Figure 4. Illustration of the tested conditions for object splitting (left and middle), as well as the
implementation for multi-fruit object separation.

To separate the identified objects, a bounding box was placed around these segmented
objects before the ellipse has been applied (Figure 4, right). Then, the object was divided
into three equally sized areas, which were always oriented parallel to the shorter length
of the bounding box. Within the central area, a separation of the considered object was
performed where the object had the lowest extension. After splitting, for every new
generated object, an ellipse was approximated, as presented before. For separation of
objects that represented more than two fruits, the above steps were repeated iteratively as
long as the tested conditions matched a considered object. After this step, the total number
of pumpkins in the field could be counted.
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Besides the counting of fruits, this study aimed to derive the weights of Hokkaido
fruits for yield prediction. However, the fruit weights could not be determined directly
from the UAV data, due to their two-dimensional representation in the orthomosaic.
Nevertheless, we assumed that the fruit weight is strongly related to the fruit volume,
which can be approximated by a 3D oblate spheroid shape. An oblate spheroid is defined
by a minor axis (c) and two major axes (a), resulting in symmetrical form with flattened
height. This form is very similar to the shape of a Hokkaido, which is mostly round-shaped
and squashed from above (Figure 5).
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For this, we defined the longer axis of the ellipse to be the diameter of a fruit, whereas 
the shorter axis was set as height. As the Hokkaido pumpkins predominantly lie side-
ways, we assumed that the height and the diameter could be plausibly derived from the 
image data. For the weight estimation, we calculated an empirical linear regression using 
the weights of the 40 harvested pumpkins and used the calculated regression equation to 
estimate the weight from the calculated volume of each generated ellipse. The perfor-
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For volume approximation, the diameters and heights were determined of each fitted
ellipse in the image and correlated with the major and minor axes of the spheroid using
the semi-height and semi-diameter (Equation (1)).

Vspheroid = 4π
3 ∗ a2 ∗ c

Vpumpkin = 4π
3 ∗

(
diameter

2

)2
∗ height

2 .
(1)

For this, we defined the longer axis of the ellipse to be the diameter of a fruit, whereas
the shorter axis was set as height. As the Hokkaido pumpkins predominantly lie sideways,
we assumed that the height and the diameter could be plausibly derived from the image
data. For the weight estimation, we calculated an empirical linear regression using the
weights of the 40 harvested pumpkins and used the calculated regression equation to
estimate the weight from the calculated volume of each generated ellipse. The performance
of the regression model was validated using the coefficient of determination (r2).

The evaluation of the algorithm for fruit detection, as well as the estimation of fruit
volumes and weights from UAV imagery, was performed through the comparison between
the measured pumpkin fruits in the field and the corresponding fruits found in the image.
For volume and weight estimation, the performance was investigated using the Pearson
correlation coefficient. In order to evaluate incorrectly identified fruits in the UAV image,
we used a random number generator (RNG) to select 200 objects from the orthoimage,
which were then manually checked by human for accuracy.

3. Results
3.1. Descriptive Statistics of Field Data

Heights of the pumpkin fruits were measured in the range 6.5–19.0 cm (mean: 12.4 cm).
Measurements of the pumpkin fruits diameters provided very similar values with slightly
higher maximum (21.0 cm) and a mean of 13.8 cm, but pumpkin fruits with very low
diameter of 6.0–7.0 cm were slightly overrepresented in the collected data set. The difference
in mean of height and diameter is typical due to the slightly flattened shape of Hokkaido
pumpkins. Weight varied over a wide range (142–3011 g; mean: 1.187 g), which was
indicated by a standard deviation (SD) of 776.2 g. In case of pumpkin fruits weight, we
sampled a high number of very light fruits with eight out of 40 pumpkins weighted less
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than 420 g. Detailed descriptive statistics of the investigated fruits are summarized in
Table 2.

Table 2. Descriptive statistics of pumpkin fruits (n: sample size).

n Minimum Maximum Mean SD

Height (cm) 140 6.5 19.0 12.4 2.6
Diameter (cm) 140 6.0 21.0 13.8 3.0

Weight (g) 40 142.0 3011.0 1187.0 776.2

3.2. Accuracy Assessment of Random Forest Classification

With an overall accuracy of 94.7% most of the pixel were correctly identified. However,
differences in accuracy were found between the two classes tested. With a PA of 97.3%, non-
fruit pixels could be classified particularly successfully. Higher estimation errors occurred
for the fruit class, where an PA of 92.1% was achieved. For the user’s accuracy, the results
of the considered classes were reverse. In this way, a UA of 92.5% for the non-fruit class
could be achieved, whereas the UA for the pumpkin class reached 97.3%.

