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Abstract: In this paper, we study the outage and throughput performance for the simultaneous
wireless information and power transfer (SWIPT) cooperative decode-and-forward (DF)
communication systems. The hybrid receiver that uses both time switching (TS) and power splitting
(PS) methods for energy harvesting (EH) and information decoding (ID), and the piece-wise linear
EH model that captures the non-linear input-output characteristic of the EH circuit, are considered.
We present exact analytical expressions of the outage probability (OP) and throughput, which are
expressed as single definite integral on finite interval and can be easily evaluated, for the systems
in Rayleigh fading channel. For further simplicity of calculation, we derive novel and closed-form
approximate expressions of the OP and throughput. The impact of different system parameters on
the system performance is investigated. Numerical results show the high accuracy of the proposed
closed-form approximate expressions especially in the region of higher signal-to-noise ratio (SNR).
It is also shown that the system performance is greatly overestimated when the ideal linear EH model
is used instead of the practical non-linear EH model. A different result to the non-hybrid receiver
with both linear EH model and non-linear EH model that there exists an optimal location to minimize
the OP for the hybrid receiving relay node with non-linear EH model is also demonstrated.

Keywords: simultaneous wireless information and power transfer (SWIPT); hybrid receiver;
non-linear energy harvesting; outage probability; throughput

1. Introduction

In recent years, the wireless communication community has witnessed the explosive growth of
the wireless data traffic. The far-more-than-expected growth of the wireless data traffic promotes
the rapid development of the fifth-generation (5G) wireless technologies, including small cell
networks [1], big data analytics [2], device-to-device (D2D) communications [3], heterogeneous wireless
networks [4], large-scale multi-input multi-output (MIMO) techniques [5], full duplex techniques [6],
femtocell networks [7], 5G-enabled Internet of Things (IoT) [8], network function virtualization [9],
and millimeter-wave communications. Attendant to the rapid development of the 5G technologies and
the upcoming large-scale commercial deployment of 5G systems, the life time of the wireless terminals
that use batteries as energy source becomes more and more unsatisfactory for the users, which breeds
the urgent requirement of developing efficient wireless technologies for prolonging the operation time
of the batteries of the wireless terminals and the lifetime of the energy constrained wireless networks.

Energy harvesting (EH) is a promising solution for prolonging the operation time of the batteries
of the wireless terminals by introducing self-sustainability through EH from the energy resource in the
ambient environment (such as solar, wind, vibration, etc.). Among the EH technologies, simultaneous
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wireless information and power transfer (SWIPT) has been regarded as one of the most attractive
technologies, as it harvests energy from the manmade and comparably controllable radio frequency (RF)
electromagnetic signals rather than the random and highly uncontrollable natural energy sources [10].
SWIPT realizes both useful utilizations of RF signals for power and information transfer at the same
time, and can provide predictable, perpetual, on-demand and reliable energy supplies to wireless
networks [10–12]. With a unified design of wireless power transfer (WPT) and wireless information
transfer (WIT), SWIPT would have the ability to make the best use of the RF spectrum/radiation
and the network infrastructure, and hence will enable trillions of low-power Internet-of-Things (IoT)
devices to be powered and connected anytime and anywhere [11].

1.1. Related Works

Recently, the application of SWIPT in energy-limited wireless cooperative communication
systems has attracted lots of interest in the research area. For SWIPT cooperative communication
systems, there are two typical relaying schemes named amplify-and-forward (AF) relaying and
decode-and-forward (DF) relaying. In [13], the relaying protocols based on power splitting (PS)
and time switching (TS) receivers [14] are considered for the SWIPT AF relaying systems, where
the outage probability and ergodic capacity expressions are derived. The outage performance of
a DF relaying system with SWIPT technology is studied in [15]. To enhance the system outage
performance, Ref. [16] proposes a hybrid protocol based on the combination of PS and TS schemes,
which is shown to outperform both the TS and PS protocols when applied to AF and DF relaying
networks. In [17], an adaptive relaying (AR) protocol similar to the hybrid protocol is proposed for the
SWIPT AF relaying systems, where the throughput performance is investigated for both delay-tolerant
transmission and delay-limited transmission modes. A hybridized power-time splitting-based relaying
(HPTSR) protocol for SWIPT AF and DF networks is proposed in [18], where the practical impact of
system parameters on the throughput performance is investigated. In [19], an optimized transmission
protocol that involves harvested energy-aware jointly optimal mode selection (MS) and time allocation
(TA) for energy and information transfer is proposed to maximize the sum-throughput of the system.

