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Abstract: A tactile position sensing system based on the sensing of acoustic waves and analyzing
with artificial intelligence is proposed. The system comprises a thin steel plate with multiple
piezoelectric transducers attached to the underside, to excite and detect Lamb waves (or plate
waves). A data acquisition and control system synchronizes the wave excitation and detection and
records the transducer signals. When the steel plate is touched by a finger, the waveform signals
are perturbed by wave absorption and diffraction effects, and the corresponding changes in the
output signal waveforms are sent to a convolutional neural network (CNN) model to predict the
x- and y-coordinates of the finger contact position on the sensing surface. The CNN model is trained
by using the experimental waveform data collected using an artificial finger carried by a three-axis
motorized stage. The trained model is then used in a series of tactile sensing experiments performed
using a human finger. The experimental results show that the proposed touch sensing system has
an accuracy of more than 95%, a spatial resolution of 1 × 1 cm2, and a response time of 60 ms.

Keywords: tactile position sensing; ultrasound; Lamb wave; convolutional neural network; steel plate;
piezoelectric transducers

1. Introduction

Touchscreens are widely used throughout daily life for such applications as mobile phones,
computers, and interactive machines. The rapid development of touchscreen technology in the
past few decades has fundamentally changed the way in which people interact with machines and
electronic devices. According to their underlying mechanisms and designs for fulfilling tactile sensing,
touchscreens can be divided into several categories, including capacitive, resistive, optical, acoustic,
and so on [1]. Each type of touchscreen has its own set of pros and cons in terms of its functionality,
applicability, manufacturing complexity, and cost. The present study considers the problem of turning
any elastic solid panel (e.g., a metal sheet and a glass plate) into a touchscreen so that the idea of
touchscreen everywhere becomes more plausible in the future.

Of the various tactile sensing technologies available nowadays, acoustic waves or ultrasounds
appear to be particularly attractive solutions for the problem described above, since elastic waves can
be readily excited and detected in many solid structures. Existing ultrasound touchscreens generally
utilize surface acoustic waves (SAWs) for tactile sensing [1–3]. However, in recent years, the feasibility
of using Lamb waves (or plate waves) to realize touchscreens on solid plates has gained increasing
attention [4–12]. Depending on how the wave energy is generated, Lamb-wave-based touchscreens
can be classified as either passive or active. In touchscreens of the former type, the Lamb waves are
generated via the application of pressure to the sensing surface by the human finger and are detected
by acoustic sensors strategically positioned on the plate [4–6]. However, while such devices have the
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advantages of structural and operational simplicity, they cannot operate for a still finger touch on the
plate. In active Lamb-wave touchscreens [7–12], the Lamb waves are typically generated and detected
by piezoelectric transducers, which are attached to the plate and constantly excited by an electrical
signal [13,14]. Both anti-symmetrical modes [7–9] and symmetrical modes [10–12] of Lamb waves
had been applied. For anti-symmetrical modes, the waves were excited by attaching piezoelectric
transducers on the planar surfaces of the plate [7–9,13,14]. For symmetrical modes, PZT transducers
were directly attached to the side surface of the plate [10–12]. The application of finger pressure
to the plate perturbs the wave signal and induces a corresponding change in the outputs of the
detection piezoelectric transducers from which the occurrence and position of the tactile event can
then be derived.

The most challenging problem in designing any active Lamb-wave touchscreen is that of predicting
the tactile position of the finger on the plate based on the received wave signals. A number of
localization algorithms have been proposed before. Examples are amplitude disturbed diffraction
pattern (ADDP) [7,8], contact impedance mapping method [9], and projection method in the vector
space of collected training data [10–12]. One common feature in these methods is that a huge number
of testing signal data for touching at different locations were first collected, either experimentally
or numerically, and then stored in a computer, to form a database. For a truth touching event,
the corresponding signal data is then processed, along with the database, through a certain algorithm,
to identify the touching position. Due to the complexity of various active ultrasound touchscreens, it is
very difficult to justify or evaluate the reliability and robustness of these pattern-recognition algorithms.

