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Abstract: This paper presents three different approaches to recognize driving style based on a
hierarchical-model. Specifically, it proposes a hierarchical model for the recognition of the driving
style for advanced driver-assistance systems (ADAS) for vehicles. This hierarchical model for the
recognition of the style of the car driving considers three aspects: the driver emotions, the driver
state, and finally, the driving style itself. In this way, the proposed hierarchical pattern is composed
of three levels of descriptors/features, one to recognize the emotional states, another to recognize
the driver state, and the last one to recognize the driving style. Each level has a set of descriptors,
which can be sensed in a real context. Finally, the paper presents three driving style recognition
algorithms based on different paradigms. One is based on fuzzy logic, another is based on chronicles
(a temporal logic paradigm), and the last is based on an algorithm that uses the idea of the recognition
process of the neocortex, called Ar2p (Algoritmo Recursivo de Reconocimiento de Patrones, for its
acronym in Spanish). In the paper, these approaches are compared using real datasets, using different
metrics of interest in the context of the Internet of the Things, in order to determine their capabilities
of reasoning, adaptation, and the communication of information. In general, the initial results are
encouraging, specifically in the cases of chronicles and Ar2p, which give the best results.

Keywords: pattern recognition; driving style; intelligent techniques; advanced driver-assistance systems

1. Introduction

Currently, there is interest in the development of Advanced Driver-Assistance Systems (ADAS) for
vehicles [1–4]. A context-aware ADAS aims to assist drivers according to the current situation. In this
context, the relationships between the car drivers and the ADAS is an important aspect to consider,
and more particularly, how the ADAS can be adapted to the characteristics of each car driver [1,2,4,5].
From the above, the following questions arise: How should mechanisms of adaptation be incorporated
for each driver in the ADAS? What factors should be considered to recognize a driving style? How are
these factors related?

Particularly, to allow the adaptation of an ADAS to each driver, it is necessary to recognize the
main human factors that the driver can have in a given moment, which have a great influence on
the driving style [6–9]. Also, with respect to the driving style, there are other factors that influence it,
such as the emotions and states of the driver, which also are necessary to recognize [1,3,10]. However,
to recognize any of the three, it is necessary the definition of the set of descriptors/features that
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determine them. In this sense, this paper analyzes these factors in such a way as to establish the set
of descriptors that could be used to describe them in real contexts. The descriptors determine those
variables that should be observed by the ADAS, to identify the different states, styles, or emotions that
can have a driver. Based on the descriptors, it is possible to define specific patterns of the states, styles,
or emotions of a driver.

Initially, the paper analyzes how to measure the descriptors of the hierarchical model, which forces
to assume a perceptual multimodal approach. Once the different style, state, and emotion patterns of a
driver are defined, the paper analyzes the techniques that can model those patterns in the context of
an ADAS. These techniques should not only recognize each possible emotion, state or style, but they
should also be able to infer possible causes of the same, to help the ADAS to define the possible actions
to be executed. The main contributions presented in this article are:

(i) The combination of the hierarchical models of driving styles proposed in [6] with the emotional
recognition approach proposed in [10] for a new hierarchical multimodal model (sound, vision,
etc.) for driving styles recognition.

(ii) The implementation of three recognition algorithms based on different paradigms: Chronicles,
Ar2p algorithm, and fuzzy logic. The first paradigm is based on a set of events linked by a
set of temporal constraints, the second paradigm is based on the operation of the neocortex,
and the third paradigm is based on the fuzzy theory. These paradigms were selected due to their
capabilities to manage partial and ambiguous information, which can occur in an ADAS.

(iii) Finally, an exhaustive comparison using relevant criteria in an internet of things (IoT) context,
and for ADAS and cruise adaptive control (ACC) [11] applications. These criteria are of three
types, to analyze the three techniques from different points of view, in order to determine their
capabilities in areas of interest for an ADAS or ACC [2,5,12]. The first capability is the reasoning,
in order to deduce the possible states, styles, and emotions, as their possible causes. The next
capability is the learning, in order to learn the patterns of each driver, understanding that it is
specific for each one. Finally, the other capability is linked to the recognized information that is
transmitted, a vital aspect in the context of the Internet of the Things (IoT), where the information
must travel fast between the objects of the environment, in this case, between vehicles (their
ADAS and ACC) and/or drivers.

This paper is organized as follows: Section 2 presents a literature review. Then, Section 3 analyzes
the hierarchical pattern of the driving style proposed in [6], to modify it with descriptors that can be
sensed in real contexts. Section 4 presents three recognition approaches based on different intelligent
techniques. The next section presents a comparison of the techniques, defining a set of metrics to
determine their capabilities of reasoning, learning, and communication. For that, various scenarios
of driving situations to test these capabilities, using real data, are defined. Finally, the conclusions
are presented.

2. State of the Art

Lin et al. propose an adaptive ADAS that considers the internal characteristics of each human
being, like fatigue, inattention, and specifically, the driving type [7]. The authors propose a set of
driver characteristics and review the key technologies to determine the behavioral characteristics of
the driver, such as the data acquisition techniques, or the classification and identification methods
of the driver behavior. The authors of [5] propose the design of the control strategy for an ACC,
according to the driving types. In this work, they consider that a safe driver wants ACC to work
before, while the aggressive driver wants ACC to work later. They include these driver features in the
design of the control algorithm, in order to make the ACC system suited to the car drivers. In [13],
the authors propose a control system for an ADAS. The controller is designed to mitigate the negative
effects produced by possible visual distractions of the driver. In addition, the paper evaluates the
user’s visual distraction and its effect on two aspects: with respect to the path and with respect to



Sensors 2020, 20, 2597 3 of 28

the obstacles. They associate two-time delays around these effects and propose a control scheme that
considers distraction in the design. Slawiñski et al. [14] propose a driver alert system based on the
feedback of vibrotactile stimuli of force, to prevent traffic accidents. The system can easily be mounted
on any vehicle, and it uses wireless communication with other vehicles to warn the driver of a possibly
dangerous situation in the next few seconds. The model is focused on human factors, and the system
is tested on an open-source 3D racing simulator.

There are several works about emotions in a car because it is a great challenge to personalize
the ADAS to each driver. For example, Guoying et al. [15] propose a pattern recognition approach to
identify the driver behavior. Their approach is divided into three phases: the parameter extraction,
the clustering process, and the identification model building. They use a K-means algorithm and a
Gaussian mixture model for the clustering process. Based on the clusters, they build two identification
models of the driver behavior, using an artificial neural network and a support vector machine, for the
recognition of the driver’s driving habits. The aim of [8] is to explore the effects of the emotions on
the driving performance and workload. They analyze the impact of the affective states of the driver.
For that, they use a vehicle simulator under three different road conditions, with one of the following
induced affective states: anger, fear, happiness, or neutral. They measure the subjective judgment, the
risk perception, and the safety level. They suggest that it is necessary to take into account the emotions,
in order to construct a generic driving behavior model. For example, Anger has adverse effects on
the personal safety level and degrades the driving performance. In [9], the maladjusted driving is
analyzed, such as aggressive driving, and its relationship with the traffic accidents. They propose
that the effects of the emotions in the traffic are divided into two distinct classes: personal factors and
driving situations. They carry out simulations in four traffic situations where each situation has critical
elements (e.g., slow car, an obstacle in the street). Their results indicate that the anger leads to a stronger
acceleration and higher speeds, and that anxiety has a similar behavior, but with weaker effects.

In [3], the authors investigate the potential to identify individuals using sensor data snippets
about their driving behavior. Their results indicate that drivers are distinguishable using only in-car
sensors. In particular, they can differentiate the drivers with 100% accuracy when the training is with
all the available sensors. When more training data is available, it is possible to reach a very good
identification using only a single sensor (e.g., the brake pedal). The paper [10] proposes a recognition
model of the emotions, using chronicles. In this work, they present only the model of recognition based
on chronicles, which is not implemented and tested in real situations. The authors of [16] propose
a pattern recognition approach to characterize a driver’s behavior. Their goals are to shorten the
recognition time and improve the recognition of driving styles, using a k-means clustering-based
support vector machine (kMC-SVM) method, for classifying drivers into two types: aggressive and
moderate. They use the vehicle speed and the throttle opening as the parameters to characterize the
driving styles. In [1], the authors present a revision of the works in emotion recognition, focusing on
those influencing the driver’s performance. They analyze the influence of the emotions in the driving
behavior, based on the traffic situations and the driver risk tolerance. The paper is focused on the
definition of an alerting mechanism and of a driver state recognition mechanism, which includes the
driver’s stress and fatigue. Lau et al. [17] investigated how positive and negative emotions affect
the driving speed, the steering, and the hazard response times. Contrary to expectations, results
revealed no significant effect of emotional valence on the speed and steering. Furthermore, there is an
interaction between the valence and the hazard situation that reduces the braking time. These findings
suggest arousal to have an important role in driving attention mechanisms. Kamaruddin et al. [18]
study the speech recognition problem. They use the real-time recorded speech from drivers, in order
to analyze the performance in a vehicular setting. They identify three basic emotions, namely angry,
sad, and happy. They define the speech emotion profile, to explore its universality and diversity. Dörr
et al. present a system for online driving style recognition [19]. They use fuzzy logic for identifying the
current driving style, which can be adapted to nearly every car.
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It is expected that the autonomous vehicles with the capability of driving without human
supervision will be released to the market in this decade. One first work in this domain is [2], wherein
the authors propose a learning approach that allows the user to demonstrate the desired driving style to
the car. They define parameters, such as the acceleration profiles, the distances to other cars, the speed
during lane changes, etc., to characterize a human driver’s style. They use a feature-based inverse
reinforcement learning, to find the model parameters that fit the observed style. Once the model
has been learned, it can be used by the vehicle to compute trajectories. In [20], the authors propose
a deep learning solution for characterizing the driving styles using the Global Positioning System
(GPS). They propose an approach that can extract high level and interpretable features, which describe
complex driving patterns. The learned driving styles are validated using a real dataset.