The aforementioned works consider the linear EH models. However, the input-output
characteristics of the practical EH circuits are usually shown to be non-linear [10,20–23]. Therefore,
adopting a conventional linear EH model for the SWIPT systems may lead to the mismatch in
resource allocation [20]. Due to its more rationality in practice than the linear one, the non-linear EH
models are proposed for the SWIPT systems. In [20], a practical parametric non-linear EH model
based on the logistic (sigmoidal) function is firstly proposed for the SWIPT communication systems.
In [21], the non-linear characteristic for the EH model is characterized by a piecewise function and
the throughput is analyzed for the the SWIPT AF relaying systems in the Nakagami-m channels.
The outage probability of the multi-relay MIMO system with PS receiver under the non-linear EH
model is studied in [22]. In [23], a practical non-linear EH model that considers the sensitivity and
saturation characteristics of the circuit is used to study the full-duplex SWIPT DF relaying systems,
and the expressions of the outage probability and outage throughput are derived.

1.2. Motivation and Contributions

In addition to the EH models, another major concern in SWIPT systems is the receiver operation
scheme for EH and information receiving, for which most of the existing works focus on the TS and
PS schemes. Based on the combination of the TS and PS schemes, the hybrid or adaptive relaying
(AR) protocol is proposed in [16,17] and is shown to be more preferable for SWIPT systems, since it
outperforms both the TS and PS schemes and can operate as TS, PS, or hybrid protocols [16]. However,
as mentioned before, only few works (e.g., [16,17]) consider the hybrid protocol for the receiver and
they use the linear EH model in the SWIPT systems. Although the hybrid scheme is considered for the
SWIPT AF systems with the nonlinear EH model in [24], the outage performance analysis within is
complex due to its complicated and unclosed-form expressions of the outage probability.
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In this paper, we study the outage and throughput performance for the SWIPT DF relaying
systems. The hybrid energy receiver and the non-linear EH model are considered. The main
contributions of this paper are summarized as follows.

• We derive the exact analytical expressions of outage probability and throughput for the systems
subject to the Rayleigh fading channels. To further simplify the calculation of the analytical
results, we derive the closed-form approximate expressions of outage probability and throughput
for the systems. The exact analytical expressions are given in definite integral form with finite
integral interval and can be easily evaluated using the numerical integration methods, while the
closed-form approximate expressions are more easily to evaluate and shown to be highly accurate
in the region of higher SNR.

• We analyze the impacts of the parameters α and ρ on the system outage performance, where α

and ρ are the TS ratio and PS ratio of the hybrid receiver, respectively. It is shown that there
exists optimal values of α and ρ to minimize the OP of the systems with non-linear EH model,
and that there exists optimal values of ρ to minimize the OP of the systems with linear EH model,
whereas the OP of the systems monotonically increases with α when linear EH model is adopted.
Moreover, there are no optimal values of α for the system throughput whether the linear or
nonlinear EH models are adopted.

• We investigate the impact of the position of the relay node on the system performance. It is noted
that, different from the SWIPT relaying systems with linear EH model or non-hybrid receiver
where the system performance monotonically changes with the relay position, there exists optimal
position of the relay node for the systems with hybrid receiver and nonlinear EH model that
minimizes the system OP. Moreover, the optimal location of the relay node becomes farther away
from the source node when the SNR increases.

The remainder of this paper is organized as follows. In Section 2, the system model is introduced
and the energy harvesting and information processing are analyzed. The outage probability and
throughput performance analysis is carried out in Section 3. In Section 4, the analytical and simulation
results and discussions are presented. The last section concludes the paper.

2. System Model

We consider the same dual-hop decode-and-forward (DF) wireless cooperative system as in [13,15,17],
which is composed of a source node S, a relay node R, and a destination node D, as shown in Figure 1.
Both S and D have unlimited power supply, while R is assumed to be energy-limited and harvests
energy from the received RF signal that is sent by S. All nodes are assumed to be equipped with
a single omnidirectional antenna and operate in a half-duplex mode (although some works consider
multi-antennas at the nodes [22,25], the three nodes relay system with single antenna is still widely
used as a typical model for theory study to this day [13,15,17,18], for which the practical scenario
occurs when the nodes have small physical size and low power consumption, such as the nodes in
wireless sensor networks [10]). The distances between S and R and R and D are denoted as d1 and d2,
respectively. Due to the deep shadowing, there is no direct link between the source and the destination
nodes. Both the S→ R and R→ D links are assumed to be subject to quasi-static block fading, and the
corresponding channel coefficients are denoted as h and g, respectively. Moreover, we assume that all
links are subjected to both small-scale Rayleigh fading and large-scale path-loss effects [13,15,17,18,26].