The present study developed an active Lamb-wave touchscreen based on a steel plate and
a number of piezoelectric transducers. The transducers are mounted around the perimeter of the
underside of the plate for Lamb-wave generating and detecting purposes, and the area surrounded
between these transducers on the reverse (i.e., upper) surface of the plate becomes the tactile sensing
area. When a fingertip is applied to this sensing area, the wave signals traveling through the
plate are perturbed, and the resulting changes in the output signals of the receiving transducers
are then used to determine the finger contact position. Artificial Intelligence (AI) technologies
have advanced at an incredible speed in recent decades and are now used for solving complicated
problems in many different areas. Recent studies in the field of structural health monitoring (SHM)
have shown that AI has significant potential for dealing with the complex phenomena associated
with wave propagation through solid structures, even under complicated circumstances [15–18].
Among the various deep-learning models available, convolutional neural network (CNN) models
have proven to be particularly effective in solving pattern-recognition and signature-identification
problems [19,20]. Hence, to deal with the challenging issue of localization algorithm in tactile position
sensing, the waveform signals produced by the detection piezoelectric transducers of the touchscreen
proposed in the present study are processed by CNN. To the best of our knowledge, this is the first
time the use of the deep machine learning algorithm of CNN to solve the ultrasonic tactile position
sensing problems has been introduced.

2. Construction of Touchscreen System

Figure 1 presents a schematic illustration showing the basic concept of the proposed Lamb-wave-based
ultrasonic touchscreen. As shown, the device consists of a thin solid plate serving as the touchscreen panel
and 16 piezoelectric transducers uniformly deployed around the outer perimeter of the lower surface of the
plate. Four of the transducers (i.e., the corner transducers) serve as wave transmitters, which, after being
electrically excited, launch acoustic waves into the plate, while the remaining transducers serve as wave
receivers, which output electrical signals when they receive acoustic waves from the plate. The area
enclosed by the piezo-transducers on the upper surface of the plate represents the sensing area of the
touchscreen. In theory, both surfaces of the plate could be used as the sensing surface. However, in the
present study, the opposite side of the transducer-mounting surface is deliberately chosen as the tactile
sensing surface, since this minimizes interference with the finger contact process and also offers better
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protection to the piezo-transducers and their electrical wirings. To facilitate tactile position sensing, acoustic
waves are continuously excited in the plate by voltage signals, and the received wave signals are constantly
monitored by a personal computer (PC). Furthermore, the signals received by the PC are interfaced
continuously to an artificial intelligence (AI) model implemented on the PC, to determine the occurrence of
finger contact and, if so, the x- and y-coordinates of the touched position.
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Figure 1. Schematic illustration of Lamb-wave-based ultrasonic touchscreen based on thin plate as
touch panel and disk-shaped piezo-transducers as wave transmitters (four in present diagram) and
receivers (twelve in present diagram). Tactile position sensing is conducted on upper surface of plate,
while piezo-transducers are attached on under surface of plate.

In the present study, the thin plate used as the touchscreen had the form of a 0.8 mm thick stainless
steel (SS 304) plate with a size of 210 mm × 210 mm. The disk-shaped piezo-transducers were fabricated
of PZT-5A piezo-ceramic material (Eleceram Inc., Taoyuan, Taiwan) and had a diameter and thickness
of 15 and 0.6 mm, respectively. The disks were coated with inverted electrodes, such that they could be
firmly epoxy-glued to the steel plate and easily connected to the electrical wiring harness. As shown in
Figure 2, the 16 piezoelectric transducers were symmetrically deployed at a distance of 25 mm from
the edge of the plate and were positioned such that they formed a square shape with a center-to-center
distance of 40 mm between them. Among the 16 piezoelectric transducers, four of them (T1~T4)
located at the corners of the steel plate were chosen as wave transmitters, while the other twelve
piezo-transducers (R1~R12) were designated as wave receivers. During operation, the PZT transmitters
were electronically excited, and the resulting acoustic waves propagated along all directions of the
plate were received by the 12 receivers. As shown in Figure 2, the tactile sensing area enclosed by
the 16 transducers had a size of 120 mm × 120 mm and was uniformly partitioned into an array of
12 × 12 square blocks, each with a size of 1 × 1 cm2. In practice, each square block represents a possible
tactile sensing position, and hence the ultrasonic tactile position sensing system provided a total of
144 possible position outputs with a spatial resolution of 1 × 1 cm2. The ultrasound touchscreen is now
functioning as a keypad with an array of 12 × 12 keys.