There are several works about the emotions of the car driver [12,21–25], but in general, they propose
simple models, they study only the emotions, they do not evaluate the quality of the recognition
approach, or the capabilities of the recognition approach, in real contexts. These aspects are covered in
this paper. Specifically, the previous works define very simple patterns to determine the behavior of
the driver (in some cases, they consider only the emotions, and in general, they do not consider the
driver state), and they do not analyze which descriptors can be measured in an ADAS real context.
Also, there are several works about driving style recognition techniques that are not analyzed from the
point of view of IoT, with metrics specifically linked to the learning, reasoning, and communication.
This paper conjugates all these aspects, to make an exhaustive analysis of the problem of recognition of
driving styles for ADAS.

3. Formal Definition of the Pattern of Driving Style

In general, the driving style has been defined in the literature as the attitude, orientation and way
of thinking of the daily driving [2,16,19,20,26,27]. One of the main aspects for the recognition of the
driving style is the definition of the patterns with their descriptors/features. Based on the patterns,
it is possible to define recognition algorithms and test their capabilities. In this way, the first step is to
analyze the definition of the patterns.

In [6] different types of descriptors are presented to offer a good description of the context, but
some of them cannot be obtained in a real context. For this reason, it is necessary to determine the
descriptors that can be sensed in an ADAS real context. In this work is proposed a set of characteristics
(descriptors) to describe each one of the aspects of the driver, which can be measured in a real context.
In this way, the theoretical pattern defined in [6] is modified. Remember that the factors that must
be considered of a driver are the driving styles, the driver states, and the driver emotions. In that
sense, it is necessary for each of them, the determination of a group of characteristics that define them.
Particularly, one of the characteristics of the driver’s state is the emotions, so that to recognize the state
it is necessary previously the recognition of the emotion. Equally, in order to recognize the driving
style, it is required the recognition of both the state and the emotion of the driver. Thus, a hierarchical
relationship is established between the patterns of each factor to be considered, to describe a driver
(see Figure 1).
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Aguilar et al. [6] describe a preliminary form of this hierarchical model. In general, the pattern is
defined by a set of descriptors by level, which defines the characteristics of each factor to be recognized
(emotion, state, and style). In this way, the hierarchical pattern defined in [6] is composed of three
levels, which in this paper is modified according to the descriptors that can be sensed in an ADAS
real context:

First level: Pattern of the driving style. It aims model how the driver drives. Classically, the driving
style is defined in the literature as aggressive, ecological, urban, and normal [4,9,22,23]. The proposed
model allows for the recognition of the driving style considering the set of descriptors defined in
Table 1.

Table 1. Descriptors of the pattern of the driving style.

Descriptor Description

Type of road It describes the category of the road. For example, if it is a rural or
urban road.

Driver state It describes the state of the car driver, and it is defined by the second
level of our pattern.

Emotion of the driver It defines the emotional state of the driver, and it is defined by the
third level of our pattern.

Weather condition It characterizes the current weather conditions. For example, rainy,
sunny, windy, cloudy, among others.

State of the road It characterizes the current conditions of the road, the quality of the
track. For example, if it is a paved ground, if the road has hollows, etc.

Traffic characteristic
It defines aspects linked to the transit laws, and other road
characteristics, in the current context. For example, the speed limits,
the traffic signs, among others.

Second level: Driver state. This level describes the state of the car driver. Normally, the state of a
car driver is described in the literature as wakeful, stressed, lethargic, pleasant, fatigued, concentrated,
calm, impatient, boring, and falling asleep among others [4,9,22,23]. To detect the current state of the
driver, the following descriptors are proposed, as shown in in Table 2.

Table 2. Descriptors of the pattern of the driving state.

Descriptor Description

Class of vehicle It describes the type of vehicle. For example, it can be a car, truck,
minivan, etc.

Control Action on the vehicle It describes the current action of the driver of the car. For example,
if the driver is accelerating, braking, etc.

Emotion of the driver See description in Table 1.

Vehicle condition
It defines the current conditions of the vehicle. For example, if it has
a mechanical failure, an electrical failure, the condition of the tires,
among other things.

Characteristics of the driver
It defines the profile of age, or physical condition, of the driver.
For example, if the driver is a teen, or he/she is an older adult, if the
driver has physical limitations, etc.

Driving experience It characterizes the experience of the driver as a car driver.
For example, if the driver has little, medium, or large experience.

Driving hour It defines the current hour of the day, for example, daytime,
night-time hour
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Third level: Emotions of the Driver. This level describes the emotions of the driver. Particularly,
the six basic emotions defined in the literature are [28]: happiness, sadness, fear, anger, disgust,
and surprise. Each emotion is defined by the set of descriptors proposed in Table 3.

Table 3. Descriptors of the pattern of the emotions of the driver.

Descriptor Description

Driver behavior It defines the current behavior of the driver in the vehicle. For
example, the car driver pulls the door, the driver uses the seat belt, etc.

Control Action on the vehicle See description in Table 2.

Physiological behavior of the driver
It defines the current physiological conditions of the driver. For
example, the heart rate of the driver, the blood pressure of the driver,
the colour of the face of the driver, etc.

Vehicle condition See description in Table 2

Voice expressions of the driver It characterizes the current tone of voice of the car driver. For example,
if the driver is shouting, singing, talking normally, etc.

Facial expressions of the driver It characterizes the current facial expressions of the car driver. For
example, if the driver is smiling, he/she is serious, etc.

Body expressions of the driver It describes the current body expression of the driver. For this, it is
necessary the utilization of a body language.

The main goal of the hierarchical pattern is to recognize the driving style, in order to be used by an
ADAS. To recognize the driving style, it is necessary the descriptors defined in Table 1, which include
the state and emotion of the driver. Equally, to recognize the state of a driver, the descriptors of Table 2
are used, and one of them, is the emotion. Thus, each level has a different set of descriptors, each
of which are perceived in different ways (sound, vision, etc.). That is, ADAS requires a perception
system composed of different types of sensors, in order to instance the descriptors of each level.
That implies the use of a perceptual multi-modal approach, with, for example, sound sensors, but also,
with mechanisms for the processing of the captured information. For example, an image processing
system may be required to recognize the driver’s face, the body language, etc.

However, not all descriptors are captured in real-time, and not all descriptors have the same
frequency of change, some of them are extracted from databases (e.g., personal information of the
driver), others are directly captured from the vehicle using sensors in the car. In this way, our hierarchical
model requires a perceptual multimodal system.

In our case, the current status of the descriptors determines the event at a given moment. For that,
our approach uses the information from the different sensors in the perceptual multimodal system.
In our case, each time that changes a descriptor means a new event. In this way, there are two types
of events, one where only a descriptor changes its value, called a simple event, and another where
several descriptors change their values, called complex event.

In this way, our model is very sensible, and according to the current values of the descriptors, then
it determines the current emotion, the current state, and finally, the driving style of the driver. Examples
of the possible driving styles that could recognize our model are shown in Table 4. For instance,
according to the value of the descriptors of this pattern, our model can detect an aggressive driving
style. In this example, if the state of the driver is stressed, their emotion is anger, the road is normal,
it is raining, and the road has potholes. In the same way, according to the values of the descriptors in a
given moment, other driving styles would be recognized, even the same style but with other values in
the descriptors. The same happens in the case of recognition of emotions and driving states.
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Table 4. Driving style [6].

Event Id Driving
Style

Type of
Road

Driver
State

Emotion of
the Driver

Weather
Condition State of the Road Traffic Characteristic

SD1 aggressive any stressed anger rainy the road has potholes any
SD2 ecological rural relaxed happiness sunny any follows speed limits
SD3 normal urban relaxed happiness sunny any any

In general, in Table 4, each driving style is associated with different descriptor
values [21,22,26,27,29]. For example, the aggressive driving style is associated with the stress (state) and
the anger (emotion). However, additionally, the rainy weather and the condition of the pothole on the
road define this driving style. On the other hand, the ecological driving style is associated with a relaxed
state and the happiness (emotion). Finally, a driving style can have several patterns (set of descriptor
values), and it is possible to add new driving styles using these descriptors. In Table 5, the descriptors
have been defined like codes, in order to simplify and encode the information represented by them, in
such a way to semantically enrich them. Table 5 presents an example of this information encoded in
the descriptors, for the case of the emotions.

Table 5. Conceptual view of emotion layer.

Descriptor Code Example of the
Descriptor

Driver behavior

XY

21
X = represents the gaze (X = 1, look off the road; X = 2, look on the road)
Y = represents the hands on the steering wheel (Y = 1, both hands on

the steering wheel; Y = 2, only left; Y = 3, only right; Y = 4, none)

Physiological
behavior of the

driver

XXX.XYYY.YZZZ/ZZZW.WWW

098.0075.1120/0800.001

X represents the body temperature (normal: 97.7–99.5 ◦F),
Y represents the heart rate (normal: 60–99 bpm),

Z represents the blood pressure (systolic/diastolic mmHg),
W represents the blood alcohol content (BAC) (% of alcohol for every

100 mL of blood)

Vehicle condition
(e.g., tire condition)

X

1
X represents the condition of the tires (X = 1 new tires (<= 10.000 km of

utilization), X = 2 worn tires (between 10.000 and 50.000 km
of utilization)

X = 3 bad tires (>50.000 km of utilization)

Control Action on
the vehicle

XYYYYZ

31001
X = represents brake light (X = 1, on, X = 2, off, X = 3, any)

Y represents GPS Speed
Z represents the use-horn (Z = 1 normal; Z = 2 excessive).

