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Abstract: An advanced statistical analysis of patients’ faces after specific surgical procedures that
temporarily negatively affect the patient’s mimetic muscles is presented. For effective planning of
rehabilitation, which typically lasts several months, it is crucial to correctly evaluate the improvement
of the mimetic muscle function. The current way of describing the development of rehabilitation
depends on the subjective opinion and expertise of the clinician and is not very precise concerning
when the most common classification (House–Brackmann scale) is used. Our system is based on
a stereovision Kinect camera and an advanced mathematical approach that objectively quantifies
the mimetic muscle function independently of the clinician’s opinion. To effectively deal with the
complexity of the 3D camera input data and uncertainty of the evaluation process, we designed a
three-stage data-analytic procedure combining the calculation of indicators determined by clinicians
with advanced statistical methods including functional data analysis and ordinal (multiple) logistic
regression. We worked with a dataset of 93 distinct patients and 122 sets of measurements. In
comparison to the classification with the House–Brackmann scale the developed system is able to
automatically monitor reinnervation of mimetic muscles giving us opportunity to discriminate even
small improvements during the course of rehabilitation.

Keywords: rehabilitation; House–Brackmann scale; functional data analysis; ordinal classification; Kinect

1. Introduction

Nowadays, modern medicine is an interdisciplinary field where selected parts of in-
formation engineering, cybernetics or signal processing can be found. Typical applications
can be seen in early diagnosis, precise surgery (oncology), telemedicine, and rehabilitation.
Telerehabilitation in medicine is gaining significant popularity [1] as a very promising tool
offering a convenient way to work with patients online. A mobile tablet-based therapy
platform for early stroke rehabilitation is described in [2]. A systematic review of Mobile
Health Applications in rehabilitation was made by [3]. Assistive technologies for patients
are described in [4].

Advanced signal processing plays an important role in biomedical data analysis.
The main direction of research in this area is represented by data analysis using neural
networks. Neural networks improve brain cancer diagnosis by reducing artifacts [5] or by
semi-automatic analysis using a neural network for pattern recognition [6].
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Another avenue of recent research has been to employ the power of advanced sta-
tistical analysis. Principal component analysis (PCA) combined with linear discriminant
analysis was used for the detection of nasopharyngeal cancer [7].

Functional data analysis (FDA) is a dynamically developing modern branch of statis-
tics, which deals with data represented as functions. Such data are typically collected by
continuous recording of a certain process, which is also the case of our study (continuous
recording of facial expressions during exercises). The FDA method has already reached a
certain level of maturity. It provides a rich collection of various methods and techniques
including ready-to-use software implementations and has proved to be extremely useful in
many diverse fields, including medicine, biomedicine, public health, biology, biomechanics,
and environmental science (see [8] for a detailed overview of applications). For more details
about FDA in general, see the classical book [9] or the more recent review paper [10].

Regarding analyses of (bio)medical data, FDA has been successfully applied by many
researchers. Besides earlier works cited in [8], let us mention the more recent [11] (dimen-
sion reduction for functional classification in functional Magnetic Resonance Imaging), [12]
(functional ANOVA for analyzing biomechanical gait data), [13] (multivariate functional
PCA applied to data from the Alzheimer’s Disease Neuroimaging Initiative study), and [14]
(functional LDA applied to relative spinal bone mineral density dataset), to name just a
few of them.

1.1. Medical Background of the Rehabilitation of Mimetic Muscles

Despite all the advances in medical, surgical, and physical therapy, facial nerve
palsy remains a devastating clinical condition with a strong psycho-social and functional
influence on the patients. The patients are often plagued with asymmetrical brow position
and movement abnormalities, eye closure dysfunction, disturbed oral movement resulting
in articulation problems, inability to smile, and facial asymmetry. The loss of tonus of
mimetic muscles causes a visible asymmetry of the face, so nonverbal communication also
becomes difficult. Patients with facial nerve dysfunction are unable to show their emotions
through facial expression. Their emotional state is therefore often misinterpreted [15].

The incidence of peripheral facial palsy ranges from 20–30 cases/100,000/year. It is
one of themost common conditions affecting the human cranial nerves. The site of injury
can be intracranial, intratemporal, or extracranial. Based on the etiology, we can distinguish
traumatic, neoplastic, inflammatory, metabolic, toxic, iatrogenic, congenital, and idiopathic
facial nerve palsy.

Facial nerve paresis is generally one of the most feared complications of almost all
surgical procedures in head and neck surgery (parotid and submandibular gland surgery,
neck dissection, surgery of the middle ear and temporal bone, surgery of the posterolateral
skull base).

In patients undergoing surgeries with specific risk of facial nerve injury, damage to
the nerve is manifested primarily by disruption of function of mimetic muscle. This leads
to either complete paresis or, at best, increased fatigue of the facial muscles, which has a
strong influence on the patient’s daily life [15]. An altered oral movement causes problems
with articulation, and facial asymmetry results in nonverbal communication problems [16].

Several months of rehabilitation are needed to restore the function of mimetic muscles.
The main problem is how to set the rehabilitation to be able to avoid unrequired side effects
such as synkinesis. Synkinesis represents unwanted contraction of the muscles of the face
during attempted movement, caused by aberrant reinnervation. Commonly, patients notice
forceful eye closure when they attempt to smile, or other muscle spasms during routine
facial movements [17].