To facilitate the excitation and detection of the acoustic waves, the piezo-transducers were
electrically connected to a PC-based data acquisition card (DAQ card, PXIe-6358, National Instrument,
Austin, TX, USA). As shown in Figure 2, the DAQ card was equipped with 16 analog input channels and
4 analog output channels. Among the input channels, twelve of them were connected to the receiving
piezo-transducers (R1~R12), to acquire the received acoustic waves with a maximum data acquisition
rate of 1.25 MHz and a voltage resolution of 16 bits. Meanwhile, the four output channels were
connected to the four transmitting piezo-transducers (T1~T4), to apply arbitrary excitation waveforms.
The generation of the output voltage signals used to perform wave excitation was synchronized with
the digitization of the input waveform signals by the host PC (PXIe-8861, National Instrument, Austin,
TX, USA), and the resulting wave signals were then processed by the PC and interfaced to the AI model.
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Figure 2. Schematic illustration showing dimensions of stainless-steel plate and locations of 16 disk-shaped
piezo-transducers, together with associated wiring between transmitting/receiving piezo-transducers and
analog output/input ports of DAQ card. Note that T1~T4 are transmitting piezo-transducers, while R1~R12
are receiving piezo-transducers.

For the 0.8 mm thick stainless-steel plate used in the present study, the longitudinal and shear
wave velocities were found to be 5760 and 3128 m/s, respectively, as measured using conventional
contact ultrasound transducers. The corresponding dispersion curves of the Lamb waves are shown in
Figure 3. Since the plate is relatively thin, only the fundamental symmetric (S0) and anti-symmetric
(A0) modes of the Lamb waves can propagate in the lower frequency range, as shown in Figure 3.
Previous studies have shown that, for any pair of disk-shaped piezo-transducers mounted on a plate,
the most effective excitation and detection of acoustic waves in the plate is achieved by using A0 mode
Lamb waves [13,14]. For the 15 mm in diameter piezo-transducers and 0.8 mm thick stainless-steel
plate used in the present study, the optimal operating frequency is essentially that which achieves the
best trade-off between the enhancing wave signals and the reducing acoustic noise. Based on a series
of experimental trials, the operating frequency was thus set as 35 kHz, for which the group velocities
of the A0 and S0 modes were 1002 and 5246 m/s, respectively. In the tactile-sensing experiments,
a five-cycle 35 kHz voltage signal modulated by a Hamming window with a maximum amplitude of
10 V was applied to the transmitting piezo-transducers, and the resulting acoustic waves propagated
through the steel plate in all directions and were continuously reflected between the plate boundaries.
When the Lamb waves arrived at a receiving piezo-transducer, a voltage signal was generated by the
transducer, and the resulting signal waveform was digitized by the analog input channel of the DAQ
card and recorded by the PC.
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Figure 3. Dispersion curves of A0 and S0 modes of Lamb waves in a 0.8 mm thick stainless steel
(SS 304) plate.

Figure 4a,b show the typical signal waveforms detected at R1 and R2, respectively (see Figure 2).
Referring to the third waveform (T3 to R1) in Figure 4a, for illustration purposes, the center-to-center
distance between T3 and R1 is equal to approximately 200 mm, and the travel time of the A0 mode
Lamb wave with a group velocity of 1002 m/s is thus equal theoretically to 0.2 ms. A close inspection
of the waveform confirms that the first arrival of the A0 mode Lamb wave indeed occurs after 0.2 ms.
Moreover, it is apparent that the A0 mode of the Lamb wave dominates the wave signal. In other
words, while the S0 mode Lamb wave, which has a much higher group velocity of 5246 m/s, can also be
detected in front of the A0 signal, it has a much weaker signal amplitude. Following the first arrivals
of the S0 and A0 modes of the Lamb wave traveling directly from T3 to R1, the detected waveform
contains multiple peaks corresponding to the arrival of wave reflections and mode-conversions at the
plate boundaries. Similar tendencies are observed in all of the other signal waveforms detected at
R1 and in the waveforms detected at R2 (see Figure 4b). Due to the positional symmetry of R2 with
respect to T1/T2 and T3/T4 on the plate, similarities are also observed between the first two waveforms
in Figure 4b (i.e., T1 to R2 and T2 to R2) and the last two waveforms (i.e., T3 to R2 and T4 to R2).
As discussed later, in Section 3, the positional symmetry of the transmitting/receiving transducers
plays a key role in obtaining a reliable AI model for tactile position sensing.
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Figure 4. Signal waveforms of Lamb waves launched by T1, T2, T3, and T4, respectively, and received
at transducers (a) R1 and (b) R2.