Facial expressions
of the driver

X

1
X represents the emotion of the face (X = 1, neutral, X = 2, normal, X = 3,
startled, X = 4 serious, X = 5 face with big smiles, X = 6 face with a little

smile, X = 7, angry, X = 8, repugnancy)

Voice expressions of
the driver

X
2X represents the emotion of the voice (X = 1, dry and strong; X = 2, soft

and low; X = 3, laugh; X = 4, dry scream; X = 5, neutral).

Emotion of the
driver

X
1X represents the emotional state of the driver (X = 1, happiness; X = 2,

surprise; X = 3, anger, X = 4, fear, X = 5, sadness)

In this example, the happiness of the driver can be recognized if the driver’s voice is soft and low,
the facial expression is neutral, the driver uses the horn normally, the brake light is turned off, the speed
is 100 Km/h, the tires are new, the driver looks on the road, and the hands are on the steering wheel,
among other things. In this way, the hierarchical model gives a detailed explanation of the conditions
that determine an emotion. It is similar, in the case of the state of the driver and the driving style.

Tables 1–3 define the set of descriptors for the recognition of a driving style. In a real context,
some of the descriptors may not be captured or their capture may be intermittent due to problems
with the sensors, or the instrumentation installed may not contemplate them due to their complexity
to deploy them or because they are intrusive to the driver. In this sense, the methods for processing
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driving styles must always be able to handle these uncertain situations, with partial and ambiguous
information. These aspects will be analyzed in the experimental part of this work.

4. Approaches for the Modeling of the Styles of Driving

In this section are explained the three paradigms used in this work, in order to recognize the
driving styles. The first paradigm is based on chronicles, the second paradigm is based on the operation
of the neocortex, and the third paradigm is based on the fuzzy logic. Specifically, the goal of this
section is to show the capabilities of the different intelligent techniques to model our complex pattern
of driving styles. These paradigms have been selected because they can process partial and ambiguous
information. This is typical in an ADAS context, where not all information is available or is correct in a
given moment, for several reasons, including communication faults, and sensor faults among other
things [4,5].

4.1. Based on Chronicles

A chronicle can be defined as a set of events, linked by a set of temporal constraints [30,31].
Each chronicle is an event pattern with temporal relationships between them, and a set of chronicles
describes the possible evolution of the studied system. In general, a chronicle model C is defined by a
pair (S, T), where S is the set of events and T the temporal constraints between the events. An instance
c of a chronicle model C is a set of event occurrences, which is consistent with the time constraints of C.
To define a chronicle, normally two predicates are used: event and hold. An event expresses a change
in an attribute, for example: Event (state (light): (on, off), t2). A hold specifies that an attribute holds a
value during a time interval, for example: Hold (position (robot, home), (t2, t4)).

Now, it is described how can be modelled the hierarchical pattern using chronicles. Each chronicle
is defined by a set of the descriptors defined in the previous section, which define the events and the
temporal relationships to recognize it. In general, every emotion, state, or driving style of the driver
will be modelled by a different chronicle. However, the same emotion, state, or driving style can be
recognized by several chronicles. In this context of this application, a chronicle is defined by a set
of events, described by the values that each descriptor takes from the hierarchical pattern at a given
moment (sensed value) and its moment of occurrence, and the temporal relationship between those
events (how much sooner or later those sensed values occur between them). In this way, it is possible
to capture behaviors more complex than a simple yawn or abrupt maneuver to deduce that it may
be happening. Specifically, our hierarchical model proposed in the previous section consists of three
types of chronicles:

(i) The first type of chronicle represents the emotional patterns of the driver. It aims to describe
the emotions of the driver. An example of a chronicle of the first type, to recognize the anger, is:

Chronicle Anger {

event (V1, T1),

event (S1, T2)

event (P1, T3),

event (F3, T4),

event (B5, T5),

event (H1, T6),

T1 > T3,

hold (V1, (4, 10)),

HOLD (S1, (6, 20)),

When recognized {emit event(ED1)}}

According to this chronicle, the pattern of anger can be recognized when the voice event “Tone
treble and volume high and speaking rate fast” (V1) arrives at time T1, and holds between 4 and 10
units of time; the speed event “High speed” (S1) occurs at the time T2, and holds between 6 and 20
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units of time, the pressure event “Strong pressure on the steering wheel” (P1) appears at time T3 and it
is less than T1, the facial event “Eyes and Eyebrows open, with curves and tight lips, and face wrinkles
in the centre” (F3) occurs at time T4, the body event “Posture Flattened” (B5) occurs at time T5, and the
heart event “Fast Heart rate” (H1) arrives at time T6.

(ii) The second type of chronicle represents the patterns of the driver state. It aims to describe
the driver’s condition. An example of a chronicle of the second type, to recognize a stressed driver,
is the following:

Chronicle Stressed {

event (ED1, TED1),

event (DE2, T1),

event (TS2, T2),

event (S2, T3)

T3 < T2,

T3 < T1,

TED1 < T2,

TED1 < T1,

hold (S2, (2, 20))

When recognized {emit event(ST3)}}

Where, ED1 is the event generated when the Anger emotion is recognized at the time TED1,
and DE2, TS2 and S2 are events generated by the descriptors of the driver state.

(iii) The third type of chronicle represents the patterns of the driving styles. It aims to establish
how the person drives. An example of a chronicle of the third type, to recognize an aggressive driver,
is the following:

Chronicle Aggressive {

event (ED1, TED1),

event (ST3, TST3),

event (R1, T4),

event (E2, T3)

TED1 > TST3,

T3 > T4,

hold (ST3, (5, 15)),

When recognized {Report the driving style to the ADAS}}

Where, ST3 is the event generated when the Stressed state is recognized at the time TST3, and R1
and E2 are events generated by the descriptors of the driving style.

This is just a sample of the proposed chronicles used by an ADAS, where the chronicles of type
1 and 2 are composed of the primary events captured through different types of sensors (pressure
sensor on the steering wheel, driver’s heart rate sensor, and speed sensor, among others). Chronicle
type 3 is a mixture of the primary events and events recognized in the hierarchical system. Chronicles
can consider ambiguous situations such as when an event does not occur what to do, or the variable
temporal occurrence between events, among other things.

The implementation of the learned chronicles is carried out in a tool called OpenESB. OpenESB is
a service-oriented middleware used to build service-oriented architecture (SOA) applications. It has a
component, called intelligent event processor (IEP), which allows the processing of complex events,
the base of the motor of inference for the recognition of chronicles. It uses the continuous query
language (CQL) to describe the chronicles, which is a declarative language that performs continuous
queries on an event flow. Figure 2 shows an example of a chronicle, using the IEP component.
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The event component represents an input stream that collects a series of events. These events
define the changes in the descriptors that define the chronicles. According to Figure 2, there are several
events (event 1, event 2, event 3, and event n), which are events that occur in the descriptors that are
part of the driving style pattern.

The representation of chronicles using the CQL language is the following. CQL is a query language,
which is declarative, used to perform continuous queries on an event stream. Syntactically, CQL is
very similar to the SELECT statement of the structured query language (SQL), but the execution of the
queries is different of the queries of conventional databases in SQL, whose queries are executed on
demand, until all requested data is completed. By contrast, in CQL, the queries are continuous streams
of data, running indefinitely (infinite tuples of streams), or until the application that invokes ends.
CQL has the same operators that SQL, like projection, selection, aggregation, joining, grouping, etc.
It also has other operators that allow relating stream to relations. For more details about CQL, see [32].
Taking the chronicle model defined previously, which recognizes the patterns of anger, this chronicle
can be expressed in CQL statements as follows:

Chronicle Anger {

SELECT

ISTREAM {

event_level2 => ’EStressed’

event_leve1 => ’EAggressive’

‘Anger Recognized’

}

FROM

eventV1[T1]

eventS1[T2]

eventP1[T3]

eventF3[T4]

eventB5[T5]

eventH1[T6]

WHERE

eventP1.time < eventV1.time

Where each eventi is a descriptor.

4.2. Based on Ar2p

Ar2p is a model for pattern recognition, inspired by the pattern recognition theory of mind [33,34].
Ar2p is based on the neocortex pattern recognition process. The hierarchical recognition model in
Figure 3 represents the recursive and iterative process of Ar2p. Each layer in the hierarchy is an



Sensors 2020, 20, 2597 11 of 28

interpretation space (ovals) identified as Xi, from i = 1 to m. X1 is the level of recognition of the atomic
patterns, and Xm is the level of recognition of the complex patterns (for example, a driving style).
Each level is composed of Γji recognition modules (for j = 1, 2, 3... # of modules at level i), where ρji is
the recognized pattern by the module j at level i.

The input pattern s() in Figure 3 represents the presence of a pattern to be recognized. For the
top-down recognition case, the output signal of the higher-levels is the input signal at the lower-levels.
Each recognition module Γji (which recognizes its corresponding pattern ρji) has a relationship of
structural composition with the recognition modules of lower-levels, such that Γji→ Γlk, where l defines
the number of the recognition module at level k, and i > k. Relationship “→“ indicates that the module
Γlk of Xk is contained or is part of the module Γji, which belongs to layer Xi of higher level. In other
words, a Γj of Xi is composed of different Γl of Xk of lower level. There may be different versions
of the same pattern (redundancy/robustness) represented by different Γri, from r = 1, 2, 3 ... until
possible variations of the object in the real world. Each level i produces an output signal (recognition
or learning) based on the responses of its modules. The output of each Γji consists of a specific signal of
recognition of its pattern ρji, which is transmitted through the dendrites to its higher levels. This signal
contains information about the characteristics of the pattern that represents. This process is valid
for both, top-down and bottom-up processes (for more details about these processes, see [33,34]).
Such recognition is diffused through all the dendrites to which the recognition module is connected.
When it is not recognized, then it sends a signal that maybe involves learning [34].