h g

1d

S

R

D

2d

Figure 1. Simultaneous wireless information and power transfer (SWIPT) wireless cooperative system.
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We consider the hybrid receiving mode for ID and EH at R as shown in Figure 2, where the
corresponding data transmission is performed over three time phases with durations of αT (s),
(1− α)T/2 (s) and (1− α)T/2 (s), respectively, where α (0 ≤ α ≤ 1) is the TS ratio and T is the
entire communication time [16,17,24]. During phase-I and phase-II, the source node S transmits the
information data bits to R while R listens, and R switches its receiver for EH in phase-I, whereas for
phase-II transmission R performs both EH and ID using the PS method, i.e., splitting the received
signal stream into two substreams, one for EH with a power ratio of ρ (0 ≤ ρ ≤ 1) and the other for
ID with a power ratio of 1− ρ. During phase-III, S keeps silent, while R decodes and forwards the
source’s signal to D using the harvested power during phase-I and phase-II.

Power

splitter 

EH  

receiver

ID

 receiver

ran

sry

1 sry

sry

T

 1 2T

(a) receiver architecture

Energy 
Harvesting 

at

Energy Harvesting at 

R with power              Information 

transmission

T

R

R D

Information receiving 

at R with power      

P

 1 P

 1 2T  1 2TT

(b) relaying protocol

Figure 2. Hybrid relaying scheme: (a) receiver architecture; (b) relaying protocol.

For phase-I transmission, the received signal at R can be expressed as

ysr =
1√
dm

1

√
PhXs + nra (1)

where m is the path loss exponent, P is the transmit power of the source, nra is the complex additive
white Gaussian noise (AWGN) with zero mean and variance σ2

ra introduced by the receiving antenna at
the relay, Xs is the normalized source signal, i.e., E{|Xs|2} = 1, where E{·} is the expectation operator
and |·| is the absolute value operator. We consider the non-linear EH model described by the piece-wise
linear function [10,21,22]. Then from (1), the harvested energy Eα during phase-I can be derived as

Eα =


ηP|h|2

dm
1

αT, if ηP|h|2
dm

1
≤ Pth

PthαT, if ηP|h|2
dm

1
> Pth

(2)

where Pth denotes the saturation output power threshold of the EH circuit at the relay, η is the linear
energy conversion efficiency factor when the received RF power falls within the linear range of the EH
receiver [10].

For phase-II transmission, the received signals at the EH receiver and ID receiver at R, respectively,
are given as

yEH
sr =

1√
dm

1

√
ρPhXs +

√
ρnra (3)

yID
sr =

1√
dm

1

√
(1− ρ)PhXs +

√
(1− ρ)nra + nrc (4)

where nrc is the complex AWGN with zero mean and variance σ2
rc due to RF to baseband signal

conversion at the relay. From Equation (3), the harvested energy Eρ during phase-II can be written as
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Eρ =


ηρP|h|2

dm
1

(1−α)
2 T, if ηρP|h|2

dm
1
≤ Pth

Pth
(1−α)

2 T, if ηρP|h|2
dm

1
> Pth

(5)

Then the total energy harvested at R in phase-I and phase-II , Etotal , can be expressed as

Etotal =


ηP|h|2

dm
1

αT + ηρP|h|2
dm

1

(1−α)
2 T, if |h|2 ≤ Pthdm

1
ηP

PthαT + ηρP|h|2
dm

1

(1−α)
2 T, if Pthdm

1
ηP < |h|2 ≤ Pthdm

1
ηρP

PthαT + Pth
(1−α)

2 T, if |h|2 >
Pthdm

1
ηρP .

(6)

In phase-III, the received signal at the ID receiver of R is first decoded then forwarded to D using
the total harvested energy Etotal . Similarly to [15], we assume that the processing power consumed by
the information decoding circuitry is negligible compared to the power consumption for information
forwarding at the relay node R. Hence, the transmit power at R is given as Pr =

Etotal
(1−α)T/2 , which can

be further written as

Pr =



a1︷ ︸︸ ︷
2ηPα

dm
1 (1− α)

|h|2 +

a2︷︸︸︷
ηρP
dm

1
|h|2 , if |h|2 ≤ A

2Pthα

1− α︸ ︷︷ ︸
c1

+ ηρP
dm

1
|h|2 , if A < |h|2 ≤ B

2Pthα

1− α
+ Pth︸ ︷︷ ︸

c2=c1+Pth

, if |h|2 > B.