The waveforms shown in Figure 4a,b are obtained when the steel plate is not touched. As such,
they serve as a useful source of reference for evaluating the occurrence (or otherwise) of fingertip
contact on the sensing surface. In particular, the difference between the wave signals received before
and after finger contact, respectively, provide the means to detect both the occurrence of a finger
contact event and (if so) the position of this contact event on the sensing surface. However, analyzing
the waveforms and their changes analytically is extremely challenging, if not impossible. Furthermore,
the analytic analysis must take the boundary conditions of the plate into account, and this further
complicates the analysis process. Thus, in the present study, the detected signal waveform data are
input to an AI model, to carry out tactile position sensing (see Section 3).

Experimentally, the proposed PZT/steel-plate tactile sensing system is operated by sequentially
exciting the four transmitting transducers in turn, as shown in Figure 5. Assume that T1 is excited first
and launches acoustic waves into the steel plate accordingly. The 12 receivers record the received wave
signals simultaneously and interface them to the PC through the DAQ card (see Figure 4a,b, for example).
The acoustic waves bounce back and forth between the plate boundaries and continue to be detected by
the receivers. However, the intensity of the reflected waveforms gradually reduces as a result of energy
dissipation, and hence, after a certain period of time, the second transmitter (T2) is excited and launches its
own acoustic waves into the plate. Based on an observation of the decaying waveform signals, the optimal
time delay between successive excitation voltages was determined to be 3 ms. Consequently, the total
data acquisition time for a single tactile sensing event was equal to 12 ms. Each of the 12 receivers thus
produced a synchronized 12 ms long signal waveform containing four equal-length segments of 3 ms
duration, corresponding to the waveforms excited sequentially by T1 to T4, respectively. Data acquisition
was carried out with a sampling frequency of 1 MHz, and thus a total of 12,000 data points was acquired
for each 12 ms waveform. However, the results obtained from a series of preliminary tactile sensing
tests revealed that the most significant changes in the received waveforms typically occurred between 0.1
and 0.6 ms after the acoustic waves were launched by the transmitters. Thus, as shown by the dashed
rectangles in Figure 4, data collection was performed only over a period of 512 ms (or 512 data points),
starting after 100 ms (or 100 data points) for each waveform. For each receiver, the four segments of
data points corresponding to the acoustic waves launched by the different transmitters were edited into
a single waveform consisting of 2048 (4 × 512) data points. Finally, the 12 × 2048 data points collected
from all 12 receivers were interfaced to the deep-learning model installed on the PC, to perform tactile
position sensing.
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Figure 5. Complete cycle for launching acoustic waves into steel plate by four transmitters (T1~T4)
with 3 ms time delay between them. The 12 receivers are synchronized to continuously receive wave
signals over the 12 ms cycle.

3. Convolutional Neural Network (CNN) Model and Experimental Results

As described above, for each single touch event, a total of 12 waveforms, each with a length of
2048 (4 × 512) data points in the time domain, are collected simultaneously by the PC. The acquired
waveforms are subtracted from their corresponding reference waveforms before the plate is touched,
and the resulting difference waveforms are compiled to create an “image” with a size of 12 × 2048 pixels.
The input data image is then provided to an AI model, which examines the image features and
determines the position of the tactile event on the sensing surface accordingly.

Convolution neural networks (CNNs) have undergone rapid development in the past few decades
and have found widespread use for many different image-recognition applications. CNNs based on
ultrasound or acoustic waves have also been successfully applied for structural health monitoring [15–18]
and non-destructive evaluation [21–23]. However, thus far, the literature contains scant information on
the use of CNNs for tactile sensing on ultrasound touchscreens. Generally speaking, two different types
of CNN model exist, namely unsupervised models, which are used mainly for the classification of objects,
and supervised models, which are designed to perform the recognition of particular targets through the
use of a supervised training process. Intuitively, the problem considered in the present study, namely that
of detecting a tactile event and (if so) establishing its position on the sensing service, is best solved by
using a CNN model of the latter type.

