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Abstract: Solar-induced chlorophyll fluorescence (SIF) has been proven to be well correlated with
vegetation photosynthesis. Although multiple studies have found that SIF demonstrates a strong
correlation with gross primary production (GPP), SIF-based GPP estimation at different temporal
scales has not been well explored. In this study, we aimed to investigate the quality of GPP estimates
produced using the far-red SIF retrieved at 760 nm (SIF760) based on continuous tower-based
observations of a maize field made during 2017 and 2018, and to explore the responses of GPP and
SIF to different meteorological conditions, such as the amount of photosynthetically active radiation
(PAR), the clearness index (CI, representing the weather condition), the air temperature (AT), and the
vapor pressure deficit (VPD). Firstly, our results showed that the SIF760 tracked GPP well at both
diurnal and seasonal scales, and that SIF760 was more linearly correlated to PAR than GPP was.
Therefore, the SIF760–GPP relationship was clearly a hyperbolic relationship. For instantaneous
observations made within a period of half an hour, the R2 value was 0.66 in 2017 and 2018. Based on
daily mean observations, the R2 value was 0.82 and 0.76 in 2017 and 2018, respectively. Secondly,
it was found that the SIF760–GPP relationship varied with the environmental conditions, with the CI
being the dominant factor. At both diurnal and seasonal scales, the ratio of GPP to SIF760 decreased
noticeably as the CI increased. Finally, the SIF760-based GPP models with and without the inclusion
of CI were trained using 70% of daily observations from 2017 and 2018 and the models were validated
using the remaining 30% of the dataset. For both linear and non-linear models, the inclusion of
the CI greatly improved the SIF760-based GPP estimates based on daily mean observations: the
value of R2 increased from 0.71 to 0.82 for the linear model and from 0.82 to 0.87 for the non-linear
model. The validation results confirmed that the SIF760-based GPP estimation was improved greatly
by including the CI, giving a higher R2 and a lower RMSE. These values improved from R2 = 0.66
and RMSE = 7.02 mw/m2/nm/sr to R2 = 0.76 and RMSE = 6.36 mw/m2/nm/sr for the linear model,
and from R2 = 0.71 and RMSE = 4.76 mw/m2/nm/sr to R2 = 0.78 and RMSE = 3.50 mw/m2/nm/sr
for the non-linear model. Therefore, our results demonstrated that SIF760 is a reliable proxy for
GPP and that SIF760-based GPP estimation can be greatly improved by integrating the CI with
SIF760. These findings will be useful in the remote sensing of vegetation GPP using satellite, airborne,
and tower-based SIF data because the CI is usually an easily accessible meteorological variable.
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1. Introduction

Photosynthesis, the most important biochemical process in terrestrial ecosystems, is an essential
part of the global carbon cycle [1,2]. Therefore, as an indicator of photosynthetic carbon exchange in
ecosystems, accurate observations of the gross primary production (GPP) and a clear explanation of
its response to environmental conditions are required, in order to help solve the problem of climate
change [3–5].

The eddy covariance (EC) technique is a terrestrial observation method used to estimate the GPP,
and the continuously measured data are relatively accurate [6]. However, an EC tower only has a
small field of view and limited aerodynamic properties [7], which makes it difficult to measure GPP
at larger scales using this method. At larger spatial scales, a measured approach using models and
algorithms that integrate tower-based measurements with remotely sensed data offers the possibility
to estimate GPP [8,9]. Monteith [10] proposed the light-use efficiency (LUE) based model, validated
using tower-based data from an EC tower, which is well-known for its simplicity and efficiency and
has been widely applied for remote sensing estimates of GPP. LUE model approaches are commonly
based on reflectance vegetation indices [11], such as the normalized difference vegetation index (NDVI)
and the enhanced vegetation index (EVI) [12,13]. However, the NDVI and EVI are related to changes
in the canopy structure and biomass, and, therefore, it is hard to capture the diurnal and seasonal
dynamics of vegetation photosynthesis in this way [14]. As a result, estimating the GPP using these
traditional remote sensing methods remains a challenge, and there is a critical need to develop a more
accurate method to estimate GPP and characterize its temporal variations for different vegetation types
and environmental conditions [7,15,16].

During photosynthesis, green components absorb sunlight covering the 400–700 nm range
of the electromagnetic spectrum, triggering chlorophyll to emit the red and far-red light known as
solar-induced chlorophyll fluorescence (SIF). Numerous studies have demonstrated a strong relationship
between GPP and SIF based on satellite, airborne, tower-based and ground platforms [2,6,7,9,16–26].
Airborne and satellite remote sensing can only offer a snapshot of the SIF at a certain time (for
example, 13:30 local time in the case of the OCO-2 satellite), while the influence of the temporal
scale used is difficult to assess using instantaneous observations [27–29]. Automated, continuous,
tower-based SIF observation systems have been developed to explore the dynamic mechanism between
SIF and GPP [25,26]. Tower-based SIF studies are continuing to collect long-term data sets for different
ecosystems, including wheat [29], maize [30], rice paddy [31], soybean [32], sorghum [33], shrub [34],
temperate forest [35], deciduous forest [26], and evergreen forest [36]. These observations provide
direct and reliable evidence that can be used to explore the correlation between SIF and GPP at different
temporal scales.