(7)

where A =
Pthdm

1
ηP , B =

Pthdm
1

ηρP , and A ≤ B. The received signal at D can be written as

yrd =
1√
dm

2

√
PrgXs + nda + ndc (8)

where nda is the complex AWGN with zero mean and variance σ2
da introduced by the receiving antenna

at D, ndc is the complex AWGN with zero mean and variance σ2
dc due to RF to baseband signal

conversion at the destination.

3. Performance Analysis

In this section, we study the OP and throughput for the SWIPT cooperative communication
systems with hybrid relaying receiver scheme and non-linear EH model.

From Equation (4), the achievable information rate at the relay node, Rsr, can be written as

Rsr =
1− α

2
log2

(
1 +

(1− ρ)P |h|2

dm
1 σ2

r

)
(9)

where σ2
r = (1− ρ)σ2

ra + σ2
rc is the variance of the overall noise at the information receiver of the relay

node R given by nr =
√
(1− ρ)nra + nrc. Similarly, by using Equation (8), the achievable information

rate at the destination node, Rrd, can be written as

Rrd =
1− α

2
log2

(
1 +

Pr |g|2

dm
2 σ2

d

)
(10)

where σ2
d = σ2

da + σ2
dc is the variance of the overall noise at the node D given by nd = nda + ndc. Then,

the system information rate can be expressed as Ro = min(Rsr, Rrd).
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3.1. Outage Probability

For a given target rate Rth, the OP can be written as

Pout = P(Ro < Rth) = 1− P(Rsr ≥ Rth, Rrd ≥ Rth). (11)

From Equations (9) and (10), we can get

P(Rsr ≥ Rth, Rrd ≥ Rth) = P(|h|2 ≥ Q, Pr |g|2 ≥ F) (12)

where Q =
u0dm

1 σ2
r

(1−ρ)P , F = u0dm
2 σ2

d , u0 = 2
2Rth
1−α − 1. Taking into consideration of the nonlinearity of Pr as

shown in Equations (7) and (12) can be rewritten as

P(Rsr ≥ Rth, Rrd ≥ Rth) = I1 + I2 + I3 (13)

where

I1 = P(|h|2 ≥ Q, |h|2 |g|2 ≥ G, |h|2 ≤ A) (14a)

I2 = P(|h|2 ≥ Q, (c1 + a2 |h|2) |g|2 ≥ F, A < |h|2 ≤ B) (14b)

I3 = P(|h|2 ≥ Q, |g|2 ≥ H, |h|2 > B) (14c)

where G = F
a1+a2

, H = F
c2

.
In this paper, all the links are assumed to be subject to independent Rayleigh fading. Hence,

the probability density function (PDF) of the channel power gains |h|2 and |g|2 are exponential

distributed and given by f|h|2(x) = 1
λh

e
− x

λh and f|g|2(x) = 1
λg

e
− x

λg , respectively, where λh = E{|h|2},
λg = E{|g|2} are the average power of the channels. Then I1 can be derived as Equation (15). Note
that in Equation (15) we consider the case of Q ≤ A, since when Q > A the inequality Q ≤ |h|2 ≤ A
in Equation (14a) does not hold and leads to I1 = 0. Similarly, when Q > B, I2 is 0. When Q ≤ B, let
K = max(A, Q). Then I2 in Equation (14b) can be rewritten as Equation (16), where M = F

a2
, N = c1

a2
.

Let L = max(B, Q), I3 in Equation (14c) can be written as Equation (17).

I1 = P(Q ≤ |h|2 ≤ A, |h|2 ≥ G

|g|2
)

= P(Q ≤ |h|2 ≤ A, Q ≥ G

|g|2
) + P(

G

|g|2
≤ |h|2 ≤ A, Q <

G

|g|2
≤ A)

=
∫ A

Q
f|h|2(x)dx

∫ ∞

G
Q

f|g|2(y)dy +
∫ G

Q

G
A

∫ A

G
y

f|h|2(x)dx f|g|2(y)dy

=

[
exp (− Q

λh
)− exp (− A

λh
)

]
exp (− G

λgQ
) +

∫ G
Q

G
A

1
λg

exp (− y
λg
− G

λhy
)dy

+ exp (− A
λh

)

[
exp (− G

λgQ
)− exp (− G

λg A
)

]

(15)



Sensors 2020, 20, 2472 7 of 13

I2 = P(K ≤ |h|2 ≤ B, |h|2 ≥ M

|g|2
− N)

