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Abstract: Dissolved gas analysis (DGA) is one of the most important methods to analyze fault in
power transformers. In general, DGA is applied in monitoring systems based upon an autoregressive
model; the current value of a time series is regressed on past values of the same series, as well as
present and past values of some exogenous variables. The main difficulty is to decide the order of
the autoregressive model; this means determining the number of past values to be used. This study
proposes a wavelet-like transform to optimize the order of the variables in a nonlinear autoregressive
neural network to predict the in oil dissolved gas concentration (DGC) from sensor data. Daubechies
wavelets of different lengths are used to create representations with different time delays of ten
DGC, which are then subjected to a procedure based on principal components analysis (PCA) and
Pearson’s correlation to find out the order of an autoregressive model. The representations with
optimal time delays for each DGC are applied as input in a multi-layer perceptron (MLP) network
with backpropagation algorithm to predict the gas at the present and future times. This approach
produces better results than choosing the same time delay for all inputs, as usual. The forecasts
reached an average mean absolute percentage error (MAPE) of 5.763%, 1.525%, 1.831%, 2.869%,
and 5.069% for C2H2, C2H6, C2H4, CH4, and H2, respectively.

Keywords: dissolved gas analysis; power transformers; wavelet-like transform; autoregressive model

1. Introduction

The transformer is one of the most important devices in the electricity distribution process,
and reliable power distribution depends largely on the failure-free operation of this equipment.
The failure of the transformer during operation can bring a significant loss of revenue to the
utility, possible environmental damage, explosion and fire risks, and expensive costs of repair
or replacement [1,2]. In the case in which these devices fail, operational life expectancy and reliability
may change over the years and electricity to consumers may be interrupted. Therefore, the analysis of
the condition and maintenance of the transformer are extremely important to ensure stable reliability
of electricity [1,3–5].
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When the power transformer is in normal operation, the insulating oil and solid insulating
material will gradually deteriorate and a small amount of gas will be decomposed, including mainly
hydrogen (H2), methane (CH4), acetylene (C2H2), ethylene (C2H4), ethane (C2H6), carbon monoxide
(CO), and carbon dioxide (CO2). On condition of internal transformer failure occurring, the emergence
speed of these gases is accelerated [6]. So, one of the most important tools for power transformer
condition monitoring and internal fault diagnosis is the transformer oil gas chromatography test,
known as dissolved gas analysis (DGA) [7–10].

Several studies have addressed the creation of power transformer condition monitoring systems
based on DGA. Many techniques for predicting the concentration of gases have been proposed, such as
wavelet least squares, support vector regression, neural network, deep learning, fuzzy model, and long
short-term memory (LSTM), just to name a few.

In general, artificial intelligence techniques have been widely used to develop more accurate
diagnostic tools based on DGA data [5,9–14]. In [9], for example, a new approach for diagnosing
transformer failure was created based on gas rate and support vector machine (SVM). First, on the basis
of the International Electrotechnical Commission Technical Committees (IEC-TC) 10 database, optimal
dissolved gas rates are obtained by genetic algorithm designed for simultaneous DGA rate selection
and SVM parameter optimization. In that work, three traditional methods were used: SVM DGA,
backpropagation neural network (BPNN) DGA, and IEC criteria, and three-key IEC gas proportions
with SVM and back propagation neural network were employed to compare accuracy. The SVM
technique also served as a basis for the approaches in [11,13,15]. The authors in [13] have used the
least squares support vector machine (LS-SVM) for dissolved gases forecasting (H2, CH4, C2H2, C2H4,
and C2H6) and assessing incipient faults of transformer polymer insulation. Meanwhile, in [15],
a new approach has been proposed to combine technical wavelet regression with LS-SVM for the
prediction of dissolved gases in power transformers immersed in oil. In [10], the authors have used a
fuzzy inference system (FIS) to determine absolute concentrations of free and dissolved transformer
oil, total dissolved combustible gases, total combustible gases, proportions of some gases with each
other, and gas rates increasing to detect the decomposition of transformer isolation papers. A similar
approach has been proposed in [5], in which an adaptive neuro fuzzy inference (ANFIS) system
was employed to estimate the transformer isolation degradation rate with the input variables H2

(hydrogen), CH4 (methane), N2 (nitrogen), O2 (oxygen), CO (carbon monoxide), CO2 (carbon dioxide),
C2H6 (ethane), C2H4 (ethylene), C2H2 (acetylene), and TDCG (total dissolved combustible gas).