Although multiple studies have found that SIF demonstrates a strong linear relationship with
gross primary production (GPP), the SIF–GPP relationship at different temporal scales and under
different environmental conditions has not been well explored. Some studies have found that the
relationship has a weaker empirical linear correlation over shorter time scales than at the seasonal
scale [29,37]. Van der Tol et al. [38] demonstrated that the relationship between SIF and GPP can
be nonlinear over short temporal scales. Zarco-Tejada et al. [39] assessed the relationship between
airborne-measured SIF and field-measured leaf CO2 assimilation in a citrus crop field, and, using
second-order polynomial regression, found that the SIF and leaf carbon assimilation exhibited a
statistically significant relationship at the diurnal scale. However, Damm et al. [6] showed that the
relationship between canopy SIF and GPP was asymptotic and scaled with environmental variables and
the temporal resolution for crop fields. Although much understanding of the response of GPP to SIF has
been gained from numerous SIF-based GPP models at the leaf and canopy scales [14,32,40–42], there
is general agreement among these models that the accuracy of GPP estimates is affected by the light
conditions and environmental variables. In addition, different models may have different sensitivities
to the timescales and environmental variables used for predicting canopy photosynthesis production.
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Generally, CI has been used as an indicator of solar light conditions that can distinguish different
weather conditions, such as sunny days and cloudy days [30,43]. Several studies have demonstrated
that weather conditions can influence the canopy GPP and SIF. For example, Smith et al. [44] observed
that an understory herb in a mixed spruce stand had a stronger ability to gain carbon on representative
cloudy days than clear days. Gu et al. [45] found that the effect of different environmental factors on
ecosystem carbon sequestration was complex, especially under cloudy conditions. Diffuse and direct
radiation differed in the way they were transmitted though the canopy, and the diffuse radiation had a
much lower tendency to cause canopy photosynthetic saturation in the case of forest, tall grass, and
winter wheat ecosystems [46]. Campbell et al. [40] also showed that the relationship between GPP and
SIF differed depending on the light conditions. Previous studies have demonstrated that CI is usually
related to other environmental parameters, such as the temperature, humidity, and precipitation.
Recently, Yang et al. [31] found that the ratio of GPP to SIF generally increased along with the relative
humidity (RH) and confirmed that incorporating the relative humidity and growth stage into multiple
regression analyses led to improvements in estimates of GPP for a rice paddy. However, irrespective of
whether a linear model or non-linear model is used for SIF-based GPP estimation, the effects of CI are
still unknown, which is important for an accurate assessment of GPP. On the other hand, although
current studies have found the absorbed photosynthetically active radiation (APAR) is the dominant
factor in the SIF–GPP relationship, Yang et al. [35] recently noted that SIF–GPP relationships were not
only driven by APAR, but were also strongly correlated with the leaf-level biochemistry and canopy
structure at diurnal and seasonal scales in temperate deciduous forests. Therefore, future studies
should pay more attention to the effects of the plant physiology, canopy structure, and environmental
conditions on the correlation between SIF and GPP across the growing season. Overall, the strong
link between SIF and photosynthesis has permitted the development of a new approach for accurately
estimating GPP at different spatial and temporal scales [47].

In this study, we deployed an automated tower-based SIF system in a maize field to collect
continuous observations of far-red SIF, which were then paired with measurements made at an existing
EC flux tower so that carbon exchange data were collected simultaneously. The acquired data covered
the growing seasons of 2017 and 2018. The objectives were: (1) to investigate the ability of far-red
SIF to track maize GPP at diurnal and seasonal scales, (2) to explore the impact of the environmental
conditions on the SIF–GPP relationship, and (3) to improve the estimation of GPP by integrating SIF
measurements and the clearness index.

2. Materials and Methods

2.1. Site Description

The DaMan (referred to as DM hereafter) site is located in the DaMan irrigation district in the
middle reaches of the Heihe River Basin, which is a typical oasis and lies on flat terrain approximately
8 km southeast of Zhangye, Gansu Province, in northwest China (38◦51′20”N, 100◦22′20”E)(the
location is shown in Figure 1). This region has a typical temperate continental climate, with an average
annual temperature of 8 °C, annual sunshine hours of 3000–3600 h, and annual precipitation of about
300 mm. The dominant crop type in this region is single-cropping maize with no special irrigation and
fertilization controls [48,49].

The spectral measurements at the DM site was made from 8 June 2017 to 30 September 2017,
and 7 June 2018 to 10 September 2018. In 2017, some days’ data was missing (12 to 22 July, and 22 August
to 10 September) due to hardware failure. In total, 189 days of measurements were obtained at the DM
site during the two growing seasons of 2017 and 2018.
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Figure 1. Location of the study site and observation tower.