In developing any supervised CNN model, one of the most critical challenges is that of obtaining
sufficient and reliable training data to ensure the accuracy and robustness of the trained model.
As shown in Figure 6, the training data for the present CNN model were acquired by using a three-axis
(x–y–z) automated stage integrated with the signal waveform-data acquisition system under the control
of the PC. During the collection procedure, an artificial finger was mounted vertically in the z-stage
and was driven by the controller such that it touched the steel plate at each sensing position on the
plate surface. For each touch event, the acquired waveform signals were automatically saved to the PC,
together with the corresponding x- and y-coordinates of the touched position. To ensure the robustness
of the training process, the changes in the received acoustic waveforms induced by the touch of the
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artificial finger must be very similar to those induced by a true human finger. Following a series of
experimental trials performed using artificial fingers fabricated of different materials, a 20 mm long
cylinder made of gelatin with a diameter of 10 mm, and a loading force of 0.2 N was found to provide
the best fit to the waveforms produced by a human finger. The artificial finger is held by a spring
which is firmly connected to the z-axis auto-stage. By controlling the vertical displacement along
z-axis, we can maintain the constant 0.2 N contact force. Figure 7 compares the changes induced in the
signal waveforms by the human finger and the gelatin finger, respectively. (Note that, as described
above, each signal waveform was obtained by subtracting the received waveform from the originally
untouched waveform and consisted of only the 512 data points within the time period of 0.1 to
0.612 ms after wave excitation.) The results confirm that the two signal waveforms are almost identical,
and hence the validity of the gelatin finger for training data acquisition is confirmed.
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Figure 7. Comparison of changes induced in received acoustic waveforms by human finger and gelatin
artificial finger.

As shown in Figure 2, the 12 × 12 cm2 sensing area of the steel plate contains a total of
144 (12 × 12) touch positions, each with a size of 1 × 1 cm2. During the training data-collection process,
the gelatin finger was pressed into intimate contact with each of these touch positions, one by one.
The PC-controlled wave excitation and waveform acquisition system collected the resulting changes
in the received acoustic waveforms and stored them to the PC. As shown in Figure 5, for each
finger contact, the four transmitting piezo-transducers were excited in sequence, and the 12 receiving
piezo-transducers collected the waveform data simultaneously. Finally, after waveform subtraction
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and editing of the four segments of 512 data points in each receiving channel, the obtained data were
compiled into a grayscale image with a size of 12 × 2048 pixels, as shown in Figure 8. (Note that the
grayscale levels in the image indicate the waveform amplitude after normalization.)
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Figure 8. Construction of input image to CNN model for acoustic tactile position sensing. Image has
dimensions of 12 × 2048 pixels corresponding to finger-touch-induced changes in acoustic waveforms
received by 12 receivers (R1 to R12), following sequential generation of acoustic waves by four
transmitters (T1 to T4).

In real-world applications, the accuracy of a real human-finger touch on a specific touch position
on the sensing surface will never be as accurate as that of the artificial finger controlled by the stage.
Accordingly, training data were collected not only for artificial finger contacts at the center of each
sensing position, but also at the four neighboring points located at a distance of 1 mm from the center
position in every direction (see Figure 9). In other words, for each touch position in the sensing
area of the steel plate, five sets of training data were acquired. To improve the signal/noise ratio,
the data acquisition process was repeated 100 times at each sensing position. Consequently, a total of
144 × 5 × 100 images was collected for the supervised training process, with each image having a size
of 12 × 2048 pixels.
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In developing the AI model for the Lamb-wave-based ultrasound touchscreen, this study
commenced by constructing a simple CNN model architecture consisting of an input layer,
several convolution layers and fully-connected dense layers, and an output layer. In practice,
determining the optimal CNN architecture and related parameter settings is somewhat arbitrary and
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depends heavily on both earlier studies on CNNs for pattern recognition and the nature of the training
data collected by using the process described above. After a number of numerical trials, the optimal
CNN architecture for the considered tactile positioning sensing problem was found to be that shown in
Figure 10, namely an input layer, six convolution layers, six fully-connected dense layers, and an output
layer. The input image (a gray-scaled image with a size of 12 × 2048 pixels) was first processed by the
six convolution layers, to extract the key features related to tactile position sensing. The kernel filters
used in the six convolution layers are shown in Table 1, together with the associated activation and
pooling methods. After the convolution layers, the data were fully connected with six dense layers
with different numbers of neurons, ranging from 128 to 64. Finally, the data were passed to a fully
connected output layer with 145 outputs, corresponding to one Non-Touch output and 144 touching
position outputs, respectively. Table 2 summarizes the parameters and operations (activation and
dropout) used in the fully connected layers and output layer.
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Figure 10. Architecture of CNN model for Lamb-wave touchscreen position sensing.

Table 1. Parameters and operations used in convolutional layers.