In general, these numerous studies have used artificial intelligence techniques as regression to
predict gas concentration or faults in power transformers. More specifically, the use of prediction
models in connection with the wavelet transformed has been addressed in some recent works to
improve the forecast [13–15]. Despite satisfactory results, those approaches may not be the most efficient
in predicting future values of the variable of interest, especially for a multi-step ahead forecast. Several
empirical studies show that learning long-term time dependencies can be difficult for gradient-descent
algorithms, which are more effective, converge faster, and generalize better in nonlinear autoregressive
neural network models than in other neural networks [14,16–20]. Autoregressive models based upon
neural networks specify that the output variable depends, in a non-linear way, on its own past values
and on a stochastic imperfectly predictable term. Thus, the prediction of future values of the output
variable can be realized from its past and present values. Additionally, the prediction model can also
consider present and past values of one or more auxiliary external variables, resulting in a nonlinear
autoregressive model with exogenous variables.

In this sense, the authors in [14] proposed a combination of a nonlinear autoregressive neural
network model with the discrete wavelet transform, resulting in a high-accuracy multi-step ahead
forecast of in-oil gas concentrations. The authors investigated the use of different wavelet functions
and different time delays in the autoregression model, but they did not assess how different delays in
external series can influence the values of the output series.
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In fact, the definition of the optimal input and output delays is one of the main limitations of
an autoregressive model. In general, in multidimensional models with n external variables, equal
variables delays are adopted. This means that the prediction of the output value at time t + 1, y(t
+ 1), is performed using the past outputs y(t), y(t − 1), . . . , y(t − dy) and the past observations ui(t),
ui(t − 1), . . . , ui(t − du) of the external variables ui as inputs, i = 1, . . . , n. In addition, the adoption
of many inputs can increase the complexity of the forecasting model and reduce its accuracy. Thus,
some difficulties and limitations remain despite the advances, motivating research for new models to
be conducted.

The investigation of the use of different time delays in external series that influence the output
does not seem to have received the necessary attention, especially considering that there is a strong
correlation between the concentrations of different gases and failures in transformers. This work seeks
to contribute to overcome this limitation by proposing a wavelet-like transform to optimize the order
of the factors in an autoregressive neural network model, with some exogenous variables, to predict
the dissolved gas concentration in power transformer oil.

The main objective of this work is to determine the optimal delay for each input and for the output
to create an autoregressive model with a reduced number of inputs and with competitive precision in
relation to the literature. The hypothesis is that wavelet-like approximations of the external variables
and the output variable incorporate the temporal memory of the autoregressive model. In addition,
the selection of the best approximation for each variable determines the ideal delay for each input
while reducing the size of the model, as each sample of the approximation is calculated considering a
time window of the series.

Consequently, the contributions of the proposed approach can be stated as follows:

1. Development of an approach based on a wavelet-like transform that determines the optimal delay
for each external variable and for the output variable in an autoregressive prediction model;

2. A prediction model with high precision as it focuses on the trend of the input signals from the
noise-free approximations calculated by the wavelet transform;

3. Expansion of knowledge of the temporal relationship between gases underlying degradation
process of the insulating oil and solid insulating material;

4. Reduction of the number of input variables in the autoregression model when using the
approximations resulting from transformations with wavelets of different lengths, which already
consider the time delay determined for each variable.

The remainder of this paper is organized as follows. The related theory is discussed in
Section 2—dissolved gas-in-oil analysis in Section 2.1, discrete wavelet transform in Section 2.2, and
nonlinear autoregressive exogenous model in Section 2.3. In Section 3, materials and methods will be
presented, followed by the results in Section 4, discussion in Section 5, and finally the conclusion in Section 6.

2. Related Theory

2.1. Dissolved Gas-In-Oil Analysis

Power transformers are one of the most important devices for the electrical system, and more than
90% of transformers are immersed in oil [21]. Dissolved gas-in-oil (DGO) is a simple parameter used to
monitor energized power transformers and assess the condition of power transformers (PTE) [22–24].