= P(K ≤ |h|2 ≤ B, K ≥ M

|g|2
− N) + P(

M

|g|2
− N ≤ |h|2 ≤ B, K <

M

|g|2
− N ≤ B)

=
∫ B

K
f|h|2(x)dx

∫ ∞

M
K+N

f|g|2(y)dy +
∫ M

K+N

M
B+N

∫ B

M
y −N

f|h|2(x)dx f|g|2(y)dy

=

[
exp (− K

λh
)− exp (− B

λh
)

]
exp (− M

λg(K + N)
) +

∫ M
K+N

M
B+N

1
λg

exp
(
− y

λg
− M

λhy
+

N
λh

)
dy

+ exp(− B
λh

)

[
exp (− M

λg(K + N)
)− exp (− M

λg(B + N)
)

]

(16)

I3 = P(|h|2 ≥ Q, |g|2 ≥ H, |h|2 > B) = P(|h|2 ≥ L, |g|2 > H) = exp (− L
λh

) exp (− H
λg

) (17)

Finally, by substituting Equations (13)–(17) into Equation (11), the OP of the systems can be
obtained as

Pout = 1− I1 − I2 − I3. (18)

It can be observed that the analytical result of OP for the systems given by Equation (18) involves
the integration term

∫ 1
λg

exp (− y
λg
− G

λhy )dy, which can be evaluated using the numerical integration
method. To further simplify the calculation of the OP given by Equation (18), here we present an
approximate method.

Let ξ =
(

G
Q + G

A

)
/2. By using the first mean value theorem, the second term in Equation (15)

can be expressed as

∫ G
Q

G
A

1
λg

exp (− y
λg
− G

λhy
)dy = exp (− G

λhξ
) ·
[

exp (− G
λg A

)− exp (− G
λgQ

)

]
(19)

Then the approximate form of I1, Ĩ1, can be written as

Ĩ1 =

[
exp (− Q

λh
)− exp (− A

λh
)

]
exp (− G

λgQ
) + exp (− G

λhξ
) ·
[

exp (− G
λg A

)− exp (− G
λgQ

)

]
+ exp (− A

λh
)

[
exp (− G

λgQ
)− exp (− G

λg A
)

] (20)

Only when Q ≤ B, the expression of I2 exists. It is easy to show that A =
Pthdm

1
ηP , B =

Pthdm
1

ηρP and

K = max(A, Q) satisfies A ≤ K ≤ B. Hence, M
B+N ≤

M
K+N ≤

M
A+N . In fact, the noise power σ2

d is

generally −95 dBm, and Pth = 24 mW ≈ 13.8 dBm, so σ2
d

Pth
is small. We can get M

B+N =
u0dm

2 σ2
d

Pth+
2α

1−α Pth
≈

u0dm
2 σ2

d
ρPth+

2α
1−α Pth

= M
A+N , that is, M

K+N ≈
M

B+N . Then for the second term in Equation (16), it can be

obtained that

∫ M
K+N

M
B+N

1
λg

exp
(
− y

λg
− M

λhy
+

N
λh

)
dy ≈ 0 (21)

Therefore, the approximate form of I2, Ĩ2, can be obtained as
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Ĩ2 =

[
exp (− K

λh
)− exp (− B

λh
)

]
exp (− M

λg(K + N)
)

+ exp(− B
λh

)

[
exp (− M

λg(K + N)
)− exp (− M

λg(B + N)
)

] (22)

The closed-form outage probability of the systems is then given by

P̃out = 1− Ĩ1 − Ĩ2 − I3. (23)

3.2. Throughput

The throughput of the system, C, can be written as [13,24]

C = Rth(1− Pout)
(1− α)T/2

T
= Rth(I1 + I2 + I3)

1− α

2
(24)

By substituting Equation (23) into Equation (24), the approximate form of the throughput, C̃, can be
written as

C̃ =
Rth(1− Pout)(1− α)

2
(25)

4. Numerical Result

In this section, we present the numerical results for the SWIPT cooperative DF communication
systems with hybrid receiver. The derived outage probability and closed-form approximate expressions
given in Equations (18) and (23) are used to investigate the impact of the system parameters on
the performance. The derived throughput and closed-form approximate expressions given in
Equations (24) and (25) are also investigated. Monte Carlo simulations are provided to verify the
analytical results for the derived expressions in Equations (18) and (24), and numerically analyze
the accuracy of the derived closed-form approximate expressions in Equations (23) and (25). Unless
otherwise specified, the transmission power of the source is set to P = 30 dBm and the target rate is
Rth = 0.2 bits/s/Hz. The energy conversion efficiency factor is set to η = 0.8. The antenna and ID
circuit variance is σ2

ra = σ2
rc = σ2

da = σ2
dc = N0. The path loss exponent is 2.7, and the distance d1 and

d2 satisfy d1 + d2 = 3 m. The harvested saturation power is set to Pth = 24 mW as in [10], and λh and
λg are set to 1 as in [17,22]. For convenient, we define that SNR = P/N0.