2.2. Measurements of CO2 Fluxes and Meteorological Variables

A CO2 flux observation system based on the eddy covariance (EC) technique [50,51], was used to
measure the CO2 exchange between the maize canopy and the atmosphere. The EC system was fixed
to a 5-m high platform on a flux tower located in the DM irrigation district. The turbulent flux data
were sampled at a frequency of 10 Hz [27] and stored by a data logger (CR5000 at YK and GT, Campbell
Scientific Inc., Logan, UT, USA). The raw EC data were processed to obtain the net ecosystem exchange
of CO2 (NEE). Baldocchi et al. [52] have reported that the in situ GPP can be estimated from the
EC-measured NEE and ecosystem respiration (Re) using the equation GPP = R2 − NEE. In addition,
Liu et al. [53] found that the EC-measured net ecosystem exchange (NEE) was equivalent to the
night-time ecosystem respiration. Goulden et al. [54] also reported that the night-time Re was related to
the air temperature relationship. Therefore, we used the night-time partitioning algorithm to partition
the GPP (as the measured values of GPP) from the daytime NEE values in this study. In addition,
half-hourly mean and daily mean data were processed using the averaging method proposed in Hu
et al. [28].

Environmental and meteorological variables, including the photosynthetically active radiation
(PAR), air temperature (AT), and humidity (RH), were continuously observed using an automatic
weather station (AWS) system, which was also fixed to the EC flux tower. The AWS included a 3D
sonic anemometer (CSAT3, Campbell Scientific Inc., Logan, UT, USA) and an open-path infrared gas
analyzer (Li-7500, Li-Cor, Lincoln, NE, USA). PAR and all other meteorological variables were averaged
to 30-min values to correspond to the flux observations.

The vapor pressure deficit (VPD) was quantified as follows [55]:

VPD = 0.611× e
17.27×AT

AT ×

(
1−

RH
100

)
, (1)

where AT is the air temperature and, RH indicates the relative humidity.
For a better understanding of the effects of different incident light conditions on the SIF–GPP

relationship, we considered the overall influence of the solar zenith angle (SZA) and PAR.
The clearness index (CI) is an important weather metric that is used to describe the relative

intensity of solar incident radiation. In this study, CI was quantified as the ratio of the solar radiation
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arriving at the top of canopy to the solar radiation at the top of atmosphere. Therefore, half-hourly CI
(CI30) was calculated using the following formula [56]:

PAR30 = S0 × (1 + 0.033× cos(2π×DOY/365)) × cos(SZAT30), (2)

CI30 = PART30/PAR30, (3)

where PART30 represents the magnitude of PAR over a 30-min interval, PAR30 represents the maximal
PAR at the top of atmosphere (TOA), also over a 30-min interval, and S0 is the solar constant (1367 W/m2).

The daily CI (CIday) was calculated as follows:

PAR =

∫ Tsunset

Tsunrise

PAR(t)dt ≈
∑Tsunset

Tsunrise
PART30(t) × ∆t30, (4)

CIday = PARday/PAR0, (5)

where ∆t30 is the 30-min temporal interval, PARday is the integrated value of all half-hourly PAR
measurements made from sunrise to sunset in Equation (4), and PAR0 represents the sum of daily TOA
PAR [56].

2.3. Measurements of Solar-Induced Fluorescence

An automatic long-term SIF observation system was fixed to an 18-m high platform on the flux
tower at the DM site (Figure 1). The SIF observation system mainly consisted of a customized Ocean
Optics QE65PRO spectrometer (Ocean Optics, Dunedin, FL, USA), an automatic refrigeration system,
and a control PC for data collection and storage. The Ocean Optics QE65PRO spectrometer covers
645–805 wavelength ranges with a high spectral resolution of around 0.34 nm, a sampling interval
of about 0.17 nm, and a signal to noise ratio (SNR) higher than 1000 [27]. The spectrometer splits
the optical signal into two channels to measure both downwelling incident radiance and upwelling
radiance simultaneously using a cosine corrector (CC3-3-UV-S, Ocean Optics, Inc., Dunedin, FL, USA)
and a conical fore-optic (bare fiber), respectively. In the upward direction, the cosine corrector can
capture the downwelling incident radiance with a large field view (FOV) of 180◦, and the conical
fore-optic can capture the upward radiance with a small FOV of about 20◦ when pointing at the maize
canopy. The measuring mode was set to a ‘sandwich’ type: that is, by alternately opening the up
and down channels, the downwelling solar irradiance was first collected, the upwelling irradiance
of the canopy was then measured, and the downwelling solar irradiance was finally collected again
(Figure 2). To reduce the effects of weather changes caused by the time delay, we calculated the average
of the two downwelling solar irradiance measurements. Generally, it takes about 15 s at midday for
the observation system to complete a spectral measurement cycle, and about 2 min at sunrise or sunset.
Before each of the measurements, the integrated time was optimized depending on the light intensity,
and it was generally 0.7–6 s.