1.2. Problems with Evaluation of Facial Nerve Function

Clinical tests and classifications are used to evaluate facial nerve function, as well
as electrophysiological methods. The House–Brackmann (HB) classification is probably
the most widely employed scale of facial nerve dysfunction that is applied in all fields of



Sensors 2021, 21, 103 3 of 21

clinical medicine. This system carries the name of the Dr. John W. House and Dr. Derald
E. Brackmann, american otolaryngologists, who described this system in 1985 (Table 1).
The HB scale produces comparable results between different observers in patients with
normal or only mildly impaired facial nerve function. However, it has been shown that
interobserver variability increased depending on the severity of facial nerve paresis [18].

Table 1. House–Brackmann (HB) classification [19].

Grade Description Characteristic

I Normal function normal facial function in all areas

II Mild dysfunction Gross: slight weakness on close inspection; very slight synkinesis
At rest: normal tone and symmetry
Motion Forehead: moderate to good function
Eye: complete closure with minimum effort
Mouth: slight asymmetry

III Moderate dysfunction Gross: obvious but not disfiguring
difference between two sides; noticeable synkinesis
At rest: normal tone and symmetry
Motion Forehead: slight to moderate movement
Eye: complete closure with effort
Mouth: slightly weak with maximum effort

IV Moderately severe dysfunction Gross: obvious weakness and disfiguring asymmetry
At rest: normal tone and symmetry
Motion Forehead: none
Eye: incomplete closure
Mouth: asymmetric with maximum effort

V Severe dysfunction Gross: only barely perceptible motion
At rest: asymmetry
Motion Forehead: none
Eye: incomplete closure
Mouth: slight movement

VI Total paralysis no movement

In patients with variable facial weakness, the single House–Brackmann score does not
fully communicate their facial function. The single House–Brackmann score most strongly
correlated with the regional scoring of the eye (61%), followed by the nose and midface
(40%), mouth (32%), and forehead (18%). The global score does not correlate with the worst
regional score. In patients with synkinesis is an obligatory HB3 or higher in the global
House–Brackmann grading system, but the regional facial function can be HB2 or better at
one or more areas of the face. Furthermore, the single grade does not always correlate with
the best or worst function along the four facial regions [20].

There have been significant criticisms of the HB classification, and it is generally
agreed that the scale is not effective for determining changes in facial nerve function
following a therapeutic intervention. Facial nerve grading systems aim to provide a more
uniform and accurate method for assessing facial nerve function. The benefit of using such
systems is to allow communication and comparison between practitioners and evaluation
of changes in the clinical course. Such a facial nerve grading instrument should document
the clinical assessment as objectively as possible and should be sensitive enough to reflect
signs of recovery or changes in function following therapeutic intervention (Figure 1). The
perfect scale should be: cost effective, fast, minimally invasive, sensitive, specific, objective,
and quantitative) [21].
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Figure 1. (A) illustrates facial palsy. Note the difference between the left (sick) and right (health) parts of the face. Image
source [22]. (B) ilustrates problems with clinical classifications, e.g., House–Brackmann classification is observer dependent
with six grades only.

Clinical assessment of facial nerve function is important and will still be part of
examination. The main disadvantage is its high degree of subjectivity that has been shown
in differences in inter-individual evaluation as well as low usefulness for distinguishing
different pathologies that fall into the level of mild functional impairment (e.g., HB3).
Furthermore early phases of reinnervation are difficult to assess with clinical examination
only. Computer systems can detect slight changes in reinnervation more precisely and
compare in time between different clinical sessions. Development of a uniform and accurate
method for grading is a prerequisite for effective diagnosis and treatment of patients with
facial nerve paralysis [23].

1.3. Main Goals of this Article

The main goal of this article is to determine a parametrization that can more objectively
describe the rehabilitation process for mimetic muscles by patients after brain surgery with
the damage of facial nerve function. There are many classification scales for measuring
degrees of facial asymmetries. For the clinical evaluation of mimetic muscle function, the
most frequently used is the House–Brackmann scale, which we use for comparison [16].

Due to the wide scope of research and better readability and clarity, we divided
the research into two parts: (i) introduction to patient scaling, development of advanced
statistical tool and proofs of functionality—this article; (ii) predictive modeling, comparison
to other approaches (deep learning) and full (cross) validation—future work.

2. Material and Methods

Patients undergoing head and neck surgical procedures with the specific risk for
postoperative facial nerve dysfunction or with preexistent facial nerve palsy were enrolled
in the study (details in Table 2 and in the related work [24]). There were 93 patients with
122 measurements (one patient was measured over a defined schedule of checkups). The
research was approved by the Ethical comitee of University Hospital Královské Vinohrady,
Prague (EK-VP/3910120).



Sensors 2021, 21, 103 5 of 21

Table 2. Dataset: patients.

Gender

female 52
male 41
average age 57.9

Diagnosis

vestibular schwannoma 55
parotid gland tumor 33
posttraumatic facial nerve palsy 5

Facial Nerve

preoperative palsy 5
postoperative palsy 35

2.1. Dataset and Measurement Scheme

The measurement scheme is shown in Figure 2. The measurement takes place during
checkups, first before the surgery and then repetitively based on a defined schedule. The
patient is asked to perform a series of exercises (see Table 3) using the mimetic muscles dur-
ing the examination, and the clinician evaluates this exercise numerically. A disadvantage,
however, is that these measurements are strongly subjective: it depends on the evaluation
of clinician during the given examination. However, this assessment strongly influences
rehabilitation planning as well as any other actions.