Figure 3 shows the outage probability and throughput versus α for the SWIPT cooperative DF
communication systems with hybrid receiver under various SNR when ρ = 0.5. It can be observed
perfect match between the proposed analytical and Monte Carlo simulation results. It is shown that
for given SNR, unlike the SWIPT systems with linear EH model where the OP monotonically increases
with α, for the systems with non-linear EH model there exists an optimal value of α with which the
OP is the smallest, which is marked with the bold small circle in the figure. It is can be observed that
for the SWIPT cooperative communication systems with hybrid receiver, whether linear or non-linear
models are adopted, the throughput of the system decreases as α increases. It can be also observed
that the accuracy of the approximate results increases with α and/or SNR, and that the approximate
results match very well with the exact analytical results in the region of higher SNR.

In order to examine the impact of ρ on the performance of the systems with hybrid receiver under
various SNR, we vary ρ from 0 to 1 when α = 0.3, as shown in Figure 4. It is shown that for a given
value of SNR, the OP first decreases then increases as ρ increases, while the throughput first increases
then decreases with the increasing of ρ. Hence, there exists an optimal value of ρ that minimizes the
OP of the systems, which is marked with the bold small circle in Figure 4. It can be observed that the
optimal value of ρ for the systems with linear EH model is smaller than that with non-linear EH model.
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Also, it is shown perfect match between the approximate results and the exact analytical results for
various values of ρ in the region of higher SNR.

Remark 1. From Figures 3 and 4, there exists optimal α and ρ that minimize the OP of the SWIPT cooperative
DF communication systems with hybrid energy receiver and non-linear EH model, whereas there are no optimal
values of α and ρ for the system throughput. The observation can be explained as follows. When α is small, the
relay node harvests less energy. As α increases, more energy can be harvested for the information forwarding at
the relay node, whereas the time for the information forwarding becomes less, so that Rsr in Equation (9) and
Rrd in Equation (10) become smaller, resulting in an increase of OP. As a portion (i.e., ρ) of the received power is
used for EH and the rest is for ID, there is a tradeoff between ID and EH. Specifically, for a given α, with the
increasing of ρ, more energy harvested at the relay can be used to transmit the decoded information, so that the
outage performance of the system is improved. But when ρ continues to increase, meanwhile, the energy used for
decoding the information is reduced, resulting in an increase of OP. Without loss of generality, we use α = 0.3
and ρ = 0.5 as the TS and PS ratios for the hybrid relay receiver in subsequent discussions.

In Figure 5, the OP and throughput of the SWIPT cooperative DF communication systems with
hybrid receiver is plotted against the distance d1 between the source and relay nodes. It is shown
that for the systems with linear EH model, the OP and throughput performance gets worse when
d1 increases, whereas for the systems with non-linear EH model, different results are observed, say,
the OP and throughput performance of the systems first gets better then worse when d1 increases.
Therefore, for the systems with hybrid energy receiver and nonlinear EH model, there exists an
optimal location for the relay node, which is marked with the bold small circle in the figure. Moreover,
the optimal location of the relay node becomes farther away from the source node when the SNR
increases. This observation is different from the systems with non-hybrid receiver, where the a closer
location of the relay node to the source node brings a worse system performance for the systems with
nonlinear EH model, as opposed to the systems with linear EH models [10].

(a) Outage probability (b) Throughput

Figure 3. System performance versus α for various signal-to-noise ratios (SNR) when ρ = 0.5,
d1 = 2.2 m.
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(a) Outage probability (b) Throughput

Figure 4. System performance versus ρ for various SNR when α = 0.3, d1 = 2.2 m.

(a) Outage probability (b) Throughput

Figure 5. Performance comparison of different relay position.

Figure 6 depicts a comparison of the OP and throughput performance for the systems with
different relaying schemes, i.e., TS relaying (TSR), PS relaying (PSR), and hybrid relaying (HR) that
uses the hybrid energy receiver. It is shown that for the systems with nonlinear EH model under
given α and ρ, the HR scheme outperforms both the TSR and PSR in OP performance, whereas
outperforms the TSR but is inferior to the PSR in throughput performance. Figure 6 also compares the
OP and throughput performance the systems for linear and nonlinear EH models when HR is adopted.
Not surprisingly and similar to the PSR as shown in [10], the using of the ideal linear EH model leads
to the obvious overestimation of the system performance.
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(a) Outage probability (b) Throughput

Figure 6. Performance comparison of different energy harvesting schemes.