SIF retrieval algorithms are generally based on the Fraunhofer Line Discrimination (FLD) principle.
In this study, we applied the 3FLD approach to acquire the SIF signals, assuming that the fluorescence
and reflectance varied linearly: this approach has been proven to be more robust and accurate than the
improved FLD method [57,58]. The 3FLD method needs spectral data from three bands, including one
absorption band and the two shoulders of the absorption band. Although some studies have reported
that the red band SIF may contain more information about photosystem II (PS II), the canopy structure
and varying solar-view geometries have more complex effects on the red SIF than on the far-red
SIF [9,59]. Therefore, in order to better rule out the influence of retrievals and the strong re-absorption,
we only considered the relationship between canopy GPP and far-red SIF.
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Figure 2. A sample of the irradiance, radiance, and apparent reflectance measured by the automatic
observation system at about 13:30 on June 15, 2017 at the DaMan (DM) site. The four gray shaded
regions indicate the Hα absorption centered around 656 nm, the O2-B absorption at around 688 nm,
the water vapor absorption band at around 720 nm, and the O2-A absorption region around 760 nm.
The O2-A absorption band, which more clearly strengthened the weak reflected signal, was used to
extract the canopy solar-induced chlorophyll fluorescence (SIF) of maize.

For the O2-A band, we employed 761 nm as the inside channel, and 755 nm and 771 nm were
taken as the shorter- and longer-wavelength channels, respectively. The weights for the two shoulders
of the absorption band can be expressed as

w755 =
ρ771 − ρ761

ρ771 − ρ755
∧w771 =

ρ761 − ρ755

ρ771 − ρ755
, (6)

where w is the weight coefficient, ρ represents the reflectance, and the subscripts indicate the
wavelengths adjacent to the absorption valley. Then, the SIF can be calculated using

SIF =
(E755w755 + E771w771)L761 − E761(L755w755 + L771w771)

(E755w755 + E771w771) − E761
, (7)

where E represents the solar irradiance, and L represents the canopy reflectance.
In addition, as the strong absorption effect at the O2-A absorption bands has an obvious influence

on SIF retrieval, atmospheric correction is required even for tower-based SIF observations made
with a sensor located tens of meters above the canopy [60]. Therefore, we established look-up
tables (LUTs) to estimate the upward and downward transmittance using the aerosol optical depth
(AOD) and the radiative transfer path length (RTPL) based on moderate resolution atmospheric
transmission 5 (MODTRAN 5) model simulations and used the atmospheric transmittance to correct
the SIF measurements.

2.4. Statistical Analysis of the SIF760–GPP Relationship

To avoid the impact of low solar illumination, measurements that were collected at a solar zenith
angle (SZA) > 80◦ were excluded from the analysis. Raw SIF data that were negative or had values
higher than 2 mW/m2/nm/sr were also not used in the subsequent data processing and analysis.
In addition, outliers (measurements outside the range µ ± 3σ) were also excluded from the diurnal
relationship analysis (µ and σ are the mean and standard deviation, respectively). Some studies have
reported that the relationship between the canopy SIF and GPP exhibits a non-linear tendency and
depends on the environmental variables [39], especially the light conditions. In this study, we evaluated
the performance of canopy estimates based on the linear and non-linear regression model based on
SIF760 and explored the effects of the CI on the linear and non-linear relationship between SIF760 and
GPP. The linear and hyperbolic regression models characterizing the relationships between GPP and
SIF760 are [61]:

GPPL = fL(SIF) = a× SIF760, (8)
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GPPNL = fNL(SIF) = a×
SIF760

SIF760 + b
, (9)

where GPPL is the GPP predicted by the linear model; GPPNL is the GPP predicted by the non-linear
model; a and b are the fitting parameters [38]; and fL and fNL represent the linear regression model and
the non-linear regression model, respectively.

Previous studies have reported that the weather conditions can influence GPP estimates made
using the light-use efficiency model [62,63]. As CI influences the relationship between SIF and GPP, we
added CI into the SIF-based GPP estimation models (both linear and non-linear), which are expressed as

GPPL−CI = fL(SIF) × gL(CI), (10)

GPPNL−CI = fNL(SIF) × gNL(CI), (11)

where GPPL−CI is the GPP predicted by the linear model considering the effects of CI, GPPNL−CI

is the GPP predicted by the non-linear model considering the effects of CI, gL(CI) describes the
relationship between GPP/GPPL and CI for the linear SIF760-based GPP model, and gNL(CI) represents
the relationship between GPP/GPPNL and CI for the non-linear SIF760-based GPP model. Therefore,
gL(CI) or gNL(CI) can be fitted using the ratio between the measured GPP (true values of GPP) and
estimated GPP by fL(SIF) or fNL(SIF).