Filter Activation Pooling
Convolutional layer 1 16 (1,10) ReLU Max Pooling (2,2)
Convolutional layer 2 16 (3,1) ReLU Max Pooling (2,2)
Convolutional layer 3 24 (3,3) ReLU Max Pooling (2,2)
Convolutional layer 4 24 (3,3) ReLU Max Pooling (2,2)
Convolutional layer 5 24 (3,3) ReLU Max Pooling (2,2)
Convolutional layer 6 24 (3,3) ReLU Max Pooling (2,2)

Table 2. Parameters and operations used in dense layers and output layer.

Neuron Unit Activation Dropout
Dense layer 1 128 ReLU
Dense layer 2 96 ReLU 0.5
Dense layer 3 64 ReLU 0.2
Dense layer 4 64 ReLU 0.2
Dense layer 5 64 ReLU 0.2
Dense layer 6 64 ReLU 0.2
Output layer 145 Softmax

Once the architecture of the CNN model was established, the training data were used to train the
model and optimize its internal parameters. The model was implemented in a C++ environment in
the PC controller, using Python and the Tensorflow library, both of which have been widely used in AI
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applications. To confirm the validity of the established CNN model, 70% of the collected training data
were used to train the CNN model under supervision, while the remaining 30% were used to test the
trained model and determine its accuracy. Once the CNN model can accurately predict correct touch
positions to the input data, the whole tactile position sensing system is then tested in situ and in real
time by human-finger touches.

In training the CNN model, it was found that the formation of the input image (see Figure 8),
along with the assignments of T1 to T4 and R1 to R12 shown in Figure 2, plays a dominant role.
In particular, it was found that the use of a “fixed” numbering policy for the transmitters and receivers
when constructing the input image resulted in a suboptimal training performance. Consequently,
the training process was repeated by using a “rotating” numbering policy for the transmitters
and receivers instead. Specifically, the numbering of the 12 receivers was updated following each
excitation event, depending on the particular transmitter launching acoustic waves into the plate.
More particularly, the receiver closest to the transmitter was numbered as R1, and the remaining
receivers were then numbered sequentially from 2 to 12, in the clockwise direction, as shown in
Figure 11. The acquired waveform data were then compiled into an input image with the same format
as that given in Figure 8. The results showed that the use of the “rotating” numbering policy yielded
an effective improvement in the accuracy and stability of the CNN model following model training.
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Figure 11. Rotating numbering system for 12 receivers (R1 to R12), based on launching transmitter at
(a) T1, (b) T2, (c) T3, and (d) T4.

To better understand the effectiveness of the rotating numbering system in improving the
performance of the training process, consider the four touching events located at positions A, B, C,
and D, in Figure 11a–d, respectively. Note that the touching positions are rotationally symmetrical
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to one another. Thus, if the rotating system is adopted for numbering the receivers, the data images
constructed for the four touching events also bear symmetry information. Figure 12a–d shows the
four data images obtained in the training data-collection process when touching the sensing surface at
positions A, B, C, and D, respectively. As shown, the similar features in the four images obtained at
the different contact positions move progressively from T1 to T4, due to the symmetry between the
touch position and the transmitter/receiver configuration. In other words, the CNN model has a better
chance of recognizing the feature similarity among the four touching events shown in Figure 11 and
classifying them into a single category. The same condition applies for all 144 touch positions on the
sensing surface, and hence the CNN model can classify the 144 possible outputs into just 36 (144/4)
subgroups, thereby significantly improving the accuracy and stability of the CNN model. Referring
to the four images shown in Figure 12 once again, it is seen that a certain degree of symmetry also
exists with respect to the horizontal central line of the image. This observation is reasonable since the
considered touch positions, A, B, C, and D, are symmetrical with respect to launching transmitters T1,
T2, T3, and T4, respectively, when using the rotating numbering system. This symmetry feature is also
beneficial to the CNN model in distinguishing the touch positions and grouping them into different
categories for pattern recognition purposes.
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and (d) D as shown in Figure 11, respectively.