Clinical's evaluation.

Sitting in front 
of camera 

and doing exercises.

Surgery.
Side effect
facial palsy.

Application for clinicial
and collecting

measurement data.

Face recording 
during exercise.

Checkup in hospital
and instruction 

for exercise.

Figure 2. Facial measurement exercise scheme: from surgery to data collecting.

Table 3. Table of measured exercises.

Exercise Name Description for a Patient

Raising Raise your eyebrows
Frowning Frown
Closing Close your eyes tightly
Smiling Smile at me
Baring Bare your teeth
Pursing Purse your lips
Blowing Blow out your cheeks
Closing and Baring Close your eyes tightly and bare the teeth
Raising and Pursing Raise your eyebrows and purse the lips

2.1.1. Hardware

Kinect for Windows v2 sensor was chosen as a face data acquisition tool for several
reasons: it detects points of the face using software (no physical marks are needed),
Microsoft provides an API (Application Programming Interface) which enables object
orientated data access, and it is a low-cost solution.
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As a multi-sensor device, Kinect v2 includes a color camera, an IR (infrared) sensor
and emitters (see Table 4), and a directional microphone array. Depth data are obtained
from an active IR sensor by time-of-flight technology [25]. The advantage of this approach
is that the resulting image is independent of the illumination of the room. On the other
hand, no other sources of IR radiation can be present during measurement due to strong
IR radiation interference. Facial features are then extracted by the Microsoft Kinect Face
algorithm, which is based on AAM (Active Appearance Model) [26]. The disadvantage is
the variable sampling rate of facial features, which may vary from units to tens of Hz. To
obtain reliable face data, Kinect v2 is supposed to be preheated to a working temperature,
which needs at least 25 min to stabilize [27].

Table 4. Kinect v2 Selected Technical Specification.

Color Camera

Frame rate—sufficient light 30 fps
Frame rate—insufficient light 15 fps
Resolution 1920 × 1080
Horizontal × Vertical × Diagonal Viewing Angle 84.1◦ × 53.8◦ × 91.9◦

Infrared and Depth Sensor

Measurement Method Time of Flight
Min.–Max. Distance 0.5–4.5 m
Frame rate 30 fps
Resolution 512 × 424
Horizontal × Vertical × Diagonal Viewing Angle 70.6◦ × 60.0◦ × 89.5◦

Body and Face Data Sources

Face Points 1 347
Face Points Sampling Rate variable
Number of Cores 2
3.1 GHz
4 GB

2.1.2. Software

For straightforward face data acquisition, a desktop application was developed. It
is designed as a WPF (Windows Presentation Foundation) application for the Windows
operating system and is written in the modern programming language C#. Kinect for
Windows Runtime 2.0, which is an integral part of the application, provides full control
over the Kinect v2 sensor, and the Microsoft Kinect Face library provides APIs for tracking
the locations of facial features.

Measured 3D face data, separated for each exercise (see Table 3), are stored in text-
based files on which offline analysis can be performed in software like R or MATLAB. As a
checkback, the application stores IR records from measurements that can be replayed with 21
mapped tracked facial points—points of interest (POI)—as shown in Table 5.

Table 5. Indices of points of interest, p is an internal index number.

p Kinect Position p Kinect Position

0 1104 left eye, bottom 11 849 left eyebrow, centre
1 241 left eye, top 12 18 nose tip
2 210 left eye, inner corner 13 8 mouth lower lip, centre-bottom
3 469 left eye, outer corner 14 91 mouth, left corner
4 346 left eyebrow, inner 15 687 mouth, right corner
5 222 left eyebrow, centre 16 19 mouth upper lip, centre-top
6 1090 right eye, bottom 17 4 chin, centre
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Table 5. Cont.

p Kinect Position p Kinect Position

7 731 right eye, top 18 28 forehead, centre
8 843 right eye, inner 19 412 left cheek, centre
9 1117 right eye, outer 20 933 right cheek, centre
10 803 right eyebrow, inner

2.1.3. Mathematical Tools

The choice of an appropriate statistical methodology for the problem considered in
this paper was driven by the following three aspects:

1. We have a classification problem with an ordinal response variable (HB grades). In
contrast to a multiple response classification, we have ordered responses.

2. The explanatory variables are in the form of (rich) multivariate functional data: 567-
time curves in each sample (3 axes × 21 POI × 9 exercises). On the other hand, the
sample size is rather limited (122 samples). Hence we faced a severe risk of overfitting.

3. Rather than maximizing the accuracy of the classification, our goal was to design a
methodology which would provide reasonable (not perfect) and tractable predictions,
including easy-to-understand insight into the main drivers behind the prediction.
This is in sharp contrast to a ‘black box’ approach.

The combination of the above three aspects made our statistical problem quite unique.
Therefore we developed a three-step methodology combining:

1. calculating of certain indicators,
2. functional linear models for a single logit (see [9]),
3. multivariate linear model for cumulative logits (see [28]).