3. Results

3.1. Diurnal Dynamics of SIF and GPP at the Canopy Scale

We analyzed the dynamic variations in GPP, SIF, and PAR for the maize canopy on individual
clear-sky days at the diurnal timescale over the whole growing season (Figure 3). The SIF and GPP
showed a strong diurnal pattern with a steady increase during the morning and subsequent decrease
after solar noon, which was mainly driven by the incoming radiation. Both the SIF and GPP exhibited
gradual increases with PAR at the diurnal timescale (Figure 4). The diurnal relationships between GPP
and PAR exhibited a clear asymptotic trend, while the SIF–PAR relationships showed a more linear
trend. In addition, the structural and physiological variables had a significant effect on the saturation
of GPP over the whole growing season; however, this effect was not considered in this study. Overall,
the relationships between the canopy SIF760 and GPP were asymptotic at the diurnal scale, and PAR
was the key factor driving the relationship between the SIF and GPP.

Figure 3. The diurnal variations in canopy gross primary production (GPP, black), far-red solar- induced
fluorescence (SIF760, dark red), and photosynthetically active radiation (PAR, purple) under clear-sky
conditions at the DM flux site in 2017. DOY represents the day of the year. The first row represents the
vegetative stage (DOY 162, DOY 174, and DOY 187) and the second row indicates the reproductive
stage (DOY 192, DOY 224, and DOY 264).
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Figure 4. Relationships between PAR and canopy GPP and SIF760 based on individual day data
acquired over the whole growing season at the DM maize field in 2017. The GPP–PAR relationships
can be well fitted using a hyperbolic function, while the SIF760–PAR relationships can be well fitted
using the linear regression method. The DOY indicates the day of the year.

3.2. Seasonal Dynamics of SIF and GPP at the Canopy Scale

Figure 5 shows the processed data for two consecutive years at the DM observation site including
the seasonal variations in SIF760, GPP, PAR, CI, AT, and VPD for the maize canopy. The seasonal
pattern of SIF760 was consistent with that of the GPP over the whole growing season in 2017 and 2018
(Figure 5a). Both SIF760 and GPP exhibited gradual increases as the canopy developed and showed a
significant decline from leaf senescence to harvest. In addition, SIF760 and GPP generally remained
relatively stable with the exception of some cloudy sky days (Figure 5b). This can be seen from the
decrease in GPP around DOY 206 to DOY 207 in 2017, and DOY 198 to DOY 199 in 2018 (marked with
arrows in Figure 5a), for example. Therefore, we concluded that the seasonal fluctuations in SIF760 and
GPP were also primary driven by the variations in PAR; this explained most of the changes in SIF760

and GPP. Similar seasonal trajectories were observed for both the clearness index (CI) and PAR over
the whole growing season (Figure 5b). Therefore, the value of CI can be used as a proxy for the light
conditions. In addition, AT and VPD presented similar seasonal patterns and their relationships with
the ratio of GPP to SIF760 were relatively weak (Table 1).

Figure 5. (a) Seasonal dynamics of canopy gross primary production (GPP, black) and solar induced
fluorescence in the far-red band (SIF760, dark red) in the DM maize field in 2017 and 2018. Shaded
regions indicate values within ±SE of the mean; (b) photosynthetically active radiation (PAR, purple)
and clear sky index (CI, green); (c) air temperature (AT, orange) and vapor pressure deficit (VPD, blue).
The arrows indicate the decrease in GPP on individual days. All maize canopy measurements represent
the daily mean values during each daily sampling period.
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Table 1. Correlation between CI, AT, and VPD with the ratio of GPP to SIF760 over the whole growing
season in the DM maize field in 2017 and 2018.

Independent
Variables

Explanatory
Variables

Pearson’s Correlation Coefficient

2017 2018
30 min Day 30 min Day

CI
GPP/SIF760

0.32 0.67 0.41 0.71
VPD 0.17 0.53 0.07 0.47
AT 0.13 0.40 0.02 0.37

Next, we analyzed the relationships between SIF760 and GPP based on the half-hourly and
daily mean data for the whole growing season. At the seasonal timescale, the relationships between
maize canopy GPP and SIF760 exhibited strong hyperbolic correlations at both half-hourly (R2 = 0.66,
Figure 6a; R2 = 0.66, Figure 6c) and daily (R2 = 0.82, Figure 6b; R2 = 0.76, Figure 6d) temporal resolutions.
Additionally, we found that the relationships between SIF760 and GPP showed an improvement when
the half-hourly mean data were aggregated to daily mean data (R2 increased from 0.66 to 0.82,
Figure 6a,b; R2 increased from 0.66 to 0.76, Figure 6c,d) due to the reduction in noise.

Figure 6. Relationships between canopy GPP and SIF based on half-hourly (a,c) and daily (b,d) mean
data observed over the whole growing season in the DM maize field in 2017 (a,b) and 2018 (c,d).
The color scale represents the value of the clearness index (CI). Hyperbolic regression lines are shown
in black and the coefficient of determination (R2) for each best-fitting line is given.