A pattern matching module is formally defined as a 3-tuple Γ = < E, U, So>, where: E is an array
composed of 2-tuple E = <S, C> (see Table 4); S = <Signal, State> is an array that represents the set
of signals that conform to the pattern recognized by Γ and their respective states; C is an array that
encodes information about the pattern, defined by a 3-tuple C = <D, V, P>, where D represents the
descriptors of Γ, V is the domain vector for each D, and W it the weight (importance) of each D for the
recognition of the pattern. Table 6 shows the structure of the recognition model.

On the other hand, in [33,34] have been defined two strategies for recognition of a pattern: the
first strategy by key signals, and another strategy by partial recognition of signals. The first uses the
weight of importance of the input signals identified as keys, and the second uses the partial or total
presence of the signals.

Table 6. Module Structure.

E

S C

Signal a State Descriptor(D) Domain Weight (w) b

1 False Descriptor1 <possible descriptor values> [0, 1]
2 False Descriptor2 <possible descriptor values> [0, 1]
3 False Descriptor3 <possible descriptor values> [0, 1]
. . . . . . . . . . . . [0, 1]
N False Descriptorn <possible descriptor values> [0, 1]

∆U c

a The value of N depends on the pattern to recognize (the descriptors of the pattern). b All values are normalized
[0, 1]. c Threshold.
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Theorem 1. Strategy by key signals. This recognition uses the descriptors (signals, sub-patterns) with greater
weight of importance and the ∆U1 threshold for the recognition.

Definition 1. A key signal. A si signal in the Γ module is key if its importance weight has a value greater or
equal than the average of all the signals in Γ. The formula is:

∀si ∈ S(Γ), if [W(si) ≥W_average S(Γ)]→ClaveΓ(si) (1)

Definition 2. Recognition by key signals. A ρ pattern is recognized by key signals if:∑n
i=1 ∩ state(si=true)∩si ∈ClaveΓ

W(si)

|ClaveΓ|
≥ ∆U1→ So (2)

If the average of the weights of the recognized key signals > ∆U1, then the pattern is recognized.

Theorem 2. Strategy by partial mapping. This strategy consists of the validation that a signal number minimum
present in Γ is superior to the ∆U2 threshold.∑n

i=1 ∩ state(si=true) W(si)

n
≥ ∆U2 → So (3)

If the average of the active input signals in Γ > ∆U2, then it is generated the So output of recognition.
This process of calculation is carried out for each module of each level of recognition Xi (from X1 until
Xm) [33,34].
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Now, it is described how can be modelled the hierarchical pattern using Ar2p. Each level of the
hierarchy is defined by a set of descriptors. The application of Ar2p for the driving style recognition is
described in detail below. Firstly, the following basic conditions are defined:

• Each descriptor is viewed as a string of numbers that represents it. Normally, all descriptors are
considered atomic patterns, i.e., they are not defined by other lower-level (see Figure 4 for the case
of the emotions).

• The layers to recognize the driver states and the driving styles are composed of descriptors, and
of the emotion descriptor, which is a sub-pattern of lower-level (e.g., see Figure 5 for the case of
the driver state). In this example, the emotion pattern is defined by the word “11.9637112800 ...”,
which is a pattern with sub-patterns of lower level, as described above.

• The driving styles layer is composed of descriptors of atomic patterns, except the descriptors of
the driver states and driver emotions.

• The hierarchical pattern is modelled by three levels, X1 for the driver emotions, X2 for the driver
state, and finally, X3 for driving style.
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In Figure 4, the descriptors are at the top (first layer), and characterize the conditions of the
environment, the vehicle and the driver, considered for the recognition of the emotions. Each descriptor
is represented by a code, as is shown in Table 5. The codes define the atomic sub-patterns that constitute
the emotion, in this case of happiness.
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In Figure 5, the descriptors are at the top and characterize the conditions of the vehicle and the
driver, considered for the recognition of the driver state. Unlike the previous figure, each descriptor
is represented either by a code (number string) or by a string (complex descriptor). For example,
happiness is a complex descriptor that is generated by the recognition of another pattern (see Figure 4).

In this way, according to the hierarchical architecture of Ar2p, the hierarchy of patterns to recognize
the driving styles would be as follows: at the X1 level is the pattern recognition modules of driver
emotions, at the X2 level the pattern recognition modules of drive states, and finally, at the X3 level
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the pattern recognition modules for driving styles. An example of a recognition module is shown
in Table 7. It represents the recognition of the happiness (X1 level, i.e., emotions). Similar tables are
defined for the other levels.

Table 7. Module of recognition of emotions.

E = Happiness

S C

Signal State Descriptor(D) Domain Weight (w)

1 F Driver_behavior <21> [0, 1]
2 F Physiological_behavior_driver <96370112800> [0, 1]
3 F Vehicle_condition <1> [0, 1]
4 F Control_Action_on_vehicle <31001> [0, 1]
5 F Facial_expression_driver <1> [0, 1]
6 F Voice_expression_driver <2> [0, 1]

∆U

Ar2p can deal with uncertain or incomplete knowledge through its recognition axioms. In these
cases, Ar2p uses the key signals (descriptors) that characterize the patterns in accordance with the
importance weight of each one in the pattern. In this way, during the reasoning, it can recognize a
pattern with partial information.

4.3. Based on Fuzzy Logic

A fuzzy recognition system is a rule-based fuzzy system composed of a set of inference rules of
the type IF <Condition> THEN <Action>, which defines the recognition. Before these rules can be
used, all input signals must be converted into fuzzy variables. In general, the basic structure of a fuzzy
recognition system consists of three components: a rule base that contains the fuzzy rules; a set of
fuzzy variables, each one defined by a set of membership functions; and a reasoning mechanism that
performs the recognition procedure [35].

In order to model the hierarchical multimodal model of the driving styles, the multilayer fuzzy
classifier system (MFCS) proposed in [36] is used. An MFCS consists of a series of fuzzy systems
hierarchically distributed, where the output of a fuzzy classifier system (FCS) is the input of the next
FCS. This system has the advantage that the total number of rules of the knowledge base is smaller and
simpler than a conventional fuzzy system. That is, the system has the advantage of greatly reducing
the number of “if-then” rules, because the conclusions are inferred from the outputs of other FCS.

The application of this method for the analysis of driving styles is described in detail below, for its
implementation in a real context. In our case, each descriptor is defined as a fuzzy variable, and each
level of our hierarchical multimodal model of the driving styles is an FCS. The input of the first FCS
are the descriptors of the emotions, and the output is related to the next FCS (driver states) or with the
final FCS (driving styles). Figure 6 shows our MFCS model for the recognition of the driving styles,
which has three FCSs: (a) the first FCS recognizes the driver emotion, (b) the second FCS recognizes
the driver state, and finally, and (c) the last FCS recognizes the driving style.
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The inputs of the FCSs are the same descriptors defined in Section 3 for each level (e.g., road
types, weather condition, traffic characteristic, control action on the vehicle, etc.), but, in this case, they
are defined as fuzzy variables. Figure 7 shows an example of the membership functions that describe
the fuzzy variable about the utilization of the horn. The corresponding fuzzy sets are low, normal,
and excessive. This fuzzy variable is input data of the first FCS.
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Table 8 shows some examples of fuzzy sets for several descriptors (fuzzy variables) of our
hierarchical multimodal model of the driving styles. For example, the use-horn fuzzy variable is
defined by three fuzzy sets.

Table 8. Description of some of the input fuzzy variables.

Variable Fuzzy Sets

Use-horn low, normal, excessive
Driving experience little, medium, large

Gaze eyes off the road, eyes on the road
Hands on the wheel both, only left, only right, hit the steering wheel

Weather raining, sunny
Traffic density flow with restrictions, stable flow, free flow, slow flow, slow flow with stoppage

Facial expressions neutral, surprise, anger, smile,

Finally, the output of the system is the driving style, which is defined by three fuzzy values,
ecological, normal and aggressive, and their membership functions are shown in Figure 8.
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The other outputs of the rest of the FCSs are shown in Table 9.

Table 9. Description of the output fuzzy variables.

Variable Value

driver-emotion anger, happy, sad, fear, surprise, neutral
driver-state relaxed, wakefulness, stressed, pleasant, sleepy, fatigue
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With these fuzzy variables, it is described the set of fuzzy rules of each FCSi. Some examples of
fuzzy rules to recognize the driver-emotion are:

• If (use-horn is excessive) and (heart rate is high) and (facial expression is grave) then (driver-emotion
is anger).

• If (driver hits steering wheel) and (voice is high) and (facial expression is grave) then
(driver-emotion is anger).

• If (facial expression is a smile) and (voice is a laugh) and (use-horn is normal) then (driver-emotion
is happy).

• Some examples of fuzzy rules to recognize the driver-state are:
• If (driver brakes frequently) and (driver-emotion is anger) and (driver has little experience) then

(driver-state stressed).
• If (driver hits steering wheel) and (driver is young) and (driver has little experience) then

(driver-state is stressed).
• If (driver-emotion is happy) and (driver is young) and (driver is experienced) then (driver-state

is relaxed).
• Finally, some examples of fuzzy rules to recognize the driving-style are:
• If (driver-state is stressed) and (driver-emotion is anger) then (driving-style is aggressive).
• If (driver-state is relaxed) and (weather is raining) and (road has potholes) then (driving-style

is normal).
• If (driver-state is relaxed) and (driver-emotion is happy) and (traffic density is free flow) then

(driving-style is ecological).