Due to the high complexity of the input data and so as to make the results easy to
understand and interpret, we split the statistical data analysis into the steps that are shown
in Figure 3.

case study

preprocessing data
registration

landmark
search

points of interest
selection

consulting
with clinicians indicators

functional logistic
regression

classification by
ordinal logistic

regression

computing
indicators'
trajectories

preprocessed
exercise data

health
scores

final 
model

classification by final model

clinician's classification comparison
clinician's 
and model

classification

new rehabilitation
destription

data sets 
of selected

patients

measurement
data sets 

of all patients

Figure 3. Scheme of analysis steps and main results.
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2.2. Data Preprocessing

In this section, we briefly describe the necessary preprocessing of the data. Each
patient performs the exercises at different times and at different speeds. In order to do a
further analysis, there is a need for alignment (registration) of the data. Figure 4 illustrates
the original data and the desired alignment for the distance between eye corners and
eyebrows for three different patients performing Raising (see Table 3).

Let Pi(t) denote the curve representing any coordinate of any facial point for measure-
ment i. The curves for all coordinates x, y, z and all facial points for one measurement i have
to be transformed by a smooth warping function wi so that the exercises are happening
at the same instants for all measurements. Thus we are looking for warping functions wi
such that the P̃i are aligned for all measurements i:

P̃i(t̃) = Pi(wi(t̃)), where t̃ = w−1
i (t) (1)

For each exercise, we select one curve that exhibits the most significant changes, such
as the distance of the eyebrows from the inner eye corners for Raising, or the distance
between the mouth corners for Smiling. Such a curve should include both the left and right
facial points since some patients can only move one side of their face. This selected curve
will now be used for alignment.

The warping functions wi are computed by a landmark registration technique, where
only specific points (landmarks) are aligned. For each measurement, a set of landmarks tij
is identified and the warping function is sought as a piece-wise cubic interpolation function
wi satisfying

tij = wi(t0j), (2)

where t0j is a reference set of time instants. Figure 4 illustrates the identified landmarks
(beginnings and ends of each repetition) and the piece-wise cubic warping functions for
three patients.

0 2 4 6 8 10 12 14 16 18

time [s]

36

38

40

42

44

46

48

50

e
y
e
 -

 e
y
e
b
ro

w
 d

is
ta

n
c
e

patient id 3, HB1

patient id 20, HB1

patient id 42, HB6

(a) Original data with identified landmarks.
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(b) Warping functions wi .
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(c) Registered (aligned) data.

Figure 4. Alignment of data illustrated on the sum of left and right distance between eye
corners and eyebrows for three different patients performing Raising exercise.
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The landmarks can be identified manually by looking at the curves, but since there
is more data expected in the future, we need an automatic landmark identification. We
normalize the curves and align them with a reference curve using dynamic time warping
(DTW) in order to identify the beginnings and ends of each repetition of an exercise. The
data show that patients perform not always repeat the exercises three times as directed, thus
DTW is used also to automatically identify the number of repetitions. For this purpose, the
distance between each curve and the reference curves for 2, 3, or 4 repetitions is computed
and the one with the minimal average distance is selected, as shown in Figure 5.
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Aligned Signals (Euclidean Distance: 146.699114)

Figure 5. Automatic identification of the number of repetitions. A curve for each patient (red color)
is aligned with reference curves for 2, 3 and 4 repetitions (blue). The one with minimal average
Euclidean distance is selected. The figure shows Smiling exercise (distance between mouth corners
on y-axis, transformed time on x-axis). Two repetitions were selected for the patient with id = 4 (top)
and three repetitions for the patient with id = 15.

Due to the different number of repetitions of an exercise by individual patients, we
decided to select a single realization of an exercise for each patient (each measurement).
Since the first and the last repetitions are sometimes misidentified (noise at the beginning
or at the end of the exercise) we selected the second repetition for each patient. This choice
also enables us to reflect on potential tiredness when repeating an exercise.

To avoid distortion of the parametric statistical models by an outlier, we made a
visual inspection of the registered curves of indicators. We identified one outlier (a sample
with HB6 having enormous eyebrows intensity, smiling intensity, and lips intensity) and
excluded it from the data. HB classes 4 and 5 have very low frequencies (compared to the
others), this is because these two are rather artificial and used very rarely. HB4 is very
similar to HB3, whereas HB5 is similar to HB6. To improve the reliability of the modeling
process, we changed the classifications of all samples with HB4 to HB3, and samples with
HB5 were reclassified to HB6. The frequencies of the adjusted HB grades are shown in
Table 6.

Table 6. Frequencies of adjusted HB grades.

HB1 HB2 HB3 HB6 Total

Nr. of cases 58 21 23 20 122
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3. Results
3.1. Indicators Describing Movements of the Mimetic Muscles

For each exercise, we have time-series of x, y, and z coordinates of 21 POI in a face
identified by Kinect. To reduce the amount of data and to express the most important
properties indicating the rate of facial nerve recovery, we calculated the curves of various
indicators (to be specified below) as they changed during a single exercise (Table 3). These
indicators measure:

• symmetry—left half versus right half,
• intensity—range of motion,
• speed—how fast the selected exercise is conducted.