3.3. Improving the Estimation of GPP Using a Combination of SIF and CI

To further analyze the relationships between both SIF760 and GPP and relevant environmental
variables across the growing period, we applied linear correlation analysis to investigate the effect of
CI, AT, and VPD on SIF760 and GPP at different time scales (Table 1). Compared to other environmental
variables, it was found that CI had a more significant effect on the variations in GPP and SIF760 at
different time scales in 2017 and 2018. Therefore, it may be that CI is the dominant environmental
variable in terms of the variations in the SIF760–GPP relationship. Furthermore, over the whole growing
season, we found that GPP will saturate or increase more slowly when the CI is high (Figure 6). Maize
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canopy GPP exhibited a greater tendency to saturate under high levels of direct light but the saturation
was less likely to occur when the amount of scattered light was extremely high. Therefore, it was
decided that CI should be included in the SIF760-based GPP estimation model.

Next, we investigated the influence of CI on the relationship between GPP and SIF760 based on
half-hourly and daily measurements of the training dataset made in the DM maize field. Figure 7
illustrates the variation in the ratio of canopy GPP to SIF760 with changes in CI based on the training
data. The ratio of GPP to SIF760 exhibits an obvious decreasing trend as CI increases (Figure 7a,b).
For the half-hourly data, the correlation between CI and the ratio of GPP to SIF760 exhibits a weak
relationship, with an R2 value of 0.17 (Figure 7c). However, the relationship between the ratio of GPP
to SIF760 and CI shows a stronger correlation for the daily data, giving an R2 value of 0.51 (Figure 7d).
Overall, these results show that the ratio of GPP to SIF760 decreases as CI increases, reflecting the
differences in the response of GPP and SIF760 to the weather conditions.

Figure 7. Dependence of canopy GPP/SIF760 on the clearness index (CI) averaged at 0.1 intervals (a,b)
in the DM maize field for the training dataset. Half-hourly data with CI < 0.3 and daily data with
CI < 0.2 were excluded from the analysis. The linear correlations between CI and GPP/SIF760 are based
on the half-hourly mean data (c) and daily mean data (d), respectively. Error bars indicate ±SD from
the mean.

From Figure 6, we found that under the same SIF value, when the CI value was small (indicated
by a yellow circle), the corresponding GPP was large. Moreover, we can see from Figure 7 that the
ratio of GPP to SIF760 exhibits an obvious decreasing trend as CI increases, reflecting the difference in
the response of GPP and SIF760 to weather conditions. These results indicated that the CI was a key
factor that affected the slope of GPP against SIF760 and the influence of CI should be introduced in
the SIF760-based GPP estimation model. Therefore, we added CI to the SIF760-based GPP estimation
models (both linear and non-linear), which can be seen in the Equations (10) and (11).

The relationship between the measured GPP (true values of GPP measured by the EC technique,
referred to as GPPmeas hereafter) and the predicted GPP based on SIF was used to establish a relationship
with CI for both linear and non-linear SIF-based GPP estimation models. The ratio of GPPmeas to the
predicted GPP (GPPL or GPPNL) represents the difference between the real GPP and GPP predicted
by SIF for a linear or non-linear model. We found that this difference is related to CI for the linear
SIF-based GPP estimation model and the GPPmeas/GPPL had a strong relationship with CI, as we can see
in Figure 7, and we used this ratio to fit the relationship with CI and integrated it into the SIF760-based
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GPP model to improve the estimation accuracy of GPP. By comparing the results of the linear model
with and without CI, it was shown that CI is indeed an important factor that affects the slope of GPP
against SIF760 (Table 2).

Table 2. The SIF760-based GPP models with and without the inclusion of the clear-sky index (CI)
based on the daily tower-based observations of the training dataset. The function g(CI) represents the
influence of CI on the SIF760-based GPP models.

Regression Model Regression Variables Regression Equation R2 RMSE

Linear
SIF GPPL = fL(SIF) = 36.24× SIF760 0.71 6.45

SIF, CI
GPPL−CI = fL(SIF) × gL

(
CIday

)
gL

(
CIday

)
=

(
−99.78×CIday + 124.19

)
÷ 36.24

0.82 5.71

Hyperbolic
SIF GPPNL = fL(SIF) = 42.6× SIF760

SIF760+0.44 0.82 3.79

SIF, CI
GPPNL−CI = fNL(SIF) × gNL

(
CIday

)
gNL

(
CIday

)
= −2.16×CIday

2 + 1.78×CIday + 0.87
0.87 2.92

In addition, compared to the linear model, we found the GPPmeas/GPPNL was not so strongly
correlated with CI (Figure 8) for the non-linear SIF760-based GPP estimation model. Meanwhile, GPPNL

was better related to GPPmeas than GPPL, which we can see in Table 2 & Figure 9a,c. These results
indicated that the non-linear SIF760-based GPP estimation model may partially correct the influence of
CI on the SIF760-GPP relationship. As described in Figure 8, the correlation of GPPmeas/GPPNL and CI
was relatively weak. However, the non-linear model could not fully correct the impact of CI, as the
accuracy of GPP estimation could be further improved by integrating CI into the non-linear model
(which we can see from Table 2).

In conclusion, the accuracy of GPP estimation can be improved by considering the influence of CI,
especially for the linear model.