5. Comparison of the Approaches

This section presents the comparisons considering the capabilities of each technique at the level of
three properties [37]: (i) The reasoning strategies to recognize the driving style (aggressive, normal
and ecological), in order to determine the causes of the driving style; (ii) The adaptation strategies to
learn the personality of the driver; (iii) The communication of the driving style, which consists into
transmit this information to other drivers and that they can understand it.

In the beginning, the experimental database used is described, as well as the metrics used in
each property to determine the quality of each approach. Finally, several scenarios are presented for
each property.

5.1. Experimental Data

In this section is used an artificial database defined with real data, captured in a multimodal way
in different projects that cover the descriptors of each level of our hierarchical model. The merging
of different database was necessary, in order to describe driving styles, since there is not a database
with the descriptors of our hierarchical data model (see Figure 9). The database combines the set of
descriptors based on the time variable. That means, it is supposed the occurrence of a given set of
events (values of descriptors) in a given moment, which is registered in the database with this time
label. Additionally, it is supposed a specific emotion, driver state, and driving style for each specific
moment (register) in the database. It is sufficient for our approaches, in order to learn and to infer the
emotions, driver state, and style of driving.
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Tables 1–3 have defined the set of descriptors for the recognition of a driving style. The descriptors
are stored in an artificial database using real data. The data sources of the database are: the
“IdDriver”, “IdVehicle” and “Time” variables are generated by us; the “Driver”, “Gender”, “Age”,
“Limitation” and “Driving Experience” variables are taken from personal sheets; the “Road_Type”,
“Road_Surface_Conditions”, “Special_Conditions_at_Site, and Light_Conditions variables are taken
from the Accident_2015 database [38]; the “Pressure”, “Temperature”, and “Wind_Speed” variables
are taken from a climate database [39]; the “Density of traffic”, “Type_vehicle”, and “Hands on the
wheel” variables are taken from the Waze database [40]; the “Altitude” and “GPS Speed” are taken
from GPS devices; and the “Brake_Light”, “Horn use”, “Blood pressure”, “HeartRate”, “BodyTemp”
variables are obtained from other sources [41,42].

The variables are combined based on the hierarchical multimodal model for driving style
recognition (see Tables 1–3) and the key variables defined in Table 10. The relationships between driver
emotions, driving styles, and driver state variables are defined by the hierarchical relationship between
them defined in our pattern model. In addition to this, the arrangement of the data was chronologically
carried out using the key variables (see Table 10) to synchronize the rest of the information, in order to
incorporate the descriptors according to the simulated driving event. Initially, the information about
the context is included, then the information about the vehicle, and finally, the information about the
driver. The consistency is guaranteed because the variation of each descriptor is determined by each
source of data, according to the simulated driving style in each specific situation (determined by the
key variables).

So, each level within the hierarchical model has all the information for groups of drivers, which was
recorded every certain interval of time. The first group of drivers has a short sampling period (15 min)
of the descriptors. Another group of drivers has a much larger sample period (several hours), in order
to allow changes in all descriptors, especially in weather-related descriptors. Our database has the
same structure as Table 5 (it is the conceptual view of the database), but with the key fields defined in
Table 10. The keys are the time when taking the sample, and the information about the driver and the
vehicle, while the rest of the information corresponds to the values of the descriptors. The database
can be downloaded from www.ing.ula.ve/~{}aguilar/desarrollo-software/VistaMinableOperativa.xlsx.

www.ing.ula.ve/~{}aguilar/desarrollo-software/VistaMinableOperativa.xlsx
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Table 10. Key variables in the database.

Key Code Example of the Key

Time

XX:YY:ZZ
XX = Represents the hour,

YY = Represents the minutes,
ZZ = Represents the seconds

12:46:36

IdDriver Identifier of the Driver 14447345
Driver Name of the Driver Juan Perez

IdVehicle Identifier of the Vehicle LBB-3138

5.2. Metrics

In order to evaluate the recognition systems based on the different paradigms proposed in section
four, certain performance criteria are defined, which are grouped into three groups:

• Criteria related to the recognition capability.
• Criteria related to the adaptive ability.
• Criteria related to the ability to communicate the recognized information.

5.2.1. Metrics about Reasoning Capabilities

Consists of detecting anomalous situations, such as negative (aggressive, etc.) driving styles,
maybe with additional information about the causes, to inform the ADAS. For that, the metrics about
the inference capabilities are important, which allows recognizing and diagnosing. The metrics used
in this work are:

Coverage: It verifies the completeness of the technique, i.e., if it represents all possible situations
to recognize. Specifically, for the case of the driving style, the proportion of driving styles that cannot
be recognized/detected.

PSTYLES =
1

#Styles
×

i∑
w=1

ySTYLESw (4)

where PSTYLES is the proportion of driving styles that can be recognized, #Styles is the number of
driving styles, and ySTYLESi is a binary variable that is equal to 1 if the style i is recognized, otherwise
the value is 0. This expression can be extended to the cases of states and emotions of the drivers.

Compactness examines the density of the technique, understood by the number of patterns to
recognize a state, an object, etc. For the case of the driving styles, it is calculated as the average number
of patterns used to recognize the different styles.

CRSTYLES =
#Styles

#RStyles
(5)

where CRSTYLES is the relative compactness of the driving styles, and #RStyles is the number of
patterns used during the experimentation to recognize the driving styles. A value close to 1 means
more compactness (good value because the techniques can recognize a state, an object, etc. with few
information/patterns). This expression can be extended to the cases of states and emotions of the drivers.

Time of reasoning it is the average time to recognize.

TimeRt = timeEndSimulationt − timeStartSimulationt (6)

where TimeRt is the average time of the technique t.

5.2.2. Metrics about Learning Capabilities

This section specifies the metrics about the learning quality of the paradigms.
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Precision (Mp) determines if the system recognizes the right cases and not others. The result of
this operation is between 0 and 1; a perfect precision is 1 when only the correct cases are recognized.

Mp =
TREx

TREx + TRFpx
(7)

where TREx it is the total of successful recognition (true positives), and TRFpx is the total of failed
responses (false positives).

Recall (Mr) is defined as the number of cases that are recognized of the total of cases that must be
recognized. If the result of this measure is 1, then it represents a perfect memory, and there is not an
informative silence.

Mr =
TREx

TREx + TRFnx
(8)

where TRFnx is the total of failed answers (that must be recognized) (false negatives).
f-measure (Ma) it measures the general performance of the learning considering recall (Mr) and

precision (Mp).

Ma =
2MpMr

Mp + Mr
(9)

Accuracy is the ratio of the number of correct predictions of the total number of inputs.

TREx + TREnx
TREx + TRFnx + TRFpx + TREnx

where, TREnx is the total of successful non-recognition (true negatives).
Quadratic learning error (EAC) is the quadratic error between the output that the paradigm gives

and the output that should give.

EAC =
1
n

n∑
i=1

(
Ŝp− Sp

)2
(10)

where Ŝp is a vector of n responses given by the paradigm, and Sp is the vector of answers that it
should give.

5.2.3. Metrics about Communication Capabilities

They are oriented to the communication capability of each technique, such that they must
transmit faster, and the information transmitted must be understandable by the receptors. In this case,
two metrics are used:

Transmission time defines the time to prepare the information to be transmitted with the recognized
information by the technique.

TT =
real transmission time

optimal transmission time
(11)

Processing time defines the time to understand the received descriptors from other sites, in order
to be used to recognize a situation.

PT =
current response time
optimal response time

(12)

5.3. Experimental Scenarios

5.3.1. Reasoning Capabilities

This capability consists in the possibility of recognition of different situations and, particularly,
the detection of anomalous situations, such as negative driving styles, in order to be useful for the
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ADAS system, so that it can guide the driver to a positive driving style, which is known to be most
suitable for safe driving. The evaluated scenarios are:

• Evaluate the ability to recognize the same situation (emotion, state, or style) through
different patterns.

• Study the capacity to recognize the basic emotions, states, or styles in the different drivers.
• Verify the correct functioning of the hierarchical pattern.
• Evaluate the ability to recognize different emotions for the same driver.

In this case, the next metrics are used: coverage, compactness, and time of reasoning. Table 11
shows the average values of these metrics for the scenarios previously defined.

Table 11. Results for the Reasoning Capabilities.

Approaches
Reasoning Capabilities

Coverage Compactness Time of Reasoning (s)

Fuzzy Logic 0.63 0.65 1.34
Chronicles 0.98 0.73 0.21

Ar2p 0.55 0.97 0.34

Concerning reasoning capability, chronicles can recognize all possible situations (coverage = 0.98),
but it requires a large chronicle database to recognize all possible cases. In this sense, Ar2p is more
efficient (compactness = 0.97), since it requires fewer recognition modules by its recursive scheme that
reuses information and improves its execution time. In general, the performance of the fuzzy logic
is not good, because it needs a large rule database, which does not cover all the possible situations.
The same problem can occur with Ar2p, where there are not general patterns for different situations (an
advantage of chronicles). Another problem is the reasoning process of the fuzzy logic, which is based
on an inference process that can make it very slow at computation time (Time of reasoning = 1.34).
In general, a high coverage is desirable, which means the desired situation was successfully recognized.
Additionally, a good compactness shows the quantity of information (patterns, descriptors, etc.) to
recognize the different situations. Finally, the response time is very important in a real-time context,
because an ADAS must quickly assist the driver in a given situation.

