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Abstract: Real-time queue length information is an important input for many traffic applications.
This paper presents a novel method for real-time queue length detection with roadside LiDAR data.
Vehicles on the road were continuously tracked with the LiDAR data processing procedures (including
background filtering, point clustering, object classification, lane identification and object association).
A detailed method to identify the vehicle at the end of the queue considering the occlusion issue and
package loss issue was documented in this study. The proposed method can provide real-time queue
length information. The performance of the proposed queue length detection method was evaluated
with the ground-truth data collected from three sites in Reno, Nevada. Results show the proposed
method can achieve an average of 98% accuracy at the six investigated sites. The errors in the queue
length detection were also diagnosed.
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1. Introduction

Queue length has been used in many transportation areas, including but not limited to performance
evaluation at signalized intersections, adaptive signal control, adaptive ramp metering and travel
route selection [1]. Some applications such as the optimal signal control and travel route selection
require real-time queue length information [2]. Queue length can either be estimated or directly
detected. The typical queue estimation methods include the input-output method and the shockwave
method. The input-output method uses advanced detector actuation, parametric data (headway,
storage capacity, etc.) and phase change information (for signalized intersections) to estimate the
queue length. The input-output method has the assumptions that the vehicles stay in the same lane
after passing the advanced detector and the vehicles follow the first-in-first-out (FIFO) principle [3].
However, the accuracy of the input-output approach is limited by the detector’s counting error [4].
Lee et al. proposed a singular-point correction method to eliminate the accumulated counting error
over time [5], but the singular-point correction method required the proper calibration based on
the different features of field data, which limited the transferability of the method. Liu et al. [6]
applied Lighthill–Whitham–Richards (LWR) shockwave theory to estimate queue length with the
high-resolution traffic signal data. A detailed method of identifying break points was documented
in their paper. The testing results showed that their method was able to estimate long queues
with relatively high accuracy. However, their proposed model could not estimate the queue length
under oversaturation. Using probe trajectory data for queue length estimation has been another hot
topic for transportation researchers [7]. Cheng et al. [8] developed a cycle-by-cycle queue length
estimation method with sampled vehicle trajectory data. Queue length was estimated based on the
LWR shockwave theory. Later Hao et al. [9] developed a Bayesian Network (BN)-based method for
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cycle-by-cycle queue length estimation at signalized intersections. The travel times collected from
mobile traffic sensors were the input data. The results showed that the BN-based method has a better
performance than the method proposed in Cheng et al. [8]. Cai et al. [10] used fusing data from point
and mobile sensors to estimate queue length at signalized intersections with the shockwave theory.
This method assumed that at least one queue vehicle can be obtained in one cycle. Their model could
not properly estimate the queue length when the arrival flow was unstable. The probe trajectory-based
approaches suffer a major limitation: the sample rate can influence the accuracy of the queue length
estimation [11].

Recent studies showed an increasing interest for queue length estimation using connected vehicle
(CV) technology. Li et al. [12] used the probe trajectory and signal timing data extracted from the
CV network to estimate real-time queue length with an event-based method. That paper used a lot
of default values in the calculation (e.g., headway is 2.5 s, constant deceleration rate is 1.55 m/s2).
Those default values may not reflect the different drivers’ driving behavior. Christofa et al. [13]
developed two methods: gap-based method and shockwave-based method for queue spillback
detection. The results showed that this approach can detect the occurrence of spillbacks for a
range of penetration rates. Tiaprasert et al. [14] applied a discrete wavelet transform (DWT) for
queue estimation using CV technology. One of the assumptions for the DWT is that the penetration
ratio is known. For real situation, the detailed penetration ratio information may not be available.
Yang and Menendez [15] proposed a convex optimization-based method for queue length estimation in
a CV network. The validation showed that the estimation error went larger for oversaturated scenarios.
The challenge in those methods using CV technology was the low penetration rate of CV on the roads,
and the penetration rate of CV is expected to be low in the near future [16].