Figure 8. Relationship between CI and the ratio of measured canopy GPP (GPPmeas) to predicted GPP
by the non-linear SIF760-based GPP estimation model (GPPNL).

Finally, we investigated the performance of the combinations of SIF760 with CI in terms of GPP
estimation. The SIF760-based GPP models with and without the inclusion of CI were trained using the
70% tower-based daily observations from 2017 and 2018, as summarized in Table 2, and the models
were validated using the remaining 30% dataset. The g(CI) functions were determined using the
empirical statistical equations shown in Figures 7 and 8, which were used to represent the impact of
CI on the GPP estimation. It can be seen that, for both the linear and non-linear SIF760-based models,
including the CI, improved the GPP estimation: the R2 value increased from 0.71 to 0.82 for the linear
model, and from 0.82 to 0.87 for the non-linear model. These SIF760-based models (summarized in
Table 2) were validated using the remaining 30% daily tower-based dataset, as illustrated in Figure 9.
The validation results also confirmed that the SIF760-based GPP estimation was greatly improved
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by the inclusion of the CI, resulting in a higher R2 and a lower RMSE: the improvement was from
R2 = 0.66 and, RMSE = 7.02 mw/m2/nr/sr to R2 = 0.76 and, RMSE = 6.38 mw/m2/nr/sr for the linear
model, and from R2 = 0.71 and, RMSE = 4.76 mw/m2/nr/sr to R2 = 0.78 and, RMSE = 3.50 mw/m2/nr/sr
for the nonlinear model. Therefore, although the SIF–GPP relationship is seriously disturbed by the
meteorological conditions, this can be corrected for using the easily assessible CI metric.

Figure 9. Validation of the SIF760-based GPP models that did and did not include the clear-sky index
(CI) using the daily tower-based daily observations of the validated dataset. GPPmeas represents the
GPP measured by EC technique. GPPL and GPPNL represent the GPP predicted by the linear and
non-linear model, respectively. (a) and (b) illustrate the validation results for the linear regression
models, and (c) and (d) illustrate the results for the non-linear regression models. The color scale
represents the CI value. The short-dashed line is the 1:1 line and the solid line represents the best-fit line.

4. Discussion

4.1. Possible Reasons for the Influence of CI on the SIF–GPP Relationship

In this study, we analyzed how CI affected the SIF760–GPP relationship for a C4 crop of maize. Our
results showed that CI was an important environmental factor influencing the SIF760–GPP relationship,
as found in previous studies [26,32,64–67]. In addition, we found that the inclusion of CI played a
key role in correcting the non-linear relationship between SIF760 and GPP. It was observed that GPP
would either saturate, or increase more slowly than SIF760, at high values of CI (see Figures 5 and 6).
There are several possible reasons for this.

First, the responses of LUE and the quantum yield of SIF (SIFyield) to illumination conditions are
different, and CI is a sensitive indicator of illumination. In our research, we found that, for a maize
field, the responses to variations in the light conditions differed between SIF760 and GPP. The SIF–PAR
relationship showed no significant saturation phenomenon, whereas, as also observed by Damm
et al. [61], for the GPP–PAR relationship, there was slight saturation at the diurnal scale (Figure 5).
The light-use efficiency (LUE) is mainly influenced by the fraction of diffuse radiation. Some studies
have concluded that carbon uptake is enhanced under cloudy conditions (the so-called “diffuse light
fertilization effect”) [45,46], whereas the quantum yield of SIF remains relatively constant [67]. Nichol
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et al. [64] confirmed that the linear regression of SIF and GPP was mainly affected by the shadowed
canopy fractions. Wieneke et al. [68] also found that diurnal LUE did not recover to the same level
after solar soon compared to before solar soon, and that SIFyield increased much more strongly than
LUE. Therefore, we concluded that, CI, as a proxy for the illumination conditions, was an important
factor affecting the non-linear relationships between GPP and SIF at half-hourly and daily time scales
(Figure 6).

Second, CI is usually related to other environmental parameters, such as the temperature, humidity,
and precipitation, which also have different influences on the LUE and SIFyield. Gu et al. [45] concluded
that the enhanced carbon uptake under cloudy conditions might result from the interaction between
various environmental factors related to the presence of clouds. Previous studies have reported that
the GPP–SIF relationship is influenced by the relative humidity (RH) and air temperature. For example,
Ehleringer et al. [69] reported that the quantum yield for CO2 uptake under normal atmospheric
conditions was temperature-dependent in C3 plants but apparently not in C4 plants. Yang et al. [31]
found that the ratio of GPP to SIF generally increased along with the relative humidity (RH) and
confirmed that incorporating the relative humidity, the diffuse PAR fraction, and the growth stage
into multiple regression analyses led to improvements in estimates of GPP for a rice paddy. In this
study, although we found the VPD and AT exhibited a certain relationship with the GPP/SIF760, the
introduction of more parameters will also accumulate, increasing the uncertainties of the model.
Therefore, we only considered the influence of the CI on the relationship between SIF760 and GPP. In
conclusion, continuous tower-based measurements can produce additional insights on how GPP and
SIF react to environmental conditions and provide large amounts of reliable evidence that can be used
to explore the correlation between SIF and GPP [27,29,32,35,36].