The choice of exercises and points of interest is driven mainly by the ability of Kinect to
reliably identify the location of the points and their movements, see Figure 6 for illustration.
The full list of indicators is shown in Table 7. Figure 7 illustrates differences in selected
indicators between fully recovered patients (HB1) and patients with most severe mimetic
dysfunction (HB6). Patients with HB1 (recovered) have symmetry indices closer to one,
especially for exercises with mouth (smiling, teeth), compared to patients with HB6 (sever
mimetic dysfunction). This demonstrates asymmetry between left and right halves of the
face for HB6 patients. Regarding intensity indices, patients with HB1 show values farther
from zero compared to HB6 patients. This means that the range of motion during exercises
is larger for HB1 compared to HB6. Comparison of the shapes of speed indices (warping
functions) reveals that patients with HB1 tend to perform the exercise faster than patients
with HB6 (warping function is steep at the beginning and flat in the middle for HB1).

Figure 6. Selected points of interest (POI) (red) and distances (blue) for computation of indicators.

Table 7. Overview of the meanings of the indicators. The position of index p is shown in Figure 6.

Exercise Label Description

Raising eyebrows.symmetry distance between the inner eyebrows (p 10 or 4) and inner eye corners (p 8 or 2)
Raising eyebrows.intensity maximum change in left and right distance
Raising eyebrows.speed warping function

Frowning frowning.symmetry distance between the inner eyebrows (p 10 or 4) and inner eye corners (p 8 or 2)
Frowning frowning.intensity maximum change in left and right distance
Frowning frowning.speed warping function

Smiling smiling.symmetry distance between the outer mouth corners (p 15 or 14) and outer eye corners (p 9 or 3)
Smiling smiling.intensity maximum change in left and right distance
Smiling smiling.speed warping function

Baring teeth.symmetry distance between the outer mouth corners (p 15 or 14) and outer eye corners (p 9 or 3)
Baring teeth.intensity change of the area of the ellipse (p 13, 14, 15 and 16)
Baring teeth.speed warping function

Pursing lips.intensity change of distance between the mouth corners (p 14 and 15)
Pursing lips.speed warping function
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(a) Indicators: smiling.symmetry, teeth.symmetry, frowning.symmetry, eyebrows.speed for HB1.
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(b) Indicators: smiling.symmetry, teeth.symmetry, frowning.symmetry, eyebrows.speed for HB6.
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(c) Indicators: lips.intensity, eyebrows.symmetry, frowning.intensity and smiling.speed for HB1.
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(d) Indicators: lips.intensity, eyebrows.symmetry, frowning.intensity and smiling.speed for HB6.

Figure 7. Indicators selected by the stepwise variable selection procedure.

3.1.1. Symmetry Indicator

Indicator of symmetry is computed by comparing the left and right distances of two
points using the formula

SI(t) =
min(v(PL1, PL2)(t), v(PR1, PR2)(t))
max(v(PL1, PL2)(t), v(PR1, PR2)(t))

(3)

where R1 and R2 denotes two points on the right and L1 and L2 on the left side of the
face. For Raising and Frowning we use the distance between the inner eyebrows (points 4
and 10) and inner corners of the eye (points 2 and 8). For Smiling and Baring we use the
distance between the outer corners of the mouth (points 14 and 15) and that between the
outer corners of the eye (points 3 and 9). Eye corners were chosen as reference points since
they were found to be the most stable during the exercises.
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3.1.2. Intensity Indicator

Intensity of Raising eyebrows, Intensity of Frowning and Intensity of Smiling is
computed from maximum change in left and right distance during the exercise:

I(t) = 1 − 1

max
(

v(PL1,PL2)(t)
v(PL1,PL2)(0)

, v(PR1,PR2)(t)
v(PR1,PR2)(0)

) (4)

We consider the same points as the indicator of symmetry. The Intensity of Baring
is computed from the change of the area of the ellipse defined by four mouth points (see
Figure 6):

I(t) = 1 − v(P14, P15)(0) · v(P13, P16)(0)
v(P14, P15)(t) · v(P13, P16)(t)

(5)

The Intensity of Pursing is computed from the change of distance between the corners
of the mouth:

I(t) = 1 − v(P14, P15)(0)
v(P14, P15)(t)

(6)

3.1.3. Speed Indicator

For all exercises, we add the warping function (see Section 2.2) as speed indicator.

3.2. Health Scores as Descriptors for Mimetic Muscles Function

The next step of our analysis is to reduce the curve of each indicator to a single number
(the health score) expressing the rate of recovery (healthiness) for the given exercise and
property. Such scores can serve as covariates to determine the final HB grade. Moreover,
their evolution in time can help in understanding the process of recovery by identifying
improvements (or worsening) in various aspects.

Before the application of Functional Logistic Regression (FLR), we considered two
groups of samples (measurements):

• Healthy—those with HB1,
• Sick—those with HB5 or HB6.

This enables us to apply the FLR as a functional-data analytic tool which takes the
curve (functional datum) of an indicator as a covariate (explanatory variable) and esti-
mates the probability of the sample’s belonging to the Healthy group (response variable)
according to the following formula:

pk =
1

1 + exp (−α −
∫

Xk(t)β(t)dt)
, (7)

where pk is the probability of the k-th sample’s being in the Healthy group, Xk the curve
of the indicator (a functional covariate) of the k-th sample, α the scalar intercept, and β
the functional parameter, both being estimated from the data. This model can also be
understood as a standard functional linear regression applied to the dependent variable
Y = ln(p/(1 − p)), which is the logit of p. More details about the functional approach can
be found in [9]. For our calculations, we made use of an implementation of FLR in the
statistical software package R (function classif.glm within the fda.usc package), see [29] for
more details.