Though the queue length can be estimated—and the accuracy can be relatively high—those
methods usually have their own assumptions, indicating that the methods may only work for some
specific locations. Other than queue length estimation, researchers are also looking for approaches
to directly detect the queue length. The image-based method can be an option for queue length
detection [17]. Siyal and Fathy [18] applied the neural network to extract queue length from the image
extracted from cameras. However, the computational load of this method was high since the neural
network was applied. Cai et al. [19] used the texture difference and edge information to detect the
vehicles and queue length from the videos. The practice showed that the inferences attached to vehicles
and marks on the road can impact the accuracy of the queue length detection. Satzoda et al. [20] used
the edges and dark features in the image for queue length detection. The evaluation showed that nearly
100% accuracy can be achieved in their testing database. The limitation of this method was that a lot of
calibrations were required for driving detection zones in the images. The performance of the camera
can also be greatly influenced by the light conditions. Xu et al. [21] developed a method for queue
length detection by vehicle-to-RSU (V2R) communication. However, this approach was based on the
assumption that all vehicles were installed with a communication system and a global positioning
system (GPS). As a result, this method was also limited by the low penetration rate of CV on the roads.

The roadside LiDAR provides a solution for queue length detection regardless of whether vehicles
can communicate with each other on the roads. The 360-degree LiDAR can scan all the objects in its
detection range [22]. This means the penetration ratio of CV has no influence on the queue length
detection using the roadside LiDAR. Furthermore, queue length can be detected using the LiDAR
with or without the traffic signal information. Those advantages of LiDAR make the real-time queue
length detection possible. This paper developed a systematic procedure for queue length detection
with roadside LiDAR. The rest of the paper is structured as follows. Section 2 introduces the vehicle
detection algorithm with roadside LiDAR data. The algorithm of queue length detection is documented
in Section 3. Section 4 evaluates the proposed method using real-world collected LiDAR data. The last
section summarizes the major contribution of this paper.
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2. Materials and Preprocessing

The roadside LiDAR refers to the LiDAR deployed in a stationary location along the roadside.
The roadside LiDAR (usually rotating LiDAR) has lower resolution and a lower price compared to the
airborne LiDAR and on-board LiDAR (mobile LiDAR) considering the massive deployment in the
near future. This paper used two types of LiDAR: VLP-16 and VLP-32c for data collection. For the
detailed parameters of VLP-16 and VLP-32c, we refer the readers to [23].

But in theory, our proposed queue length detection method can work for any brand of rotating
LiDAR after necessary calibration based on the different setting parameters of the LiDAR.

The roadside LiDAR can be installed permanently (on the top of a pedestrian signal) or temporarily
(on a tripod) for data collection [24]. The recommended height for LiDAR installation is 2–3 m above
the ground to avoid possible man-made destruction and to reduce occlusion issues considering the
limited vertical field of view [25]. The scanning rate of the LiDAR is set as 10 Hz. The proposed
vehicle detection procedure includes five major steps: background filtering [26], point clustering [27],
object classification [28,29], lane identification [30,31] and object association [32]. Vehicle trajectories
can be generated with the proposed method.

2.1. Background Filtering

For queue length detection, the objects of interest are the vehicles on the road. Background filtering
is used to exclude the other irrelevant information (buildings, trees and ground points) and to keep the
moving objects (vehicles, pedestrians and other road users) in the space at the same time. This paper
applied a point density-based unsupervised algorithm named 3D-DSF developed by Wu et al. [25] for
background filtering. The 3D-DSF first integrated the data collected in a time period (such as 5 min of
data) into one space based on the XYZ coordinates of the LiDAR points. The whole space was then
rasterized into small cubes with the same side length (0.1 m was used as the side length considering the
accuracy and the computation load) [26]. The point density of the cubes representing the background
should be higher than that of the cubes representing the moving objects after frame aggregation.
By giving a pre-defined threshold of point density, the location of the cubes representing background
can be then identified and stored in a 3D array. An automatic threshold identification method was well
documented in the reference [26]. Any point located in the 3D array was then excluded from the space.
Figure 1 shows an example of before-and-after background filtering. The previous studies [33–35]
showed that 3D-DSF can exclude more than 95% of background points from the raw LiDAR data.
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Figure 1. Before-and-after background filtering: (a) before background filtering; (b) after
background filtering.