The reasoning process of Chronicles based on temporal logic describes naturally the current
situation. That is, the reasoning mechanism is based on the events of the descriptors and their
temporal relationships, and it manages the incertitude according to when the events occur. In addition,
the chronicles define a diagnosis based on the detected causes, to determine the control actions. The only
problem is the size of the database of the chronicles, it is required a large database of chronicles to
recognize the different situations. Ar2p can reuse much information through the recognition modules,
which is an advantage. Also, it can deal with uncertain knowledge. This is achieved within the
structures of representation of the pattern (i.e., the pattern recognition modules), with the notion of
weight of the descriptors, which support different forms or changes in the descriptors of a pattern.
At the level of the reasoning mechanism, it allows inferring a situation, and navigating quickly among
the modules. Finally, fuzzy logic allows an approximate reasoning, which implicitly can manage the
incertitude, using the idea of imprecision and information granularity in fuzzy descriptors of our
multimodal pattern model. The main problem is to obtain the set of rules and the execution time of the
MFCS. The MFCS is an excellent strategy to describe the different levels of our pattern model, but it
introduces important execution costs in real-time applications.

5.3.2. Learning Capabilities

This capability consists of the ability of adaptation each paradigm for the different situations in
the vehicular context, and the personality of the driver. Remember that in some cases, it is necessary
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the online discovery of new patterns, or the customization of the generic patterns with the specific
characteristics of each driver. In this case, the next metrics are used: precision, recall, f-measure,
and quadratic learning error. Table 12 shows the average values of these metrics for the scenarios
previously defined. We have used a cross-validation approach and added a classic recognition algorithm,
random forest (RF), in order to calculate and analyze these metrics in different contexts. In the first one,
we have tested our approaches with all the datasets (see Table 12).

Table 12. General results for the Learning Capabilities.

Approaches
Learning Capabilities

F-Measure Accuracy Error

Fuzzy Logic 0.80 0.76 0.69
Chronicles 0.98 0.97 0.02

Ar2p 0.95 0.94 0.10
RF 0.97 0.96 0.08

Table 12 shows that the chronicles give the best results because they obtain the best precision and
recall (like the algorithm Ar2p), but with a minor error. The fuzzy logic normally is based on an elitism
procedure based on experts. The FCS allows a learning process, classically based on evolutionary
approaches, which is not efficient in real-time situations as the ADAS, while the learning algorithm of
Ar2p is quite good, although it converges in a quadratic error superior to the chronicles. RF has similar
results that chronicles and Ar2p.

According to the results, the paradigms accurately recognize the patterns, without making other
unexpected recognitions. This precision value is because the paradigms learn very specific and unique
situations. On the other hand, the good recall indicates that the paradigms can discover all the patterns
that a driver experiments during the driving process. In addition, the paradigms recognize the same
situation (emotion, state, and/or style) with different patterns, expressing the diversity of context
in which the same situation can occur. These results consider the case of online learning and the
customization of the patterns, when generic patterns are constructed for each emotion, style, and state
(typical, in the case of chronicles and the modules of Ar2p). In general, the quality of the learning
algorithm for the chronicles and Ar2p is due to that the learning of patterns is performed whenever a
change is detected in the descriptors.

In the second case, 10% of descriptors are randomly deleted during the training phase to prove
the capabilities of the methods to learn with partial information. The results are shown in Table 13.

Table 13. Results of the Learning Capabilities with missing data during the training phase.

Approaches
Learning Capabilities

F-Measure Accuracy Error

Fuzzy Logic 0.80 0.78 0.58
Chronicles 0.97 0.98 0.02

Ar2p 0.96 0.94 0.08
RF 0.97 0.97 0.04

Table 13 shows that the performance of the methods is very similar with respect to the first case,
because the methods learn with the available descriptors, and during the testing phase, they can
recognize no matter that there are more descriptors captured in the environment (the techniques use
the descriptors with which they were trained to recognize new inputs).

In the next test, some descriptors are randomly deleted during the testing phase to prove the
capabilities of the methods to recognize with partial descriptors (see Table 14).



Sensors 2020, 20, 2597 22 of 28

Table 14. Results of the Learning Capabilities with missing descriptors during the testing phase.

Approaches % Missing Descriptors
Learning Capabilities

F-Measure Accuracy Error

Fuzzy Logic 10 0.75 0.8 0.72
20 0.64 0.63 0.91

Chronicles 10 0.9 0.89 0.1
20 0.84 0.84 0.37

Ar2p 10 0.93 0.92 0.1
20 0.89 0.89 0.16

RF 10 0.94 0.94 0.09
20 0.92 0.92 0.13

In this case (see Table 14), some techniques have difficulties. For example, the fuzzy system in
some cases fails to activate the appropriate rules because it is not among the input variables, or the
chronicles fail to recognize some situations, despite the fact that the default behaviors defined in them
allow partial recognition in some cases. The random forest and Ar2p methods are less affected by these
missing data when recognizing, since each tree of RF uses different descriptor combinations and Ar2p
the keyword axiom. For a low percentage of missing values, the performance degradation of RF and
Ar2p is practically nil.

In the next test, some values are randomly deleted during the testing phase to prove the capabilities
of the methods to recognize with partial information (see Table 15).

Table 15. Results of the Learning Capabilities with missing values during the testing phase.

Approaches % Missing Values
Learning Capabilities

F-Measure Accuracy Error

Fuzzy Logic 5 0.80 0.77 0.71
10 0.72 0.72 0.79

Chronicles 5 0.94 0.93 0.08
10 0.9 0.89 0.2

Ar2p 5 0.94 0.93 0.1
10 0.92 0.93 0.16

RF 5 0.93 0.94 0.08
10 0.92 0.94 0.1

In general, in this case (see Table 15) the techniques keep more or less their performances.
The chronicles have more problems in this case, which can be solved by the actions for default that can
be defined in their patterns.

In the last test, with the variables in the dataset for testing are defined data stream, in order to
recognize complex driving styles that depend on the sequence of events (see Table 15).

In this case (see Table 16), chronicles work very well because they consider the temporal relationship
between the events in their patterns. The fuzzy model keeps more or less its values of quality, because
it can include in some cases during the fuzzy inference process (in real-time) the occurrences of new
variables. In the case of Ar2p and RF, they cannot represent these types of events (they can recognize
specific/current multimodal inputs) and requires the extension of the recognition phase to consider the
temporal relationship to be used for these cases.
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Table 16. Results of the Learning Capabilities with missing data during the testing phase with the
data stream.

Approaches
Learning Capabilities

F-Measure Accuracy

Fuzzy Logic 0.80 0.79
Chronicles 0.98 0.98

Ar2p NA NA
RF NA NA

In general, the chronicles can describe the same situation (an emotion, a driver state, a driving
style) using different chronicles. This approach requires a robust chronicle database, which is constantly
learned, in order to adapt it to the driver and new situations [30,43]. With respect to Ar2p, it uses
two strategies of adaptation [34]. The first one, called new learning, occurs when the input pattern
was not recognized (there is not a module that recognizes it). The second one, called reinforcement
learning, occurs when the input pattern was recognized. These two learning mechanisms allow a
quick adaptation to the driving style of the driver. On the other hand, Ar2p can adapt their pattern
recognition modules in accordance with the recognized patterns, readjusting the importance of the
weights. Finally, an FCS can learn the rules and the structures of the fuzzy variables. In particular,
the membership functions of the fuzzy variables can be adapted to the context, and the rules of the
database can be modified (their antecedent and consequent components) [36]. To achieve this, the FCS
requires a hard process of modification of the rules, which does not guarantee good results at the level
of the learning process (f-measure = 0.80).

5.3.3. Communication Capabilities

In this last case, it is evaluated the capability of each paradigm to transmit the recognized
information to other drivers, in a clear way and with semantic meaning. This case is fundamental
in the context of IoT, where the exchange of information is between devices, so it must be accurate,
contextualized, etc., to be useful [44]. To reach this goal, the transmission of the information must be
fast, but additionally, the information sent must be useful for the receptor. In this case, the next metrics
are used: transmission time and processing time. Table 17 shows the average values of these metrics
for the scenarios previously defined.

Table 17. Results for the Communication Capabilities.

Approaches
Communication Capabilities

Response Time Transmission Time

Fuzzy Logic 0.960 0.770
Chronicles 0.120 0.063

Ar2p 0.093 0.081

In general, the communication times are better for Ar2p, since they simply send a signal, which is
recognized by the top-level recognition modules (which can be on different devices). In the case of
the chronicles are sent events involved in a recognition process, which must be locally interpreted.
These events include the specific information required by the chronicles (such as the emotion experienced
by a driver), but it is the only information required. In the case of FCS, the consequent information
must be sent, and it is required in the local site a fuzzy reasoning mechanism to process the fuzzy
variables, or the fuzzification of the received values. This additional time must be added, to discover
the current situation. Thus, the communication in Ar2p are signals between recognition modules,
in the chronicles are events, and in FCS fuzzy variables or values that must be fuzzified.
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In more detail, in the chronicles, the events can include specific information required by the
chronicles. The hierarchical model communicates the events generated by the different descriptors,
or the recognition. Ar2p only sends the signals required by the recognition module, which corresponds
to a given descriptor (for example, the emotional state of the driver). This signal can be the input of
one of the modules of recognition in the other place. Finally, fuzzy logic can send discrete or fuzzy
values that must be processed on the other sites, which implies more communication time (Response
time = 0.960).

5.4. Result Analysis

The data that have been used to build the experimental database are available on the Internet.
Our experiments are repeatable using other available data, and they only require the preparation
of the data to the format of our database. With respect to our metrics, they allow determining the
quality of the results without the necessity of comparing with other works. These metrics evaluate
the quality of the different capabilities of the approaches. The metrics as coverage (in the case of
reasoning), precision/recall (in the case of learning), and communication time give an idea of the quality
of these capabilities.

On the other hand, the patterns and experimental context defined in other work are very different
from our study, which makes very complex a comparison with previous works. Nevertheless, we carry
out a qualitative comparison with other works. The different methods in the literature about the
recognition of the driving style in vehicle drivers, use different recognition methods, descriptors/features,
pattern models, and classified driving styles. Table 18 shows a comparison of our method with respect
to recent works.