Having trained the FLR model on the two groups of samples, we used this model to
determine the health score (probability of belonging to the Healthy group) for each sample
in the dataset (not only HB1, HB5, or HB6). As a result, we obtained a list of scores for all
indicators for each sample in the input data.

The application of the FLR to the curves of the calculated indicators provided us
with the health scores for each sample and indicator. To assess the relation between these
scores and the HB grades (provided by clinicians), we calculated the corresponding paired
Spearman’s correlation coefficients (including p-values), see Table 8.
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Table 8. Paired Spearman’s correlation between House–Brackmann (HB) grades and health scores
for individual indicators.

Indicator Correlation Coefficient p-Value

smiling.symmetry −0.50 0.00
teeth.symmetry −0.47 0.00
lips.intensity −0.40 0.00
frowning.intensity −0.29 0.00
eyebrows.symmetry −0.26 0.00
lips.speed −0.22 0.01
eyebrows.speed −0.21 0.02
eyebrows.intensity −0.18 0.04
smiling.intensity −0.18 0.04
frowning.speed −0.17 0.06
teeth.intensity −0.12 0.18
smiling.speed −0.11 0.21
teeth.speed −0.09 0.32
frowning.symmetry −0.08 0.37

We observe moderate or fair (below −0.2) negative Spearman correlation with sig-
nificant p-value (below 0.05) between HB grades and health scores for several indicators.
This suggests that (at least some) health scores can serve as useful predictors for the HB
classification. The strongest correlation is achieved for symmetries of exercises with the
mouth. This is because facial nerve dysfunction is most obvious in this area, both for a
clinician and Kinect.

We also studied paired (Pearson’s) correlations between health scores of individual in-
dicators. A strong positive correlation (r = 0.71) was observed between smiling.symmetry
and teeth.symmetry. Apparently, many patients barely distinguish between Smiling and
Baring: they engage similar facial muscles during these two exercises. A weak correlation
(below 0.35) but still significant (p-value < 0.05) was reported for some other pairs, but these
may be spurious correlations. The correlations of most pairs are, however, insignificant.
For an overview of the correlations between health scores, see the correlogram in Figure 8.

Classification by Ordinal Logistic Regression

The last step of our modeling approach is to classify the samples represented by the
lists of health scores into one of the HB grades (HB1, HB2,. . . HB6). In other words, we
have a classification problem with a multivariate explanatory variable (list of scores) and
an ordinal response variable (HB grade). We applied Ordinal Logistic Regression (OLR)—a
parametric statistical method well suited for this kind of problem. This method is an
application of a series of standard logistic regressions to cumulative probabilities:

P(HBk ≤ j) =
1

1 + exp (−αj − ∑i βi pik)
, (8)

with P(HBk ≤ j) being the probability of the k-th sample’s having HB grade at most j, αj the
(HB specific) intercept parameter, βi the coefficient for the i-th health score (independent of
the HB level) and pik the health score for the i-th indicator and k-th sample. The parameters
αj and βi are estimated from the data. The probability of a sample’s having a specific HB
grade is determined as the difference of cumulative probabilities:

P(HBk = j) = P(HBk ≤ j)− P(HBk ≤ j − 1). (9)

More details of this method can be found in [28] (referred to there as a cumulative
logit model). We performed our calculations of OLR using the polr function from the MASS
package in R (see [30] for further details).
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Figure 8. Pearson’s correlogram of health scores for individual indicators.

To avoid overfitting (the HB evaluation includes a subjective judgment of the clinician)
and to identify the key properties considered by clinicians when evaluating a patient,
we performed a stepwise variable selection procedure based on minimizing the AIC
(considering both directions, starting from the empty model).

Furthermore, to compensate for the imbalance of the input data (samples with HB1
dominant) and to avoid overestimation of the probabilities of the dominant class, we
applied weights to the individual samples during the fitting process. The weight of a
sample was set to the inverse value of the frequency of the corresponding class (HB grade).
This weighting procedure balances the accuracy of the classification in individual classes.

The output of the applied OLR method is a set of class probabilities (probabilities of
having a specific HB grade) for each sample. The resulting class is then selected as the one
with the highest probability. However, the probabilities can be useful in themselves, for ex-
ample, to quantify the uncertainty of the classification, or to provide a finer characterization
of the progress of a single patient.

The health scores obtained by FLR were further used as explanatory variables for HB
classification via weighted Ordinal Logistic Regression with stepwise variable selection. We
fitted the model on the whole dataset containing 122 valid samples (measurements). The
stepwise variable selection procedure (minimizing AIC) selected the following variables
(health scores) into the final model (sorted by the order of inclusion into the model):

1. smiling.symmetry
2. teeth.symmetry
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3. frowning.symmetry
4. eyebrows.speed
5. lips.intensity
6. eyebrows.symmetry
7. frowning.intensity
8. smiling.speed

The terminology used is shown in Table 9.

Table 9. Terminology overview.