Because of the thermal and electrical stresses experienced by the insulation of operating
transformers, paper and oil decomposition occurs, generating gases that dissolve in the oil and
reduce its dielectric strength. Thus, concentrations of various gases dissolved in the transformer oil
owing to the decomposition of the oil and paper insulation [22].

Depending on the composition and the level of gas concentration, the power transformer may fail.
Usually, the gases that are present as dissolved gases in insulating oil in transformers are hydrogen
(H2), methane (CH4), ethane (C2H6), ethylene (C2H4), acetylene (C2H2), carbon dioxide (CO2), carbon
mono-oxide (CO), oxygen (O2), and nitrogen (N2) [1].
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There are a couple of DGA-based interpretive methods for detecting power transformer failure that
use a relation between two gases to determine a possible problem. The methods are gas key; IEC ratios;
the graphical representation, IEC 60599, Duval; and Doernenburg, Rogers, among others [4,11,21].
As an example, in the following, we show three of these methods and their respective gas concentration
levels. Table 1 shows the fault description for gas concentration, problem description, and normal and
abnormal values for each gas concentration. In Table 2, we have fault diagnosis by the Dornenburg
ratio method (R1, R2, R3, R4) and fault type, while Table 3 shows fault classification using IEC ratio
codes (C2H2/C2H4, CH4/H2, C2H4/C2H6) and fault type [2,24].

Table 1. Fault description for gas concentration.

Chemical Formula Normal Abnormal Problem Description

H2 (hydrogen) <150 ppm >1000 ppm Electric discharge (corona effect, low partial
discharge)

CH4 (methane) <25 ppm >80 ppm Secondary indicator of an arc or serious
overheating

N2 (nitrogen) 1%–10% NA -
O2 (oxygen) 0.03% >0.5% Transformer seal fault
CO (carbon monoxide) <500 ppm >1000 ppm Cellulose decomposition
CO2 (carbon dioxide) <10,000 ppm >15,000 ppm Cellulose decomposition
C2H6 (ethane) <10 ppm >35 ppm Secondary indicator of thermal fault
C2H4 (ethylene) <20 ppm >100 ppm Thermal fault (overheating local)
C2H2 (acetylene) <15 ppm >70 ppm Electric fault (arc, spark)

Table 2. Fault diagnosis by the Dornenburg ratio method.

Ratio R1
(CH4/H2)

Ratio R2
(C2H2/C2H4)

Ratio R3
(C2H2/CH4)

Ratio R4
(C2H6/C2H2) Fault Type

>1 <0.75 <0.3 >0.4 Thermal decomposition
<0.1 Insignificant <0.3 >0.4 Corona

>0.1 and <1 >0.75 >0.3 <0.4 Arcing

Table 3. Fault classification using International Electrotechnical Commission (IEC) ratio codes.

C2H2/C2H4 CH4/H2 C2H4/C2H6 Fault Type

0 0 0 Normal aging, no fault
Insignificant 1 0 Partial discharge of low energy density

1 1 0 partial discharge of high energy density
1 0 1 Discharges of low energy
1 0 2 Discharges of high energy
0 0 1 Thermal fault of <150 ◦C
0 2 0 Thermal fault of ≥150 ◦C and ≤300 ◦C
0 2 1 Thermal fault of >300 ◦C and ≤700 ◦C
0 2 2 Thermal fault of >700 ◦C

2.2. Discrete Wavelet Transform

Wavelet transform (WT) is a widespread signal processing technique. In the last decades, several
algorithms of compactly supported wavelet have been created by mathematical analysis and signal
processing communities. In fact, several works attempt to motivate and explain the basic ideas behind
wavelets, what makes them so successful in many applications in different areas, as well as some
limitations [25–28].

Mostly, WT is used for trend analysis, correlation and coherence between two time series,
cross-spectral analysis, and space-based verification wavelets, while there are limited applications
related to forecasting [29].
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Discrete wavelet transform (DWT) is any wavelet transformation for which wavelets are discretely
sampled, meaning this is a discrete set of the wavelet scales and translations [29]. The basic idea
of this technique is to exploit the correlation present in most real-life signals to build a sparse
approximation [14]. So, DWT possesses many favorable properties that are useful for researchers in
the time series data mining field [1].