The practical feasibility of the Lamb-wave touchscreen and CNN model was evaluated by
performing a series of human-finger touch tests, in which 10 volunteers were asked to touch the sensing
area of the steel plate with their finger, at 100 different positions randomly selected. Each volunteer
recorded his/her 100 touched positions and checked with his/her corresponding output coordinates from
the ultrasound measurement system and the CNN model, as shown in Figure 13a,b. The touchscreen
sensing system was operated actively and constantly throughout the testing process. As described
above, the entire sensing cycle (i.e., waveform launching and data acquisition) required 12 ms to
complete. Moreover, an additional period was also required to perform data processing and CNN
model calculation. The total response time for identifying each touch event and updating the touch
position coordinates was found to be around 60 ms, corresponding to a refresh rate of approximately
17 Hz. Based on the results obtained from a thousand human-finger tests from the 10 volunteers,
the accuracy of the Lamb-wave touchscreen and trained CNN model was found to be more than 95%.
This performance is reasonable, since slight differences inevitably exist between the contact behaviors
of the human fingers in touching the sensing surface and the more predictable behavior of the gelatin
finger driven by the x–y–z stage.
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4. Conclusions

This study proposed a new type of tactile position sensing system based on the propagation of
Lamb waves in a plate. In the proposed system, the Lamb waves are excited and detected by an array
of 16 piezo-transducers mounted around the perimeter of the underside of the plate, where four of
these transducers (those mounted at the corners) serve as wave transmitters for launching acoustic
waves into the plate, while the other 12 transducers serve as wave receivers for detecting the Lamb
wave signals. The surface area encompassed by these piezo-transducers on the upper side of the plate
then becomes the tactile position sensing area. The application of fingertip pressure to the sensing area
results in a change in the acoustic waveform signals detected by the receiving piezo-transducers, from
which the position of the contact event is subsequently determined by using a CNN model trained with
the data acquired by using a position-controlled artificial finger. The experimental results obtained by
using a human finger have shown that the proposed sensing system achieves a positioning accuracy of
more than 95% and a response time of 60 ms. The proposed method bears certain similarities to the
guided-waves tomography method [24–26] used in structural health monitoring and non-destructive
evaluation. However, wave diffraction phenomena induced by a finger touch at a plate’s surfaces is
much less that that by internal structures defects. Moreover, the requirement for fast response time is
much more stringent in the proposed ultrasound touchscreen system.

The success of the proposed Lamb-wave touchscreen stems from several key factors. First of all,
the symmetry of the piezo-transducer deployment on the plate allows the CNN model to classify the
input image data into a relatively small number (36) of distinct categories, and it therefore improves
the accuracy and stability of the position-sensing results. The use of a rotating numbering system for
labeling the individual wave receivers when constructing the waveform image data for the CNN model
is also beneficial in preserving the symmetrical nature of the input data and improving the ability of
the model to distinguish the touch position as a result. Secondly, for practical reasons, the data needed
to train the CNN model can only be collected by a machine-based system with an artificial finger.
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However, the similarity between the signals generated by the artificial finger and those produced
by a human finger is an important concern. In the present study, this problem has been addressed
by using a cylindrical artificial finger made of gelatin, with a diameter of 10 mm. The results have
confirmed that the signal waveforms produced by the gelatin finger are in extremely good agreement
with those produced by a human finger. Thus, the validity of the waveform data collected by the
artificial finger for training purposes is confirmed. However, despite the validity of the gelatin finger
as a data-collection tool, positional differences inevitably exist between the accuracy of the gelatin
finger and that of the human finger when touching the specified sensing position on the touchscreen
surface. To resolve this problem, training data were collected not only at the center of each sensing
position on the touchscreen surface, but also at four neighboring points located at a distance of 1 mm
from the center position. In other words, a total of five sets of training data were captured for each
sensing position. The experimental results showed that the augmented training dataset thus obtained
significantly improved the robustness of the trained CNN model.

The significance of the sensing strategy proposed in this study lies in the facility it provides to
transform a regular solid plate into a touchscreen by simply mounting piezo-transducers around its
edges. Notably, the proposed method can be easily applied to any material, e.g., glass, metal, ceramic,
plastic, and so forth, without altering its material properties or original functions, provided that the
PZT transducers can be mounted and the Lamb waves excited and detected. This paves the way for
the development of a wide range of potential applications of touchscreens for tactile position sensing in
daily life. For example, a glass window panel can be transformed into a tactile position sensor without
interfering with its lighting function, or the metal panels used in typical household appliances such as
refrigerators, washing machines, kitchen cabinets, and so on, can be used to realize human–machine
interaction through touch and position sensing. To support these goals, future studies may usefully
consider such problems as further reducing the response time, extending the sensing strategy to the
case of multiple simultaneous touching events, and miniaturizing the data acquisition system and
CNN model into a simplified and integrated electronic unit.
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