Keyword Description Values

HB evaluation of mimetic muscle function (House–Brackmann scale) 1–6
indicator most important property indicating the rate of facial nerve recovery string
health score rate of healthiness for the given exercise and property single number
trajectory movement of indicator in time time series

A comparison of the graphs in Figure 7 illustrates the differences in the curves of
selected indicators between patients with HB1 and patients with HB6. Note that all five
considered exercises have been included in the model. Moreover, it contains health scores
for symmetry, intensity and speed. This suggests that all important aspects are covered by
the model: nothing important has been omitted. On the other hand, the minimization of
AIC (which penalizes adding variables to the model) ensures that the final model does not
contain any redundant variables. The overall classification performance of the model is
summarized in Table 10.

Table 10. Confusion matrix with numbers of (mis)classified cases by Ordinal Logistic Regression
(OLR) model.

HB by Model

HB by a Clinician 1 2 3 6

1 34 16 8 0
2 7 12 2 0
3 1 7 11 4
6 0 0 4 16

The confusion matrix indicates a reasonable accuracy of classification. The following
table summarizes the accuracies of the classification by HB grades and overall accuracy.
We considered not only correct classification (HB by clinician = HB by model), but also
approximate classification (HB by model differs from HB by the clinician by at most 1).

The rates of correctly classified instances are reasonable, and the rates of approximate
classification are satisfactory. Only 14% of the cases were misclassified (Table 11). The
weighting of the samples during the fitting process resulted in comparable accuracies
between the various HB grades, although the input data are imbalanced (HB1 is dominant).

Table 11. Accuracy of classification by OLR model.

HB by a Clinician Correct Classification Approximate Classification

1 59% 86%
2 57% 100%
3 48% 78%
6 80% 80%

Altogether 60% 86%
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3.3. Case Study

The main objective of our statistical analysis was not to build a model with perfect
classification but to build a model which would provide plausible results and would be
helpful to a clinician. This means that the results of the model must be easy to understand
and interpret. Besides the predicted classes, it has to quantify the uncertainty in the decision.
Moreover, it has to provide an insight into the main drivers of the classification and its
evolution in time during the rehabilitation process of a patient.

To illustrate the potential for applications of this modeling approach, we include a
case study of two selected patients. The first one is a typical patient, and the second one is
an untypical patient, who was misclassified by a clinician.

3.3.1. Typical Patient

We have chosen to illustrate the use of our modeling approach on two measurements
(sessions) with a single patient having a typical behavior representing the corresponding
HB classes (Figure 9).

Figure 9. Patient with facial nerve dysfunction raising the eyebrows; (A) HB6—no movement on the
left side; (B) HB3—moderate movement.

The patient was evaluated as HB6 in the first session (denoted by Session 1), and HB3
in the other one, which took place 301 days later (denoted by Session 2).

Firstly, let us compare the health scores. The indicators selected for the final OLR
model (these affect the final classification) are summarized in Table 12 and illustrated in
the following graph.

Table 12. Health scores for two sessions with the typical patient.

Session 1 Session 2

smiling.symmetry 0.12 0.7
teeth.symmetry 0.02 0.93
frowning.symmetry 0.78 0.73
eyebrows.speed 0.84 0.76
lips.intensity 0.63 0.69
eyebrows.symmetry 0.46 0.67
frowning.intensity 0.56 0.61
smiling.speed 0.56 0.71

HB by clinician 6 3
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Figure 10b shows significant improvement of the symmetry of Smiling and Baring.
These are the main drivers of the change from HB6 to HB3. The complete asymmetry of
these exercises during Session 1 was the main reason for the classification of HB6. Some
improvements can also be observed for the symmetry of the eyebrows. The performance
during individual exercises in Session 2 was rather balanced, but leaves some room for
improvement (therefore HB3).
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(b) Probabilities of HB grades predicted by OLR model
for the typical patient. The classification by a clinician for
Session 1 was HB6 and for Session 2 HB3.
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(d) Probabilities of HB grades predicted by OLR model for
the misclassified patient. The classification by a clinician
for Session 1 was HB3 and for Session 2 HB1.

Figure 10. Comparison between typical patient and misclassified patient classified by OLR model. Data shown in Table 13.

Table 13. Classification by OLR model for the typical patient.

Session HB by Clinician HB by Model Predicted Probabilities

HB1 HB2 HB3 HB6

Session 1 6 6 0 0 0.05 0.95
Session 2 3 3 0.06 0.25 0.58 0.11

The predicted HB classes fit perfectly the ones graded by the clinician. This demon-
strates the good performance of the model for patients with typical behavior. Moreover, the
predicted probabilities of the HB grades tell us that the classification in Session 1 is almost
certainly HB6, whereas, in Session 2, most likely (and the chosen one) is HB3, but HB2 has
also some not negligible probability. Hence, there is some (but very small) uncertainty in
the classification.
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3.3.2. Misclassified Patient

We demonstrate the model performance on a patient whose HB classification by a
clinician was odd (possibly incorrect). The patient attended two sessions on two consecu-
tive days and obtained HB3 in the first session and HB1 in the second session. However, it
usually takes a few months to recover from HB3 to HB1.

Start with health scores for the two sessions summarized in Table 14 and Figure 10c,d.

Table 14. Health scores of the misclassified patient.