The dependency on discrete one-dimensional wavelet transform is presented in Equations (1)−(3).

f(t) =
∑

k

Am,kϕm,k(t) +
m∑

j=1

∑
k

D j,kψ j,k(t) (1)

H(ω) =
∑
n∈Z

hne−inω (2)

G(ω) =
∑
n∈Z

gne−inω (3)

where H(ω) is the transfer function of high-pass filter, G(ω) is the transfer function of low-pass filter,
and they filter the signs of low and high frequency keeping important information from the original
signal. hn, gn are the coefficients depending on the mother wavelet; Am,k is an approximated profile;
D j,k is the detail profile; j, m are the decomposition level of the wavelet transform; ψ j,k(t) is mother
wavelet and ϕm,k(t) is the scaling function.

Daubechies wavelets (DW), dbN, offer a family of orthogonal transformations, where N refers
to the number of vanishing moments, which generally vary from db2 to db22 and have the ability to
accurately approximate constant and linear functions and a relatively simple form [1,27].

2.3. Nonlinear Autoregressive Exogenous Model

A time series is any set of observations organized in time; usually measurements are made at
evenly spaced times, for example, daily pollution values, monthly temperature values, daily values of
electricity consumption, and daily stock exchange indices, among others [30].

An exogenous nonlinear autoregressive model (NARX) in time series modelling is a nonlinear
model that has exogenous inputs, in which the model relates past values of the same series and current
and past values of the driving series (exogenous), that is, externally determined series that influence
the series of interest, as defined in Equation (4) for l exogenous variables:

yt= F(y t−1, yt−2, . . . , yt−dy
, . . . , u1,t, u1,t−1, . . . , u1,t−du1 , . . . , ul,t, ul,t−1, . . . , ul,t−dul

) + ε (4)

where y is the output variable; ui, i = 1, . . . ,l are externally determined variables; dui is the order of
variable ui; ε is the error term; and F is some non-linear function, such as a polynomial for example.

There is a trend toward the adoption of computational techniques and many effective attempts have
been developed, such as the following: the authors of [14] have used NARX to predict gas concentration
in power transformer oil. Meanwhile, the authors of [5] and [10] have created an autoregressive model
using ANFIS models to detect and isolate, as well as perform transformer paper expected life estimation.

As can be seen, there are a couple of autoregressive models that have been used to assist in the
prediction of DGA and the health status of the power transformer [7]. However, in all the researched
papers, the order of the factors is always the same, that is, dy = du1 = · · · = dul in Equation (4).

3. Materials and Methods

The proposed approach relies on a wavelet-like transform to optimize the order of the factor (gas
concentrations) in a nonlinear autoregressive model with exogenous variables. This means to define
the optimal order dy, du1, · · · , dul for each gas concentration.
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Thus, the approach proposed has the following steps: step 1, gas concentration acquisition and data
normalization; step 2, Kaiser–Meyer–Olkin (KMO) and Bartlett test; step 3, wavelet-like decomposition
of gas concentration; step 4, Pearson’s correlation; step 5, standardized regression coefficients; step 6,
a model using principal components analysis (PCA) to select the principal component; step 7, calculation
of contribution rate for each wavelet decomposition level; and, finally, step 8, prediction using the
best time delay as input in a multi-layer perceptron (MLP) network. All these steps are illustrated in
Figure 1 and described in detail as follows.

Figure 1. Model for selection and contribution rate of gases concentration and prediction. MLP, multi-layer
perceptron; PCA, principal components analysis; KMO, Kaiser–Meyer–Olkin; GE, General Electric.

Step 1:

Usually, interpretation techniques such as Duval triangle are applied to the information on the
concentration of gases in the transformer oil, which is collected using an equipment such as Morgan
Calisto, Luman Sense Smart DGA, General Electric (GE) Transfix, Qualitrol DGA 150, or others [8].

Initially, this work collected a set of 190 historical oil-dissolved gas data from a transformer
equipped with a GE Kelman-Transfix (GE—General Electric, Sao Paulo, Brazil) and GE Intellix BMT 330
(GE—General Electric, Sao Paulo, Brazil). In this stage, the variables pointed out by [10–13] are C2H2,
C2H4, C2H6, CO, CO2, CH4, O2, and H2. However, H2O and combined gas concentrations were added
as input, resulting in ten variables. Before the next step, all the data were normalized between 0 and 1.