5. Conclusions

In this paper, we have investigated the OP and throughput performance for the SWIPT cooperative
DF communication systems with non-linear EH model and HR protocol. We have derived tractable
exact analytical and novel closed-form approximate expressions of the OP and throughput for the
systems. The exact analytical expressions in definite integral form with finite integral interval can
be easily evaluated, while the closed-form approximate expressions are shown to be highly accurate
in the region of higher SNR. We have also investigated the impacts of the HR parameters α and ρ,
and the position of the relay node on the system performance. Results have demonstrated that the
OP and throughput performance of the systems are obviously affected by the HR parameters α and ρ,
and the position of the relay node. It is also demonstrated that there exists optimal values of α and ρ,
and optimal position of the relay node that minimizes the OP of the systems. Moreover, it is shown
that for the SWIPT cooperative DF communication systems with non-linear EH model, the HR protocol
outperforms both the TSR and PSR protocols in OP performance, while outperforms the TSR but is
inferior to the PSR in throughput performance for given α and ρ. In our setup, we assume that all
nodes are equipped with a single omnidirectional antenna for the proposed analysis. MIMO systems
for SWIPT for the proposed analysis can be further investigated in future work.

Author Contributions: Conceptualization and methodology, Y.F., M.L., and T.Y.; software and validation, M.L.,
and T.Y.; formal analysis and data curation, M.L., and T.Y.; writing–original draft preparation, Y.F. and T.Y.;
supervision, Y.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China, grant number 61871192,
61372080, and 61871191, and the Science and Technology Program of Guangzhou, grant number 201904010373.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ding, M.; López-Pérez, D.; Xue, R.; Vasilakos, A.V.; Chen, W. On Dynamic Time-Division-Duplex
Transmissions for Small-Cell Networks. IEEE Trans. Veh. Technol. 2016, 65, 8933–8951.

2. Dai, H.; Raymond, C.W.; Wang, H.; Zheng, Z.; Vasilakos, A.V. Big Data Analytics for Large-scale Wireless
Networks: Challenges and Opportunities. ACM Comput. Surv. 2019, 52, 1–36.



Sensors 2020, 20, 2472 12 of 13

3. Fan, B.; Tian, H.; Jiang, L.; Vasilakos, A.V. A Social-Aware Virtual MAC Protocol for Energy-Efficient
D2D Communications Underlying Heterogeneous Cellular Networks. IEEE Trans. Veh. Technol. 2018,
67, 8372–8385.

4. Yao, Y.; Cao, Q.; Vasilakos, A.V. EDAL: An Energy-Efficient, Delay-Aware, and Lifetime-Balancing Data
Collection Protocol for Heterogeneous Wireless Sensor Networks. IEEE/ACM Trans. Netw. 2015, 23, 810–823.

5. Zhang, Z.; Wang, X.; Long, K.; Vasilakos, A.V.; Hanzo, L. Large-scale MIMO-based wireless backhaul in
5G networks. IEEE Trans. Wirel. Commun. 2015, 22, 58–66.

6. Zhang, R.; Chai, X.; Long, K.; Vasilakos, A.V.; Hanzo, L. Full duplex techniques for 5G networks:
Self-interference cancellation, protocol design, and relay selection. IEEE Commun. Mag. 2015, 53, 128–137.

7. Lopez-Perez, D.; Chu, X.; Vasilakos, A.V.; Claussen, H. Power Minimization Based Resource Allocation for
Interference Mitigation in OFDMA Femtocell Networks. IEEE J. Sel. Areas Commun. 2014, 32, 333–344.

8. Huang, M.; Liu, A.; Xiong, N.; Wang, T.; Vasilakos, A.V. An effective service-oriented networking
management architecture for 5G-enabled internet of things. Comput. Netw. 2020, 173, 107208.

9. Sun, G.; Zhou, R.; Sun, J.; Yu, H.; Vasilakos, A.V. Energy-Efficient Provisioning for Service Function Chains
to Support Delay-Sensitive Applications in Network Function Virtualization. IEEE Internet Things J. 2020.
[CrossRef]

10. Feng, Y.; Wen, M.; Ji, F.; Leung, V.C.M. Performance Analysis for BDPSK Modulated SWIPT Cooperative
Systems With Nonlinear Energy Harvesting Model. IEEE Access 2018, 6, 42373–42383.