2.2. Point Clustering

The points in the LiDAR data are stored disorderly, indicating that the points representing the
same object are not grouped together. Point clustering is used to find the points belonging to the same
object and to provide the same ID to those points. Another function of object clustering is to exclude
the noises left after background filtering since not all background points can be filtered with 3D-DSF.
This paper applied a revised density-based spatial clustering of applications with noises (DBSCAN)
for object clustering [36]. DBSCAN defined one cluster as a set of points with high density. Compared
to the widely used K-means clustering, DBSCAN does not need to know the number of clusters in
advance and can find any shape of the clusters in the data [27]. There are two initial parameters for
DBSCAN: searching radius (eps) and minimum containing points (minPts). DBSCAN starts with a
random unvisited point A and marks the points with a distance ≤ eps from point A as the neighbors of
point A. The following criteria are applied.

a. If the number of the neighbors of point A ≥minPts, then point A and its neighbors are marked
as a cluster and point A is marked as a visited point. DBSCAN then uses the same method to
process the points of other unvisited points in the same cluster to extend the range of the cluster.

b. If the number of the neighbors of point A < minPts, then point A will be marked as a noising
point and a visited point.

Using the above-mentioned criteria, DBSCAN can process all those unvisited points. However,
one major disadvantage of DBSCAN is that it could not cluster the points with uneven density
effectively. For LiDAR data, the number of points representing the same object decreased with the
increasing distance to the LiDAR, indicating the point density changes as the distance to the LiDAR
increasing. To fix this issue, a revised DBSCAN with adaptive parameters are applied for point
clustering. Different eps and minPts were applied for the points based on the distance from the LiDAR
and the mechanical structure (field of view, angular resolution and the distance between two adjacent
beams) of the LiDAR. The detailed calculation of eps and minPts was documented in our previous
research [27]. The accuracy of the revised DBSCAN is 96.5% in average. Figure 2 shows an example of
before-and-after point clustering. It is shown that the revised DBSCAN algorithm can successfully
identify six objects and exclude the noise from the LiDAR data in Figure 2.
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2.3. Object Classification

There may be different types of road users (vehicles, pedestrians and bicycles) on the road. It is
then necessary to distinguish the vehicles from other types of road users for queue length detection.
This paper aims to classify the objects into one of the four classes (passenger car/pickup, trucks/bus,
pedestrians and bicycles). Six features (object length, object height, the difference between object
height and object length, distance to LiDAR, number of points and object height profile) extracted
from the point cloud were used to represent the difference between different classes. A random forest
(RF) classifier was trained for object classification. The RF is a supervised algorithm that aggregates
multiple decision trees. Our previous study [28] compared the performance of different methods
(k-nearest neighbor, Naïve Bayes, RF and support vector machine) for roadside LiDAR classification.
It was shown that RF can provide the best accuracy among those investigated methods. This paper
used the public database [28] collected by the Center for Advanced Transportation Education and
Research (CATER) in University of Nevada, Reno to train the RF classifier. The testing results showed
that the RF can achieve an overall 95.3% accuracy for object classification. Figure 3 shows an example
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of the results of object classification. The RF classifier can correctly identify three passenger cars and
five pedestrians in the point cloud.Sensors 2020, 20, x FOR PEER REVIEW 6 of 16 
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Figure 3. Vehicle classification.

2.4. Lane Identification

The lane information is important for lane-based queue length detection. It is assumed that the
probability of the vehicles changing lanes near the intersection is low. This means the density of vehicle
points on each lane is higher than that of vehicle points near the boundary area of the lane. We applied
a revised grid-based clustering (RGBC) developed by the authors’ team for lane identification [31].
The RGBC first integrates the vehicle points from multiple frames into one space. The whole space is
segmented using a hierarchical segmentation to identify road areas and non-road areas. The whole
space is divided into squares with a relatively larger side length, such as 10 m. This level is named
as the first level. Each square will be identified as a road area and a non-road area based on the
number of points in it. If there is no point in the square, this area will be identified as a non-road area.
If there is at least one vehicle point in the square, this area will be considered as a road area. For the
square considered as a road area, it will be further divided into a children level with a smaller side
length. The same procedure will be used to judge whether each square represents the road area or
not. Step by step, a children level will be provided for each parent level until a bottom layer with a
pre-defined side length (such as 0.1 m) is generated. For the squares in the bottom layer, a pre-defined
threshold of point density will be provided to distinguish the squares representing road area and
the squares representing the non-road area. For the road area, DBSCAN was applied to cluster the
points in the same lane. It should be mentioned that the lane boundary identified here may not be the
exact boundary of the lane, but the boundary of vehicle points in the same lane. The previous study
showed that more than 96% of vehicles can be assigned to the correct lanes. The errors were mostly
caused by lane-change vehicles. Another task in the lane identification is to detect the location of the
stop line. In this paper, the location of the stop line was manually identified by checking the point
intensity in the LiDAR visualization software Veloview. The point intensity of the stop line is higher
compared to other objects [37]. A linear regression line can then be generated by linking two points at
the boundaries of the stop line [38].