Step 2:

The KMO test is applied to verify the measure adequacy sampling for each variable in the
model [31] and the Bartlett test to test the hypothesis that the correlation matrix is an identity matrix,
which would indicate that variables are unrelated, and thus unsuitable for structure detection [32].

KMO (1977) is a criterion for identifying whether a factor analysis model being used is adequately
fitted to the data, testing the overall consistency of the data [31]. Meanwhile, Bartlett’s sphericity test is a
technique created by Maurice Stevenson Bartlett in 1937, which indicates the strength of the relationship
between variables.
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Step 3:

At this stage, DWT is used in two forms. In the first one, each gas concentration is decomposed
keeping level of decomposition in 1 while changing the wavelet from db2, db4, . . . , to db20, in order
to create smooth approximations of the original gas concentration using the low frequency filters.
Additionally, the wavelet transform is applied in the gas concentrations in reverse chronological order
so that each sample of the approximation is created with values passed from the original signal.

Considering m samples from a time series in reverse chronological order, that is, the most recent
samples at the beginning, S = (st, st−1, · · · , st−k, · · · , st−m+k, · · · , st−m+2, st−m+1), and a low pass wavelet
filter H of length k, H = (h0, h1, · · · , hk−1), k� m, Equation (5) defines the application of the transform
to the signal S to create an approximation S′dbk = (s′t , s′t−1, · · · , s′

t−(m/2)+1
) with time delay k − 1,

as proposed in this work,

s′t− j =
∑k−1

i=0
hist−i−jk, j = 0, . . . ,

m
2
−1 (5)

Approximations S′dbk, k = 2, 4, . . . , 20, with half the length of the original signal, m/2, for each
Daubechies wavelets from db2 to db20, are created, resulting in 10 approximations for each time series
S. Here, we have 190 samples of each gas concentration.

Step 4:

Unlike the authors of [33], who have used Pearson’s correlation coefficient between the constant
characteristic parameter and the candidate of the variable characteristic parameters to verify the
concentration of gas that presents the best correlation to electrical faults, this work uses the Pearson’s
correlation to calculate a relationship between the various approximations created for gas concentrations
with different time delays (wavelets of different lengths). Thus, this step results in a matrix X with 110
columns and 190 rows, such that the 110 columns represent the time t, t − 2, through t − 20 of each gas
concentration, which generates 110 input variables.

Steps 5 and 6:

In these steps, we apply PCA in the matrix A created from the relation between inputs Xj (gas
concentrations delayed at time t − 2 to t − 20 according to wavelet-like transform) and output Yi (a gas
concentration in time instant t). So, the values of A are calculated as standardized regression coefficients
aij (Equation (6)) for each input and output, describing the relationship between the concentration of
a given gas and the approximations created for all other gases in different time delays generated by
the wavelet transform. Therefore, a square matrix is created for each gas concentration, in which the
PCA is applied to select the main components that represent at least 99% of the original data variation,
generating a supervised PCA (SPCA), according to [34,35].

ai j =
XT

j Yi√
XT

j Yi

(6)

Step 7:

The contribution of each time delay is calculated as follows: Ci( j) =
∑p

i=1

(
AT

j A′j

)
λi, in which A

represents the input data, λ are corresponding eigenvalues, A’ is the representation of A in the principal
component space, and p is the most important principal component [35].

Step 8:

An MLP neural network is trained with the Levenberg–Marquardt backpropagation algorithm
with 100 epochs, 1 input layer, 1 hidden layer, and 1 output layer. The neurons in the hidden layer
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were used following two approaches—the first one following [36], which propose a method using
Nh= 2n– 1, and the second following [37], proposing Nh= (4n 2 +3)/(n 2 – 8), where Nh corresponds
to the best neurons numbers and n is the number of input parameters.

Unlike [3], we normalize the input data between –1 and 1 for applying a population-based
metaheuristic algorithm to optimize the structure of the MLP neural network with back propagation
algorithm. We propose using the optimal time delays made with the wavelet as input in an MLP with
a backpropagation algorithm.