Session 1 Session 2

smiling.symmetry 0.99 0.99
teeth.symmetry 0.95 0.97
frowning.symmetry 0.85 0.86
eyebrows.speed 0.66 0.69
lips.intensity 0.84 0.56
eyebrows.symmetry 0.77 0.82
frowning.intensity 0.85 0.87
smiling.speed 0.69 0.78

HB by clinician 3 1

Apparently, the performance of the patient (expressed in terms of health scores) in
the two consecutive days is very similar, which is in line with our expectations. The only
non-negligible difference is in the intensity of Pursing, which was better performed during
the first session. But this itself should not be a reason to improve HB grade. Moreover, we
can see almost perfect symmetry for Smiling and Baring—the main drivers for HB grades.
The other indicators can still be slightly improved. We conclude this example with the
predictions from the OLR model shown in Table 15.

Table 15. Classification by OLR model for the misclassified patient.

Session HB by Clinician HB by Model Predicted Probabilities of HB Grades

HB1 HB2 HB3 HB6

Session 1 3 1 0.72 0.22 0.05 0
Session 2 1 1 0.66 0.27 0.07 0

The model predicted HB1 for both sessions, which is in contrast to the classification
by a clinician. However, this should not be understood as a model failure, because the
model classification is more reasonable than the odd classification in the input data. Hence,
the model corrected an error in the input data. Such advantageous behavior of the model
indicates that it is not overfitted, as it fits only reasonable classifications. The probabilities of
HB classes determined by the model show that the class HB1 is dominant in both sessions
(and therefore chosen); however, there is still some non-negligible probability of HB2. This
indicates some possibility of further improvements of the patient, which can potentially be
quantified by these probabilities (the six-point HB scale is too coarse).

4. Discussion

We developed a three-step statistical procedure for evaluation facial nerve mimetic
functions and progress of reinervation following procedures with risk of postoperative
palsy. It takes complex multivariate functional data as an input and returns an HB classifi-
cation as an output. It combines manually designed indicators with advanced statistical
techniques including functional data analysis and ordinal logistic regression. We trained
the procedure on a sample of 122 measurements (sessions). We see the main advantages of
this unique procedure as:
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• its ability to incorporate the experience of the clinicians via calculation of the indica-
tors;

• providing not only final classification but easy-to-understand insight into the under-
lying process (quantification of health scores);

• using modern and advanced statistical methods to extract the maximum information
from complex input data;

• reaching reasonable accuracy in each class, but avoiding overfitting (learning of
subjective judgments).

During our statistical analysis, we faced the problem of the enormous noise in the data
from Kinect. This made preprocessing the data (smoothing, identification of the beginning
and the end of individual repetitions of an exercise, and consecutive registration) extremely
difficult. We believe that some important information may have been drowned out by
the noise, and lost. We conjecture that this was caused by an unfavorable combination of
the uncertainty of the location of some points on the face by Kinect with a rather small
intensity (range of motion) of some exercises.

As a result, we had to exclude some exercises from our analysis (such as closing eyes).
Moreover, since Kinect works on the basis of a neural network trained on a huge amount
of mostly ‘healthy’ (regular, not corrupted by a surgery) faces, it may tend to ‘filter out’
irregularities caused by surgery. In specific, Kinect may tend to locate the points more
symmetrically even for patients with severe mimetic dysfunction, which would make
them look healthier than they really are. In result, this may complicate the discrimination
between HB grades.

5. Conclusions

We have introduced a statistical analysis of patients’ faces after specific surgical
procedures that temporarily negatively affected the mimetic muscles. We worked with
a sample of patients after brain surgery (93 patients, 122 measurements). Our system is
based on stereovision data analysis and advanced mathematical methodology that can
quantify objectively the degree of mimetic muscle damage, in comparison to the subjective
classification carried out by clinicians.

We developed a set of variables: health scores. This set seems to be very promising as
a set of objective rehabilitation progress descriptors. In comparison to the HB classification,
health scores describe the rehabilitation process more precisely. Base on developed health
scores, we created a model for automatic mimetic muscle damage classification. We
compared the classification based on our model with that of the clinicians on a case study
of selected patients to illustrate the good performance and applicability of the developed
model in practical situations.

The three-stage evaluation procedure based on advanced statistical analysis, intro-
duced in this paper, proved to reasonably replicate the subjective evaluation made by
clinicians and, in addition, provides the main drivers underlying the evaluation of the
progress. Such a system significantly improved the ability to monitor and understand the
reasons for the success of the patients’ rehabilitation.

Future Work

In future work, we will focus more on the predictive modeling of the HB classification.
Besides the above parametric models, we plan to test the predictive potential of non-
parametric models (such as functional kNN in combination with random forests, etc.) and
perform the model selection by n-fold cross-validation techniques. Moreover, we intend to
include possible synkinesis in our models. We would also like to address the problem of
the reduction of the noise in the input data from Kinect.
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The following abbreviations are used in this manuscript:

AIC Akaike information criterion
DTW Dynamic time warping
FLR Functional Logistic Regression
IR infra-red
HB House–Brackmann facial nerve grading system

MATLAB
a proprietary multi-paradigm programming language
and numerical computing environment

OLR Ordinal Logistic Regression
ORL Otorhinolaryngology
POI Point of interest
R a free software environment for statistical computing and graphics
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