Table 18. Comparison with other methods.

System Recognition Method Pattern Model Descriptors/Features Classified Driving Styles

[45]

Statistical-based
method: Bayesian

probability with kernel
density estimation

A single-layer
model with the

information of all
the descriptors

8 features: Acceleration, Yaw rate,
Lateral displacement, Vehicle

Speed, Steering angle, Physical
signal, Physiological signal

Aggressive Normal

[46] K-means and support
vector machine

Two-layer model:
one of the

physiological
signals and other

for the driving
behavior

physiological signals from
electroencephalography (EEG).

Five types of driving
behaviors

[19] Fuzzy logic Rules-based on the
descriptors

Road class, longitudinal
acceleration, speed difference,

lateral acceleration, Speed
difference

Normal comfortable
sporty

[20]
Convolutional Neural

Network (Deep
Learning)

A single-layer
model of features

defined by the deep
learning approach.

Speed norm, acceleration norm,
and angular speed, using vehicle

sensor data.

Driving patterns:
slowdown at hard turns,
high-speed driving along

straight roads, etc.

[47]
Semi-supervised
support vector

machine

A single-layer
model

Few labeled data points selected
from a set of labeled data about

the vehicle and context
Aggressive Normal

Our
approach

Fuzzy Logic
Chronicles Ar2p

(Neural Network)

Hierarchical model
for the recognition
of the driving style.

27 features about the driver,
context, vehicle (multimodal

descriptors)

Ecological normal
aggressive sporty

In the literature have been used different techniques as recognition methods, normally based on
machine learning. Our paper has added a logical approach as a recognition method, the chronicles.
Additionally, the hierarchical pattern model proposed by our work is much more complex, and it
includes specific patterns to analyze the driver emotions and the driver states. This work uses the Ar2p
pattern recognition technique, which is capable of recognizing patterns with incomplete descriptors,
similar to the deep work learning approach used in [20]. Also, this work uses chronicles, which are
capable of recognizing complex patterns with temporal relationships between descriptors. Our model
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considers more descriptors, and can also offer information by level of recognition, which makes it
robust and scalable, but [47] can exploit unlabeled data. Also, other works do not recognize the driving
style [20,46]. Additionally, our model can be extended to recognize any type of driving style. On the
other hand, our hierarchical pattern model is independent of the recognition methods, and inversely,
the recognition methods can be used in other pattern models. Finally, this paper analyzes the different
approaches with respect to three capabilities very important in the context of autonomous vehicles
(IoT): reasoning, learning, and communication.

Furthermore, our methods present very good results for more complex patterns that the existing
in the literature. Only the fuzzy logic model has bad results, but for the rest, the metrics of learning
and reasoning are very good, close to 1, which speaks of the quality of these paradigms to learn
and recognize our pattern of driving style. Finally, some important remarks are: (i) our hierarchical
model is more complex than driving style patterns used in the literature, (ii) our hierarchical model
includes more classical descriptors, which makes more precise the recognition process (it is the main
added value of our pattern model), and (iii) our methods can be applied with partial or ambiguous
information about the patterns.

6. Conclusions

This paper proposes a hierarchical pattern of driving styles, which considers three levels of
recognition, one to recognize the driver emotions, other to recognize the driver states, and finally, the
last one corresponds to the driving styles. Our model is flexible because it allows the easy incorporation
of new descriptors in the hierarchical model, and it uses the data available in a given moment to
recognize. Our model allows incorporating emotional states, driving style, among others, in an
ADAS and ACC, to provide greater safety and comfort. The integration in an ADAS is a future
work. Particularly, an important contribution of this work is that it covers all aspects necessary to
incorporate the human factors in an ADAS, i.e., the ability to recognize driving styles, learn and inform
human emotions, among other things. These results can be extrapolated to study the human-machine
interaction, within the area known as affective computing. Existing works in the area of recognition in
the context of vehicles are usually based on specific descriptors. Another contribution is the theoretical
model of patterns proposed, which captures as much information as possible about the driving styles,
the driver states, or the driver emotions, making use of a multimodal approach of perception. In this
way, it adds a greater amount of information, which makes possible a more precise recognition process.

In addition, the paper analyzes three techniques to recognize the driving style, one based on fuzzy
logic, another based on chronicles, and another based on Ar2p. The paper compares these techniques
in three cases: their reasoning mechanisms, in order to determine the possible causes or to detect
abnormal states; their adaptive capabilities to the drivers; and their communication capabilities of the
recognized information, which is very important in the IoT. Each technique has its advantages and
disadvantages, and depends on the real context (IoT) to choose one of them. The only technique that
does not show good results is the fuzzy model. First, because its learning process is not efficient and
is slow. Second, because it requires a large rule base to ensure that all cases are covered. Moreover,
and finally, because it needs the definition of messages with sufficient information to understand
the information generated by the different sites. On the other hand, the adaptation process in the
other approaches (chronicles and Ar2p) allows the discovery of patterns to express the diversity of
contexts that may occur during the driving. The ability to reason, in particular, in the chronicles,
allows recognizing situations in different ways: the same situation with different patterns, different
situations, situations characterized by atomic patterns (e.g., only emotions), or complex situations
(described by complex patterns). In the case of communication, there are not problems for Ar2p
and chronicles, because the transmissions are signals or events that describe a change of value of a
descriptor, or something relevant recognized in a conductor (an emotion, a state or a style).

A future work is to carry out the implementation of these techniques in a real environment,
connected to an ADAS. The test cases defined in the current work were developed with an artificial
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database, using real data. It would be important to test the behavior of the model in real environments
with strong time constraints and large amounts of data stream. For such tests, the vehicle must be
equipped with systems such as camera, blood pressure sensor, temperature sensor, microphone, GPS,
among others, which will allow perceiving in a multimodal way the descriptors that compose the
driving pattern. Furthermore, according to the sensors in the real context, the recognition method must
be chosen. For example, in a context where perhaps some of the variables may be missing, methods
like Ar2p are better, but in a context where high precision based on the temporal relationship of the
variables is necessary, the chronicles are better. Then, with the chosen method, the models must be
trained, for which it is much better to use methods that have an online learning process (this is the
case of Ar2p and the chronicles) to update the patterns over time. Another future work is to test our
hierarchical pattern model using support vector machine and deep neural network techniques, in order
to compare their performances with the methods proposed in this work.

Author Contributions: Investigation, J.C., J.A., D.C. and E.P.; Methodology, J.A. and E.P.; Resources, J.C.; Data
curation, K.A.; Software, K.A. and E.P.; Supervision, J.A.; Validation, D.C.; Writing—review & editing, J.C., J.A.
and E.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Katsis, C.D.; Rigas, G.; Goletsis, Y.; Fotiadis, D.I. Emotion recognition in car industry. In Emotion Recognition:
A Pattern Analysis Approach; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 515–544.

2. Kuderer, M.; Gulati, S.; Burgard, W. Learning driving styles for autonomous vehicles from demonstration.
In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Seattle, WA, USA,
26–30 May 2015; pp. 2641–2646.

3. Enev, M.; Takakuwa, A.; Koscher, K.; Kohno, T. Automobile driver fingerprinting. Proc. Priv. Enhancing
Technol. 2016, 2016, 34–50. [CrossRef]

4. Tigadi, A.; Gujanatti, R.; Gonchi, A.; Klemsscet, B. Advanced driver assistance systems. Int. J. Eng. Res. Gen.
Sci. 2016, 4, 151–158.

5. Wang, J.; Zhang, L.; Zhang, D.; Li, K. An adaptive longitudinal driving assistance system based on driver
characteristics. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1–12. [CrossRef]

6. Aguilar, J.; Aguilar, K.; Chávez, D.; Cordero, J.; Puerto, E. Different Intelligent Approaches for Modeling
the Style of Car Driving. In Proceedings of the 14th International Conference on Informatics in Control,
Automation and Robotics (ICINCO), Madrid, Spain, 26–28 July 2017.

7. Lin, N.; Zong, C.; Tomizuka, M.; Song, P.; Zhang, Z.; Li, G. An overview on study of identification of driver
behavior characteristics for automotive control. Math. Probl. Eng. 2014, 2014, 569109. [CrossRef]

8. Jeon, M.; Walker, B.N.; Yim, J.-B. Effects of specific emotions on subjective judgment, driving performance,
and perceived workload. Transp. Res. Part. F Traffic Psychol. Behav. 2014, 24, 197–209. [CrossRef]

9. Roidl, E.; Frehse, B.; Höger, R. Emotional states of drivers and the impact on speed, acceleration and traffic
violations—A simulator study. Accid. Anal. Prev. 2014, 70, 282–292. [CrossRef] [PubMed]

10. Aguilar, J.; Chavez, D.; Cordero, J. A Dynamic Recognition Approach of Emotional States for Car Drivers.
In Proceedings of the International Conference on Technologies and Innovation, Guayaquil, Ecuador,
23–25 November 2016; pp. 155–168.

11. Moon, S.; Moon, I.; Yi, K. Design, tuning, and evaluation of a full-range adaptive cruise control system with
collision avoidance. Control. Eng. Prac. 2009, 17, 442–455. [CrossRef]

12. Tawari, A.; Trivedi, M. Speech based emotion classification framework for driver assistance system.
In Proceedings of the 2010 IEEE Intelligent Vehicles Symposium, La Jolla, CA, USA, 21–24 June 2010;
pp. 174–178.