In order to test the temporal relationship between gases underlying the degradation process of the
insulating oil and solid insulating material, five gas concentrations were chosen, as the main methods
basically used by the IEC ratios and Rogers and Dornenburg ratios are C2H2, C2H4, C2H6, CH4, and
H2 to identify possible power transformer faults.

Figure 2 shows an example of the neural network architecture to predict gas concentration C2H4,
where the optimal time delays for C2H2, C2H6, CH4, and O2 are selected according Pearson’s correlation
and PCA.

Regarding the output, 95 samples related to odd days were selected to create the matrix A, as well
as to train and test the forecasting model, as it is necessary to put the input and output data with the
same length.

Figure 2. Gas concentration C2H4 decomposed by Wavelet db2 to db20.

Similar experiments were carried out for the other gases: when the output is C2H2, the inputs
are the approximations of C2H4, C2H6, CH4, and O2 with their respective optimal delays defined by
the proposed approach; when the output is C2H6, the inputs are the wavelet approximations of C2H2,
C2H4, CH4, and O2; and so on.

4. Results

Firstly, we evaluated the results of the KMO and Bartlett test. In Table 4, the KMO test indicated
0.743, while at the same time, the Bartlett test indicated 0; for this reason, these data are suitable for data
structure detection, while the Bartlett test indicates that a factor analysis may be useful with your data.

Table 4. Kaiser–Meyer–Olkin (KMO) and Bartlett sphericity test.

KMO and Bartlett Test

KMO sampling adequacy measure 0.743

Bartlett’s sphericity test
Aprox. Square-Qui 418.644

Gl 45
Sig. 0

The next stage shows the resulting of selection and contribution rate of decomposition of each
variable. Table 5 shows the contribution rate per gases concentration (normalized).
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Each variable presents a different importance rate and first order, C2H6 has Wavelet db20,
which means that all gas concentration have to delay in time instant t − 20, while db8 has more impact
in CH4, db18 in O2, and so on (see Table 5).

Table 5. Importance order and rate of each wavelet order for gas concentration.

Importance
Order

Wavelet-Like
Order Gas Importance

Rate
Importance

Order
Wavelet
Order Gas Importance

Rate

1 db20 C2H6 1.000 11 db4 GC 0.636
2 db8 CH4 0.858 12 db20 H2 0.581
3 db18 O2 0.848 13 db8 C2H6 0.575
4 db20 CH4 0.803 14 db8 H2 0.572
5 db16 O2 0.793 15 db20 C2H4 0.568
6 db12 CO2 0.791 16 db20 H2O 0.539
7 db10 CO2 0.779 17 db16 GC 0.53
8 db6 CH4 0.776 18 db18 GC 0.529
9 db14 O2 0.692 19 db14 H2 0.507

10 db2 GC 0.644 20 db20 CO 0.495

The level of correlation of the time delays for each gas concentration in is shown Table 6, wherein
the values marked in bold and italics are the time delays that have higher correlation with C2H2, C2H6,
C2H4, H2, and CH4.

The following shows the results of the neural network prediction for two gases concentrations
using 8 and 15 neurons in the hidden layer, as the methods DGA IEC ratios, as well as the Rogers and
Dornenburg ratios, basically use the following to analyze the potential problems in power transformers:
CH4 gas, H2, C2H2, C2H4, and C2H6.

Table 6. Correlation level of time delays.

Gas Concentration
(Delayed) C2H2 C2H6 C2H4 H2 CH4

C2H2(db2) 0.01254 0.00116 0.01904 0.00029 0.00608
C2H2(db4) 0.00449 0.00116 0.01796 0.00109 0.00689
C2H2(db6) 0.00000 0.00032 0.01232 0.00548 0.00490

C2H2(db20) 0.01769 0.00563 0.00000 0.00137 0.00029
C2H6(db4) 0.01103 0.01440 0.03349 0.01061 0.00314
C2H6(db6) 0.02190 0.02045 0.04203 0.01232 0.00281
C2H4(db8) 0.00922 0.00017 0.00073 0.00292 0.00026

C2H4(db10) 0.00865 0.00003 0.00130 0.00044 0.00044
C2H4(db12) 0.01082 0.00010 0.00240 0.00000 0.00185
C2H4(db20) 0.00706 0.00144 0.00130 0.00036 0.00010