3.3. Mapping of the Estimated Hookaido Pumpkins

Figure 6 shows the generated orthophoto, as well as a subset, of the classification
map before and after the post-processing steps. In the UAV imagery, it can be seen that
the investigated field was divided into an illuminated and a shaded region. Because of
this, the fruit colors appeared very different in the orthophoto. In the illuminated part of
the image, the fruits showed a very light reddish coloring. Due to the direct sunlight, the
fruits were partially overexposed in many cases, resulting in a bright spot. Additionally,
shadows appeared more frequently in this area of the image. In the shaded area, the fruits
were evenly colored in an intense red, so that they could be clearly differentiated from
the soil and the plants. In many cases, the fruits were only partially visible, as they were
covered by leaves or stems.

Sensors 2021, 21, x 9 of 16 
 

 

 
Figure 6. Orthophoto with selected classification steps during fruit detection procedure. 

3.4. Quantification of Hokkaido Fruits 
The presented mapping result revealed a high detection accuracy, which can be sta-

tistically confirmed, as the algorithm was able to detect 95% of the located and measured 
fruits from our field sampling. Additionally, it was shown that, from a sample of 200 de-
tected pumpkins, all of them actually corresponded to real pumpkin fruits.  

The regression model to predict the fruits weights from volumes indicated the strong 
relationship between calculated volume (from Equation (1)) and observed weight. The 
variance of the measured weights could be explained by more than 99% by the calculated 
pumpkin fruit volume. Consequently, the pumpkin fruit volume can be assumed as a very 
good proxy for the fruit weight.  

Figure 7 (left) indicates a reliable relationship between the fruit volume observed and 
estimated from classified fruits in the image data with a correlation coefficient of 0.736 
(significant at 99% level). If looking at the scatterplot in details, obviously, two samples 
do not follow the general trend. Fruit “A” was observed with a volume of 4040 cm³ but 
estimated with the much lower volume of 1885 cm3. The reason for this mismatch was 
that this fruit was partly covered by leaves (Figure 8, left). The other conspicuous case was 
fruit “B” with an observed volume of 1995 cm3 but estimated with a volume more than 
three times of the observed one (6839 cm2). In this case, insufficient image mosaicking was 
responsible for this “huge” fruit explaining the extremely high volume (Figure 8, right). If 
these two obviously erroneous cases were excluded from analysis, the correlation in-
creases substantially to 0.826 (significant at 99% level). 

Figure 6. Orthophoto with selected classification steps during fruit detection procedure.



Sensors 2021, 21, 118 9 of 15

Despite different representations of the Hokkaido fruits in the image, the majority of
the fruits was correctly identified based on the initial RF classification. Especially, in the
shaded area of the image, fruits were classified very precisely in size and shape. Fruits
in the illuminated region were recognized with a similar accuracy, although some fruits,
which were partially overexposed, revealed gaps. Besides this, bright plant stems were
often incorrectly recognized as Hokkaido fruits. In comparison, these classification errors
did not appear in the shaded area. Frequently, nearby pumpkins were merged into single
segmented objects.

The classification map after the post-processing steps provided a significant improve-
ment in the classification performance. Therefore, misclassifications could be removed,
and gaps within the pumpkin objects, as well as errors of the pumpkin shape, have been
decreased substantially. Furthermore, joined objects, which represent multiple pumpkin
fruits, could be separated successfully in most of the cases. In only a very few examples,
single segmented fruits were separated.

3.4. Quantification of Hokkaido Fruits

The presented mapping result revealed a high detection accuracy, which can be
statistically confirmed, as the algorithm was able to detect 95% of the located and measured
fruits from our field sampling. Additionally, it was shown that, from a sample of 200
detected pumpkins, all of them actually corresponded to real pumpkin fruits.

The regression model to predict the fruits weights from volumes indicated the strong
relationship between calculated volume (from Equation (1)) and observed weight. The
variance of the measured weights could be explained by more than 99% by the calculated
pumpkin fruit volume. Consequently, the pumpkin fruit volume can be assumed as a very
good proxy for the fruit weight.

Figure 7 (left) indicates a reliable relationship between the fruit volume observed and
estimated from classified fruits in the image data with a correlation coefficient of 0.736
(significant at 99% level). If looking at the scatterplot in details, obviously, two samples
do not follow the general trend. Fruit “A” was observed with a volume of 4040 cm3 but
estimated with the much lower volume of 1885 cm3. The reason for this mismatch was
that this fruit was partly covered by leaves (Figure 8, left). The other conspicuous case was
fruit “B” with an observed volume of 1995 cm3 but estimated with a volume more than
three times of the observed one (6839 cm2). In this case, insufficient image mosaicking was
responsible for this “huge” fruit explaining the extremely high volume (Figure 8, right). If
these two obviously erroneous cases were excluded from analysis, the correlation increases
substantially to 0.826 (significant at 99% level).