2.5. Object Association

The speed of the vehicle is crucial for determining the end of the queue [39]. The speed can be
calculated based on the distance traveled by the vehicle in a time period. Therefore, it is necessary to
track the same vehicle continuously at different frames. This research applied a global nearest neighbor
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(GNN) algorithm to link the point cloud representing the same vehicle at different frames. The GNN
considers the vehicle in the current frame that has the minimum distance to the vehicle A in the last
frame as vehicle A [40]. To calculate the speed, the algorithm used the point with the shortest distance
to the LiDAR as a reference point for vehicle tracking. The speed (V) can then be calculated by:

V = F∗
√
(Xi −Xi−1)

2 + (Yi −Yi−1)
2 + (Zi −Zi−1)

2 (1)

where XYZ are the XYZ coordinates of the nearest point to the LiDAR, i is the frame ID and F is the
rotating frequency of the LiDAR (unit: Hz). To evaluate the speed, we did a field test using a vehicle
installed with a logger to extract the speed from the onboard diagnostics interface (OBD). The vehicle
was also scanned by the roadside LiDAR and the speed was calculated. The OBD speed and the
calculated speed were then compared. The testing results showed that about 98.8% of speed records
calculated from GNN has a speed with a difference less than 2.4 km/h compared to the OBD speed [32].

3. Queue Length Detection

Inspired by the previous work [19,40], we assumed the following threshold to identify the end of
a queue: if the speed of one vehicle is under 5 km/h, then this vehicle will be considered as in a queue;
if the speed of one vehicle is equal to or higher than 5 km/h, this vehicle would not be considered as
in a queue. The vehicle at the end of the queue (VEQ) is the key vehicle to determine the length of a
queue. Since the VEQ may be relatively far away from the LiDAR if the road is congested, the length of
the vehicle at the end of the queue (LVEQ) may not be fully detected (point density decreases with the
increasing distance from the LiDAR) [41], as shown in Figure 4a. Therefore, it is necessary to estimate
the LVEQ. We used a simple rule-based method for LVEQ estimation. We assumed that the average
length of a passenger car is 6 m [42]. Therefore, if the detected vehicle length (DVL) is longer than
6 m, we use the detected length as the vehicle length. If the detected vehicle length is shorter than
6 m, we used 6 m as the length of the vehicle. The strategy of the simple rule-based method can be
expressed as:

LVEQ =

{
DVL, i f DVL ≥ 6 m
6 m, i f DVL < 6 m

(2)

Using Equation (2) can still have some errors in estimating the queue. But the influence of this
error on the whole length of the queue should be very limited (We will present the result in the
“Evaluation” part later).

If a truck or a larger vehicle is traveling in the lane close to the LiDAR, the vehicles on the other
lanes may be blocked, which is called occlusion issue. The occlusion issue is a challenge to detect
the end of the queue since the last one or several vehicles at the end of the queue may be blocked
(invisible in the LiDAR). Figure 4b shows an example of occlusion issue. Vehicle E and part of vehicle
D are invisible due to occlusion from vehicle F. Another challenge for detecting the end of the queue
is the package loss issue. Package loss refers to the situation that some packages are lost due to the
unstable connection between the LiDAR and the data storing device (usually a computer). As a result,
there are a lot of sector-like areas which are invisible in the space. The package loss issue may also
make the vehicle at the end of the queue invisible. An example of package loss issue is shown in
Figure 4c. Vehicle E′ and most part of vehicle F′ are invisible since they are in the package loss area
(sector-like area).

To fix those issues, the vehicle information in the past time (historical information) was used.
The first task is to detect whether there is an occlusion issue or package loss issue. We assumed that
drivers would slow down when they are approaching the queue, meaning the speed of the vehicle in
the current frame should be less than or at least equal to the speed in the last frame. This assumption
makes it possible to use the speed to estimate the location of the vehicle if the vehicle is invisible in the
current frame. The following method was applied for VEQ estimation.
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Assuming there are j vehicles traveling on the lane in frame i, the jth vehicle is the vehicle that
farthest from the stop line. The speed of the jth vehicle is recorded as V. The jth vehicle in frame i +

1 can be total occluded, partial occluded or non-occluded. The following parts illustrated the VEQ
identification method for three situations (total occluded, partial occluded and non-occluded).