H2(db2) 0.00410 0.00130 0.00410 0.00504 0.00102
H2(db6) 0.00068 0.00348 0.00384 0.00026 0.00109
H2(db8) 0.00130 0.00250 0.00240 0.00048 0.00017

H2(db20) 0.01300 0.00130 0.00608 0.00176 0.00270
CH4(db4) 0.00005 0.00281 0.00036 0.00336 0.00044
CH4(db10) 0.00922 0.00058 0.00032 0.00023 0.00144
CH4(db14) 0.00044 0.00000 0.00006 0.00012 0.00281
CH4(db20) 0.00336 0.00336 0.00212 0.00160 0.00020

The results presented in Table 7 show us an average MAPE for two days of 1.525% for C2H6 and
1.831% for C2H4. Meanwhile, Figure 3 compares the predicted values with the real values for the five
gas concentrations. As can be seen, the selection of the optimal time delay in gas concentration can
improve prediction accuracy, when comparing predictions with the input variables at the same time
t − 2 and t − 4 (Table 7).
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Table 7. Predicted values with and without selection of best delay time. MAPE, mean absolute
percentage error.

Gas Concentration C2H6 Gas Concentration C2H4

Number of
Neurons Inputs/Date 05/01/2017 05/03/2017 Average

MAPE% 05/01/2017 05/03/2017 Average
MAPE%

Real 1 0.864 - 0.791 0.779 -

8 neurons

Selection of
time delay 0.972 0.756 7.645 0.789 0.657 7.891

t − 2 0.842 0.849 8.811 0.749 0.753 4.308
t − 4 0.769 0.889 13 0.786 0.847 4.64

15 neurons

Selection of
time delay 0.974 0.86 1.525 0.817 0.781 1.831

t − 2 0.818 0.919 12.294 0.794 0.805 1.909
t − 4 0.83 0.864 8.492 0.65 0.995 22.777
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5. Discussion

This study aimed to study the optimal time delay of each gas concentration impacting the gases
H2, CH4, C2H2, C2H4, and C2H6 (Tables 6 and 7), in which a DGA technique subsequently be used to
detect the defect in the power transformer.

The approach using a wavelet-like transform and SPCA shows the contribution rate of different
time delays of each gas concentration, which differs from the proposal of recent works, such as,
for example [13,14]. In [14], for example, despite testing different wavelet functions and different
delays, all models adopted the same time delay for external variables. Here, the approach shows the
rate and order of importance and wavelet-like order for ten gas concentrations (Table 5), indicating
that db20 (t − 20), db8 (t − 8), and db18 (t − 18) are the three most important time delays for the gas
concentrations C2H6, CH4, and O2, respectively. This result shows that the effect that a given gas
suffers from other gases varies differently over time for each gas.

We have used Pearson’ s correlation to consideration the impact of each time delay as using
different time delays t − 2 to t − 20 in each gas concentration, showing, for example, that to predict the
concentrations of C2H2, the best time delays for the other gas concentrations are as follows: t − 12 for
C2H4, t − 6 for C2H6, t − 10 for CH4, and t − 8 for H2. It is important to highlight that a traditional
autoregressive model that adopts the same delay for all variables would not have identified this
relationship. In addition, this is a very important result for calibrating monitoring systems, as it
indicates that any variation in C2H4, for example, will take about 12 units of time to reflect on the
concentration of C2H2. A similar analysis applies to other gases.



Sensors 2020, 20, 2730 11 of 14

A similar kind of relationship of different gases has been studied in [38] and [33]. In [38],
the authors have studied a correlation between the five gas concentrations, by applying the value of
grey relational grade to reveal the relationships between gas features. Those authors show that the grey
relation analysis is efficient in selecting and removing redundant features from the set of input variables.
However, it does not consider any time delay in sampling the input series of gas concentrations. On the
other hand, the authors in [33] have used correlation coefficients of gas concentration CO as a constant
characteristic parameter for the correlation of time series analysis and H2, CH4, C2H2, C2H4, and C2H6

as characteristic variable parameters to be used to distinguish electrical faults from thermal faults.
However, approaches based on autoregressive models apply the same order for all input variables

and do not take into account the time delay relationship between gas concentrations. Notwithstanding,
we have seen that the optimal selection of the time delay for each concentration of gas affects the output.