Correlation between observed and estimated weight of fruits was found to be highly
significant at 99% level with an r of 0.844. Although a certain scattering of data was
observed, no noticeable outlier was identified (Figure 7, right).

The predicted fruit weights in the image were divided in weight classes, according to
Reference [29]. Table 3 summarizes the total number of saleable (72.5%) and the share of
non-marketable fruits from the mapping and classification procedures. Small pumpkins
below 500 g can be utilized as animal feed.

Table 3. Distribution of Hokkaido fruits within the weight classes for food retailing.

Weight Class (kg) Classification Data Percentage

<0.5 * 628 27.5
0.5–0.8 351 15.3
0.8–1.0 204 8.9
1.0–1.5 535 23.4
≥1.5 568 24.8

Sum 2286 99.9

* non-marketable→ forage.
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Figure 9 shows the spatial distribution of pumpkins by weight classes according to the
market practices with a gradient from more and heavier fruits to less and lighter pumpkins
towards the south-eastern part of the field.

In Figure 10, an aggregated in-field distribution of number and weight per 3 × 3 m
is presented. The number of fruits in the cells varied between one fruit and 25 fruits
(Figure 10 left). The mean number of fruits for the entire field was determined with 1.37
fruits (SD: 1.19) per m2. A similar pattern of weight classes was derived from Figure 10
(right) with pumpkin weights ranging from less than one kg to more than 35 kg in the
maximum. However, only one cell provided a weight higher than 26 kg. In relation to the
field size, a mean weight of 1.51 kg m−2 (SD: 1.74) was estimated. Going into detail, one cell
provided both the highest number of pumpkin fruits (25 per 9 m2), as well as highest yield
(35.7 kg per 9 m2).
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Figure 9. Field distribution of pumpkin fruits by weight classes.
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Looking at the south-eastern part of the field exhibits a different pattern compared to
the rest of the field. In this area, the number of fruits, as well as the yield, were substantially
below the rest of the field. This disparity shows the impact of the shading at the south-
eastern edge with lower area-scaled average values. Besides this, no spatial pattern for the
investigated field could be observed, neither for the number of fruits nor the yield.

Linking the number of fruits per cell to the predicted weight provided a substantial
relationship with an r of 0.882 (significant at 99% level). Obviously, the number of fruits
within a 3 × 3 m cell is highly positively correlated with the yield per cell.

4. Discussion

Many investigations described approaches for yield estimation from UAV-based
images for crops, like cereals or oilseed rape, that form yield from stands with uniform
single plants [30–32]. Those concepts often use total aboveground biomass and derive grain
yield by known or estimated harvest index. In addition, applications for orchards were
described for estimating fruit yield from permacultures, like apple or citrus, where the trees
remain on the field [12,13]. For vegetables, stand height or biomass-based applications
were described for eggplants, tomato, and cabbage under tropical conditions in India [33].
Kalantar [14] presented a successful individual fruit detection for yield estimation in a
melon field where leave senescence started before harvest. Here, we presented a novel
method for precise yield prediction based on single fruit identification, including size and
weight classification, that allows more detailed harvest determination from a vegetable
field with Hokkaido pumpkins between living leaves and stems.

4.1. Methodologic Performance

The pixel-based classification results using the RF classifier revealed high accuracies
for both classes. However, it was found that fruit pixels were more often mistakenly
classified as non-fruit than vice versa. One reason can be the high heterogeneity of this
class, which includes different surfaces in various lightning conditions. In comparison, a
very high user’s accuracy was achieved for the fruit class. This indicates that pixels of this
class have a very high probability of belonging to this class [34], which is important for
fruit counting as it reduces the number of wrong identified pumpkins as shown.

The mapping of the estimated pumpkin fruits revealed that the detection of single
pumpkin fruits, as well as the approximation of their shapes, was achieved with high
accuracies. RF classifications are described to achieve good accuracies for fruit detec-
tion [35], but the challenge increases in images from natural environments, as in our case.
Regarding the RF classification approach, misclassifications in the illuminated field region
between fruits with high reflectance (bright spot) and plant stems was limited, due to the
similar color representation in the image, whereas other studies aimed on an additional
shadow-removal step during the post-processing to reduce classification errors [36]. In
our example, in the shaded area, noticeably fewer pixels were incorrectly assigned, which
can be explained by the distinct color difference between the reddish fruits and the dark
appearance of the soil and plants. The morphological filtering led to improved classifica-
tion results. So, misclassified pixel of plant stems could be eliminated, and gaps within
the segmented objects could be closed. This was possible as wrong classified pixel often
occurred isolated or in a very narrow extend, which allowed them to be differentiated from
the usually larger fruits.