11. Clerckx, B.; Zhang, R.; Schober, R.; Ng, D.W.K.; Kim, D.I.; Poor, H.V. Fundamentals of Wireless Information
and Power Transfer: From RF Energy Harvester Models to Signal and System Designs. IEEE J. Sel.
Areas Commun. 2019, 34, 4–33.

12. Zhang, R.; Ho, C.K. MIMO Broadcasting for Simultaneous Wireless Information and Power Transfer.
IEEE Trans. Wirel. Commun. 2013, 12, 1989–2001.

13. Nasir, A.A.; Zhou, X.; Durrani, S.; Kennedy, R.A. Relaying Protocols for Wireless Energy Harvesting and
Information Processing. IEEE Trans. Wirel. Commun. 2013, 12, 3622–3636.

14. Zhou, X.; Zhang, R.; Ho, C.K. Wireless information and power transfer: Architecture design and rate-energy
tradeoff. IEEE Trans. Commun. 2013, 61, 4754–4767.

15. Nasir, A.A.; Zhou, X.; Durrani, S.; Kennedy, R.A. Throughput and ergodic capacity of wireless energy
harvesting based DF relaying network. Proc. IEEE Int. Conf. Commun. 2014, 4066–4071.

16. Atapattu, S.; Evans, J. Optimal Energy Harvesting Protocols for Wireless Relay Networks. IEEE Trans.
Wirel. Commun. 2016, 15, 5789–5803.

17. Tao, R.; Salem, A.; Hamdi, K.A. Adaptive Relaying Protocol for Wireless Power Transfer and Information
Processing. IEEE Commun. Lett. 2016, 20, 2027–2030.

18. Ojo, F.K.; Mohd Salleh, M.F. Throughput Analysis of a Hybridized Power-Time Splitting Based Relaying Protocol
for Wireless Information and Power Transfer in Cooperative Networks. IEEE Access 2018, 6, 24137–24147.

19. Mishra, D.; De, S.; Alexandropoulos, G.C.; Krishnaswamy, D. Energy-Aware Mode Selection for Throughput
Maximization in RF-Powered D2D Communications. In Proceedings of the GLOBECOM 2017—2017 IEEE
Global Communications Conference, Singapore, 4–8 December 2017. [CrossRef]

20. Boshkovska, E.; Ng, D.W.K.; Zlatanov, N.; Schober, R. Practical Non-Linear Energy Harvesting Model and
Resource Allocation for SWIPT Systems. IEEE Commun. Lett. 2015, 19, 2082–2085.

21. Dong, Y.; Hossain, M.J.; Cheng, J. Performance of Wireless Powered Amplify and Forward Relaying Over
Nakagami-m Fading Channels With Nonlinear Energy Harvester. IEEE Commun. Lett. 2016, 20, 672–675.

22. Zhang, J.; Pan, G. Outage Analysis of Wireless-Powered Relaying MIMO Systems with Non-Linear Energy
Harvesters and Imperfect CSI. IEEE Access 2016, 4, 7046–7053.

23. Xie, X.; Chen, J.; Fu, Y. Outage Performance and QoS Optimization in Full-Duplex System With Non-Linear
Energy Harvesting Model. IEEE Access 2018, 6, 44281–44290.

24. Maleki, M.; Hoseini, A.M.D.; Masjedi, M. Performance Analysis of SWIPT Relay Systems Over Nakagami-m
Fading Channels with Non-linear Energy Harvester and Hybrid Protocol. In Proceedings of the Iranian
Conference on Electrical Engineering (ICEE), Mashhad, Iran, 8–10 May 2018; pp. 610–615.

http://dx.doi.org/10.1109/JIOT.2020.2970995
http://dx.doi.org/10.1109/GLOCOM.2017.8254221


Sensors 2020, 20, 2472 13 of 13

25. Mishra, D.; Alexandropoulos, G.C. Transmit Precoding and Receive Power Splitting for Harvested Power
Maximization in MIMO SWIPT Systems. IEEE Trans. Green Commun. Netw. 2018, 2, 774–786.

26. Liu, W.; Zhou, X.; Durrani, S.; Popovski, P. SWIPT with practical modulation and RF energy harvesting sensitivity.
In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia,
22–27 May 2016; pp. 1–7.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Works
	Motivation and Contributions

	System Model
	Performance Analysis
	Outage Probability
	Throughput

	Numerical Result
	Conclusions
	References