13. Chavez, D.; Slawinski, E.; Mut, V. Collaborater for a Car-Like Vehicle Driven by a User with Visual Inattention.
Asian J. Control. 2013, 15, 177–192. [CrossRef]

14. Slawiñski, E.; Mut, V.; Penizzotto, F. Sistema de Alerta al Conductor Basado en Realimentación Vibro-Táctil.
Rev. Iberoam. Automática E Inf. Ind. 2015, 12, 36–48.

http://dx.doi.org/10.1515/popets-2015-0029
http://dx.doi.org/10.1109/TITS.2012.2205143
http://dx.doi.org/10.1155/2014/569109
http://dx.doi.org/10.1016/j.trf.2014.04.003
http://dx.doi.org/10.1016/j.aap.2014.04.010
http://www.ncbi.nlm.nih.gov/pubmed/24836476
http://dx.doi.org/10.1016/j.conengprac.2008.09.006
http://dx.doi.org/10.1002/asjc.536


Sensors 2020, 20, 2597 27 of 28

15. Guoying, C.; Danpan, W. Study on Identification of Driver Steering Behavior Characteristics Based on Pattern
Recognition. Int. Rob. Auto. J. 2016, 1, 5. [CrossRef]

16. Wang, W.; Xi, J. A rapid pattern-recognition method for driving styles using clustering-based support vector
machines. In Proceedings of the American Control Conference (ACC), Boston, MA, USA, 6–8 July 2016;
pp. 5270–5275.

17. Lau, C. Emotional Driving: Examining How Mood-Valence Affects Driving Performance. Ph.D. Thesis,
University of Guelph, Guelph, ON, Canada, 2016.

18. Kamaruddin, N.; Wahab, A.; Abut, H. Driver emotion profiling from speech. In Digital Signal Processing for
In-Vehicle Systems and Safety; Springer: Berlin/Heidelberg, Germany, 2012; pp. 21–29.

19. Dörr, D.; Grabengiesser, D.; Gauterin, F. Online driving style recognition using fuzzy logic. In Proceedings
of the 17th International Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11
October 2014; pp. 1021–1026.

20. Dong, W.; Li, J.; Yao, R.; Li, C.; Yuan, T.; Wang, L. Characterizing Driving Styles with Deep Learning. arXiv
2016, arXiv:1607.03611.

21. Kolli, A.; Fasih, A.; Al Machot, F.; Kyamakya, K. Non-intrusive car driver’s emotion recognition using
thermal camera. In Proceedings of the Joint 3rd Int’l Workshop on Nonlinear Dynamics and Synchronization
(INDS) & 16th Int’l Symposium on Theoretical Electrical Engineering, Klagenfurt am Wörthersee, Austria,
25–27 July 2011; pp. 1–5.

22. Lisetti, C.L.; Nasoz, F. Affective intelligent car interfaces with emotion recognition. In Proceedings of the
11th International Conference on Human Computer Interaction, Las Vegas, NV, USA, 22–27 July 2005.

23. Eyben, F.; Wöllmer, M.; Poitschke, T.; Schuller, B.; Blaschke, C.; Färber, B.; Nguyen-Thien, N. Emotion on the
road—Necessity, acceptance, and feasibility of affective computing in the car. Adv. Hum. Comput. Interact. 2010.
[CrossRef]

24. Kessous, L.; Castellano, G.; Caridakis, G. Multimodal emotion recognition in speech-based interaction using
facial expression, body gesture and acoustic analysis. J. Multimodal User Interfaces 2010, 3, 33–48. [CrossRef]

25. Paschero, M.; Del Vescovo, G.; Benucci, L.; Rizzi, A.; Santello, M.; Fabbri, G.; Mascioli, F.M.F. A real time
classifier for emotion and stress recognition in a vehicle driver. In Proceedings of the Industrial Electronics
(ISIE), 2012 IEEE International Symposium on Industrial Electronics, Hangzhou, China, 28–31 May 2012;
pp. 1690–1695.

26. Miller, G.; Taubman-Ben-Ari, O. Driving styles among young novice drivers—The contribution of parental
driving styles and personal characteristics. Accid. Anal. Prev. 2010, 42, 558–570. [CrossRef] [PubMed]

27. Taubman-Ben-Ari, O.; Yehiel, D. Driving styles and their associations with personality and motivation. Accid.
Anal. Prev. 2012, 45, 416–422. [CrossRef] [PubMed]

28. Ekman, P.; Friesen, W.V. Constants across cultures in the face and emotion. J. Pers. Soc. Psychol. 1971, 17, 124.
[CrossRef]

29. Nasoz, F.; Lisetti, C.L.; Vasilakos, A.V. Affectively intelligent and adaptive car interfaces. Inf. Sci. 2010, 180,
3817–3836. [CrossRef]

30. Aguilar, J. Temporal Logic from the Chronicles Paradigm: Learning and Reasoning Problems, and Its Applications in
Distributed Systems; LAP LAMBERT Academic Publishing: Saarbrücken, Germany, 2011.

31. Dousson, C.; Le Maigat, P. Chronicle Recognition Improvement Using Temporal Focusing and Hierarchization.
In Proceedings of the 20th International Joint Conference on Artifical Intelligence (IJCAI), Hyderabad, India,
6–12 January 2007; Volume 7, pp. 324–329.

32. Vizcarrondo, J.; Aguilar, J.; Exposito, E.; Subias, A. Building Distributed Chronicles for Fault Diagnostic in
Distributed Systems using Continuous Query Language (CQL). Int. J. Eng. Dev. Res. 2015, 3, 131–144.

33. Puerto, E.; Aguilar, J.; Chávez, D. A Recursive Patterns Matching Model for the Dynamic Pattern Recognition
Problem. Appl. Artif. Intell. 2018, 32, 419–432. [CrossRef]

34. Puerto Cuadros, E.G.; Aguilar Castro, J.L. Learning Algorithm for the Recursive Pattern Recognition Model.
Appl. Artif. Intell. 2016, 30, 662–678. [CrossRef]

35. Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [CrossRef]
36. Camargo, E.; Aguilar, J. Hybrid intelligent supervision model of oil wells. In Proceedings of the IEEE

International Conference on Fuzzy Systems (FUZZ-IEEE), Beijing, China, 6–11 July 2014; pp. 934–939.
37. Huang, C.-L.; Fallah, Y.P.; Sengupta, R.; Krishnan, H. Adaptive intervehicle communication control for

cooperative safety systems. IEEE Netw. 2010, 24, 6–13. [CrossRef]

http://dx.doi.org/10.15406/iratj.2016.01.00005
http://dx.doi.org/10.1155/2010/263593
http://dx.doi.org/10.1007/s12193-009-0025-5
http://dx.doi.org/10.1016/j.aap.2009.09.024
http://www.ncbi.nlm.nih.gov/pubmed/20159080
http://dx.doi.org/10.1016/j.aap.2011.08.007
http://www.ncbi.nlm.nih.gov/pubmed/22269525
http://dx.doi.org/10.1037/h0030377
http://dx.doi.org/10.1016/j.ins.2010.06.034
http://dx.doi.org/10.1080/08839514.2018.1481593
http://dx.doi.org/10.1080/08839514.2016.1213584
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.1109/MNET.2010.5395777


Sensors 2020, 20, 2597 28 of 28

38. DATA.GOV.UK Road Safety Data. Available online: https://data.gov.uk/dataset/road-accidents-safety-data
(accessed on 10 July 2017).

39. Datos Aemet. Available online: http://datosclima.es/Aemethistorico/Descargahistorico.html (accessed on 12
July 2017).

40. INEC Anuario de Transportes. Available online: http://www.ecuadorencifras.gob.ec/transporte/ (accessed on
10 September 2018).

41. OBD2 On Board Diagnostic. Available online: http://www.teseomotor.com/obd2/ (accessed on 10 July 2017).
42. Shoemaker, A.L. What’s Normal?—Temperature, Gender, and Heart Rate. J. Stat. Educ. 1996, 4. [CrossRef]
43. Aguilar, J.; Aguilar, K.; Gutiérrez, J. An Approach for the Structural Learning of Chronicles. Contemp. Eng.

Sci. 2018, 11, 793–806. [CrossRef]
44. Weber, R.H.; Weber, R. Internet of Things: Legal Perspectives; CRC Press: Boca Raton, FL, USA, 2010; Volume 49.
45. Han, W.; Wang, W.; Li, X.; Xi, J. Statistical-based approach for driving style recognition using Bayesian

probability with kernel density estimation. IET Intell. Transp. Syst. 2018, 13, 22–30. [CrossRef]
46. Yang, L.; Ma, R.; Zhang, H.M.; Guan, W.; Jiang, S. Driving behavior recognition using EEG data from a

simulated car-following experiment. Accid. Anal. Prev. 2018, 116, 30–40. [CrossRef]
47. Wang, W.; Xi, J.; Chong, A.; Li, L. Driving style classification using a semisupervised support vector machine.

IEEE Trans. Hum. Mach. Syst. 2017, 47, 650–660. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://data.gov.uk/dataset/road-accidents-safety-data
http://datosclima.es/Aemethistorico/Descargahistorico.html
http://www.ecuadorencifras.gob.ec/transporte/
http://www.teseomotor.com/obd2/
http://dx.doi.org/10.1080/10691898.1996.11910512
http://dx.doi.org/10.12988/ces.2018.8239
http://dx.doi.org/10.1049/iet-its.2017.0379
http://dx.doi.org/10.1016/j.aap.2017.11.010
http://dx.doi.org/10.1109/THMS.2017.2736948
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	State of the Art 
	Formal Definition of the Pattern of Driving Style 
	Approaches for the Modeling of the Styles of Driving 
	Based on Chronicles 
	Based on Ar2p 
	Based on Fuzzy Logic 

	Comparison of the Approaches 
	Experimental Data 
	Metrics 
	Metrics about Reasoning Capabilities 
	Metrics about Learning Capabilities 
	Metrics about Communication Capabilities 

	Experimental Scenarios 
	Reasoning Capabilities 
	Learning Capabilities 
	Communication Capabilities 

	Result Analysis 

	Conclusions 
	References