In addition, as the influence of the difference in leaf reflectance and transmittance in the far-red
band becomes relatively small with an increasing interaction order [59], we ignored the effects of
canopy radiative transmission on near-infrared chlorophyll fluorescence. However, as single scattering
dominates in the red band, the difference in leaf reflectance and transmittance in the red band varies a
lot and is not ignorable. Although red SIF indicates more information on photosynthesis, the canopy
structure and varying solar-view geometries have significant effects on the red SIF compared to the
far-red SIF [9,59]. Therefore, red SIF was not analyzed in this study. Future studies should pay more
attention to the effects of canopy structure and its interaction with weather conditions, such as CI.

4.2. Limitations of the C4 Crop Experiment

This research was conducted on a routinely irrigated C4 crop. Due to differences in photosynthesis
between C3 and C4 crops and differences in environmental conditions between irrigated crops and
natural ecosystems, LUE and SIFyield may exhibit different response patterns in other situations.
The results of this study may, therefore, have limited application to other photosynthesis types and
different natural stress conditions.

Several recent studies have found that the slope of the SIF–GPP relationship varies according to
the biome or plant functional type (PFT) [15,19,61,70–72]. For example, Liu et al. [29] reported that
the relationship between SIF and GPP was highly dependent on the PFT and that the photosynthesis
of C3 and C4 plants exhibited different patterns in response to environmental conditions: generally,
C4 plants were found to have higher photosynthetic light-use efficiencies and greater adaptation to
a high light intensity than C3 plants [73,74]. Maize, a typical C4 species with a high photosynthetic
capacity, usually exhibits a slight light-saturation effect at the canopy level [61,75]. This is consistent
with our observations that the maize canopy GPP exhibited slight saturation for both the diurnal
and daily data sets (Figures 5 and 6). However, the environmental influences on C3 and C4 species
are always different. Compared with C3 crops, C4 crops adapt to warm environments and have a
higher light capacity for high light conditions and high temperature levels [29]. Previous studies have
reported that the quantum yield of C3 plants for CO2 uptake, generally driven by photorespiration,
decreases with an increasing temperature [69], whereas the temperature has no significant effect on the
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quantum yield of C4 species for CO2 uptake. The high evaporation demand around noon leads to a
decrease in stomatal conductance and lasts longer. This effect is more pronounced in C3 leaves, leading
to a further reduction in carbon absorption [6,76]. Therefore, it can be inferred that the influence of
illumination on the SIF–GPP relationship for C3 plants may be greater than that for C4 plants. However,
as we were limited by the data sets available in this study, our conclusion only applies to C4 plants.

In addition, as our study site consisted of irrigated farmland, there was no severe abiotic stress at
the site, and our conclusions may have limited application to natural vegetation, especially vegetation
under meteorological stress. Some studies have reported that the SIF–GPP relationship can be disturbed
by environmental stress [12,16,21]. For example, Ač et al. [77] concluded that drought conditions
might result in a decrease in steady-state red and far-red SIF. Kalaji et al. [78] reported that pea plants
showed small changes in SIF parameters under cold stress. Xu et al. [79] also observed that both the
canopy structure and SIF physiology changed to cope with water stress in a maize field. Therefore, in
future work, more attention should be paid to other natural vegetation types as well as to exploring
the specific response mechanisms of the GPP–SIF relationship to natural stress.

5. Conclusions

It has previously been proven that solar-induced chlorophyll fluorescence (SIF) can act as a proxy
for vegetation photosynthesis. In this study, we investigated the performance of estimates of canopy
GPP produced using far-red SIF and their response to different meteorological conditions by using
continuous tower-based observations made in a maize field during 2017 and 2018. The SIF760 tracked
the GPP well at both diurnal and seasonal scales, and SIF760 was more linearly correlated with PAR
than GPP was. CI is the dominant meteorological parameter that influences the non-linear relationship
between SIF760 and GPP, and the ratio of GPP to SIF760 decreased noticeably with an increasing
CI at both diurnal and seasonal scales. The results showed that the SIF760-based GPP estimation
improved from values of R2 = 0.66 and RMSE = 7.02 mw/m2/nr/sr to R2 = 0.76 and RMSE = 6.38
mw/m2/nr/sr for the linear model, and from R2 = 0.71 and RMSE = 4.76 mw/m2/nr/sr to R2 = 0.78 and
RMSE = 3.50 mw/m2/nr/sr in the case of the non-linear model. These results indicate that the SIF–GPP
relationship is non-linear, and that the non-linear characteristics can mostly be explained by the CI. As
the CI is usually an easily accessible meteorological variable, the presented findings are useful for the
remote sensing of vegetation GPP using satellite, airborne, and tower-based SIF data.
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