Regarding forecast accuracy, this approach shows some better predictions than [33,38,39]
(see Table 8).

Table 8. Comparison of predicted gas concentrations.

Average MAPE(%)

Authors Approach C2H2 C2H4 C2H6 CH4 H2

Wang et al., 2015 Time series correlation 38.900 42.100 22.200 42.100 11.100
Lin et al., 2018 LSTM_DBN Network 2.450 1.450 2.100 0.260 1.890

Lu et al., 2018 ANN, SVM, LSSVM and Gaussian
process regression 6.433 7.375 5.913 5.500 6.313

Zhang et al.,
2018

RBFNN 4.310 5.670 5.520 3.940 4.640
LSSVM (RBF) 3.960 5.420 2.330 1.690 3.130

Liu et al., 2019 Wavelet Least SVM and Imperialist
Competition Algorithm 4.168 0.1684 1.993 0.9675 1.854

This approach Wavelet-like transform/MLP neural
network 5.763 1.831 1.525 2.869 5.069

It is important to highlight the low computational cost of the proposed model, because it takes a
matter of seconds to run. In the example above regarding the prediction of the C2H2 concentration,
instead of input 12, 6, 10, and 8 passed values of the gases C2H4, C2H6, CH4, and H2, respectively;
according to in Equation (4), we simply use the corresponding four approximations created by the
wavelet-like transform for each exogenous gas.

6. Conclusions

This work presented an approach based on the wavelet transform to determine the ideal time
delay for each gas concentration and use it as a regression model in an MLP network. The application of
a wavelet-like transform creates sparse approximations of gas concentrations with different time delays,
and enables us to define an accurate and computationally efficient prediction model. The prediction
model has high precision as it focuses on the trend of the input signals from the noise-free approximations
calculated by the wavelet transform. Moreover, it reduces of the number of input variables in the
autoregression model when using the approximations resulting from transformations with wavelets of
different lengths, which already consider the time delay determined for each variable.

In addition to simply assessing the relationship of different gases, the proposal makes it possible
to identify the relationship between a specific gas and delayed approximations of all other gases.
This is a fundamental result for monitoring systems, as it indicates that variations in different gases
take different times to be reflected in the concentrations of other gases under observation. As an
example, it was observed that variations in ethane affect acetylene concentrations more quickly than
variations in ethylene. So, the approach extends the discussion of the temporal relation between gas
concentrations, providing an expansion of knowledge of the temporal relationship between gases
underlying degradation process of the insulating oil and solid insulating material.
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Thus, wavelet-like approximations of the external variables were an effective tool to incorporate
temporal memory of the autoregressive model and to determine the ideal delay for each input. As
future research, we suggest investigating other feature selection techniques to evaluate the results of
Pearson’s correlation and PCA.
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Nomenclature

ANFIS Adaptive Neuro Fuzzy Inference
BPNN Backpropagation Neural Network
C2H2 Acetylene Gas
C2H4 Ethylene Gas
C2H6 Ethane Gas
CH4 Methane Gas
CO Carbon Monoxide Gas
CO2 Carbon Dioxide Gas
Db Daubechies Wavelets
DGA Dissolved Gas Analysis
DGC Dissolved Gas Concentration
DWT Discrete Wavelet Transform
FIS Fuzzy Inference System
GE General Electric
H2 Hydrogen Gas
IEC International Electrotechnical Commission
KMO Kaiser–Meyer–Olkin
LS-SVM Vector Machine Least Squares Support
LSTM Long Short-Term Memory
MAPE Mean Absolute Percentage Error
MLP Multi-Layer Perceptron
NARX Nonlinear Autoregressive Exogenous
PCA Principal Components Analysis
PTE Power Transformers
SPCA Sparse Principal Components Analysis
SVM Support Vector Machine
TDCG Total Dissolved Combustible Gas
W-LSSVR Vector machine least squares support wavelet regression
WT Wavelet transform
ψ j,k(t) Mother Wavelet
ϕm,k(t) Scaling Function
H(ω) Transfer Function of High-Pass Filter
G(ω) Transfer Function of Low-Pass Filter
hn High-Pass Coefficients
gn Low-Pass Coefficients

Am,k Approximated Profile
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D j,k Detail Profile
j, m Decomposition Level of the Wavelet Transform
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