The separation of neighboring pumpkin fruits was successfully applied in most cases.
This issue usually poses a great challenge in single fruit detection [12,37]. A few errors were
recognized where blurring was present in the image. Therefore, contours of individual
fruits could not be precisely approximated by the algorithm.

The estimation of the fruit volumes and weights from the UAV image showed reliable
correlations to the observed data. This confirms the positive results for single fruit detection
and shape estimation based on the implemented algorithm. Uncertainties in prediction
could be attributed to errors in image mosaicking and the occlusions from leaves and stems.
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The second issue has been already discussed in similar studies [12,13]. A further limitation
in the prediction is given if pumpkins are growing vertically in the field because then the
height of the fruit cannot be estimated from the top view image. However, this could only
be observed for a small number of the pumpkins harvested.

4.2. Agronomic Consequences

Compared to a field survey from Hokkaido cultivation of the same cultivar in Ger-
many [29], the average yield of 1.51 kg m−2 with an average number of 1.37 pumpkins
per m2 was lower (2 fruits m−2, 1.91 kg m−2). Even though the plant density of 1 seedling
m−2 was the same, these differences can be explained by higher fertilization (∆ N 45 kg)
and drip irrigation versus rainfed water supply in our experiment. Besides lower yield, we
observed a more equal fruit distribution among the weight classes compared to Reinisch
and Sauer [29]. The share of marketable fruits from our detection was a little lower than
from trials in North-Eastern Germany with the same cultivar, where around 80% of the
harvested pumpkins reached a weight >500 g but also with a higher fertilization level
(∆ N 65 kg) [38]. From this trial, a slightly lower average fruit weight (950 g compared to
990 g) was reported, which indicated a more homogenous size distribution. The relatively
high share of undersize fruits is typical for the observed cultivar Uchiki Kuri and can be
seen as a genetic trade-off from the production goal of small to medium pumpkins [29,39]
but may be compensated by better N supply [29].

Additionally, the lower weight estimations compared to other studies can be explained
through difficulties during the mapping and classification procedure, since some fruits
were partially covered by leaves or stems, which led to slight underestimations, specifically
for the higher share of smaller pumpkins (Figures 9 and 10).

Interestingly, investigations on optimal stand densities revealed higher yield tenden-
cies towards less plants per m2, which was not reflected in our within-field variation of
the yield distribution [38]. From Figure 10, no clear pattern showed advantages from
more space at the borders of the two patches. The only clear gradient was towards the
south-eastern, shaded part of the field (Figures 9 and 10), where less and smaller pumpkins
were classified. Since radiation is the main driver for photosynthesis and, consequently, dry
matter accumulation in fruits, this explains very plausibly the reduced pumpkin develop-
ment close to the shading trees at that edge of the field [40]. Other resource use competition,
specifically for water, is of minor importance due to lower temperatures, thus resulting
less evapotranspiration from the shading trees. Hence, the producer can implement this
knowledge for future pumpkin cultivation and increase seedling density in this part of the
field in the next rotation.

4.3. Future Perspectives

To optimize the proposed methodology, future studies should aim to detect and
reconstruct fruit shape, when they are hidden by leaves or stems. The use of multispectral
and thermal sensors could be useful for this purpose, as differences in reflectance between
plant components can be assumed. In addition, the methodology should be tested under
further field and flight conditions (e.g., change of flight altitude, seasonality, slope of field).

Further agronomic applications from such UAV imagery processing might be in-field
differentiated sustainability evaluations through deriving, e.g., radiation use efficiency or
water use efficiency. In general, the described methodology is transferable to other fruits
or vegetables with above ground harvest products to solve similar logistical challenges as
described for Hokkaido pumpkins.

5. Conclusions

In this paper, we proposed a method to detect Hokkaido fruits and estimate their
volumes and weights for yield prediction using high resolution UAV imagery. The results
showed that most of the fruits could be satisfactorily identified. Misclassifications and
errors in fruit geometry could be successfully reduced based on the processing steps
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presented. In addition, different lighting conditions, as well as shadows, in the image data
could be compensated by the proposed methodology.

The volumes and weights of the pumpkins could be derived from the image data
with high precision, allowing more targeted pre-harvest commercialization strategies for
farmers. Since most food retailers request homogeneous lots within prescribed size or
weight classes, producers can improve their sales negotiations with better knowledge of
classified sales volume.
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