In frame i + 1, if the jth vehicle is invisible (the ID of the jth vehicle in frame i could not be assigned
to any vehicle in frame i + 1), then the location of the jth vehicle can first be assumed to be the end
of the queue. The distance d between the jth vehicle and the j − 1th vehicle is directly copied from
the distance between the j − 1th vehicle and the j − 2th vehicle. The speed of the jth vehicle can be
then calculated as V′. If V′ ≤ V and V′ ≤ 5 km/h, the jth vehicle is considered as the VEQ, as shown in
Figure 4d. If V′ > V or V′ > 5 km/h, the j − 1th vehicle is considered as the VEQ, as shown in Figure 4e.
The algorithm can be illustrated as

L =


j∑
1

li, i f V′
( j+1)th

≤ V jth ∩ V′
( j+1)th

≤ 5 km/h

j−1∑
1

li, i f V′
( j+1)th

> V jth ∪ V′
( j+1)th

> 5 km/h
(3)

where
∑ j

1 li means the total length of the vehicles in frame i, V jth is the vehicle of jth vehicle.
If the jth vehicle is visible in frame i + 1, the algorithm does not know whether the vehicle is

partially occluded or non-occluded. The point of the jth vehicle that has the shortest distance to the
LiDAR is selected as a key point. The key point is considered as the front corner of the jth vehicle.
The length of the jth vehicle in frame i is used as the length of the jth vehicle in frame i + 1. If the front
part of the jth vehicle is visible, then the key point can reflect the location of the jth vehicle correctly, as
shown in Figure 4f. If the end part of the jth vehicle is visible, then the key point may be located at
the middle of the length of the vehicle. As a result, there may be a distance error (Ed) between the
estimated location and the actual location of the jth vehicle, as shown in Figure 4g. But Ed should be
less than the length of the jth vehicle. The speed of the jth vehicle in frame i + 1 can then be calculated.
The VEQ can be identified by checking the speeds of the vehicles in frame i + 1. The algorithm can be
illustrated as

L =


∑ j

1 li, i f V′
( j+1)th

≤ V jth ∩ V′
( j+1)th

≤ 5 km/h∑ j−1
1 li, i f V′

( j+1)th
> V jth ∪ V′

( j+1)th
> 5 km/h

(4)

where
∑ j

1 li means the total length of the vehicles in frame i, V jth is the vehicle of jth vehicle.
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Figure 4. Queue length detection with occlusion and package loss issues: (a) occlusion issue,
(b) occlusion issue, (c) package loss issue, (d) VEQ estimation: scenario 1, (e) VEQ estimation:
scenario 2, (f) VEQ estimation: scenario 3, (g) VEQ estimation: scenario 4.

It should be mentioned that due to the different locations of the vehicles in the LiDAR data,
the vehicles in the queue (not VEQ) may also be occluded or partially occluded due to the package loss
or occlusion issue. Those occluded vehicles do not influence the queue length detection as long as the
VEQ can be detected/predicted.

4. Evaluation

The performance of the LiDAR was evaluated with the ground-truth data extracted from the camera
and the raw LiDAR visualized in the open-source visualization software—Veloview. Two trained
graduate students were hired to manually extract the queue length from the camera installed at the
selected sites. The number of vehicles in the queue was recorded by checking the camera and the
LiDAR data in Veloview. The length of the queue was calculated by checking the location of the
reference in camera and in Google Earth. The results extracted by the two graduate students were
considered as the ground-truth data. It should be mentioned that the ground-truth data are not the
data with 100% accuracy due to the distance calculation error in Google Earth and the inevitable
human error.

Four sites with different road features in Reno, Nevada were selected for evaluation. The features
of the three sites are documented in Table 1.
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Table 1. Features of selected sites for evaluation.

Site Speed Limit Traffic Control Areas for Queue Length Evaluation

I80 work zone 64.4 km/h (40 mph) Left lane closed control One westbound unclosed lane

Virginia St @ Artemesia Way 40.2 km/h (25 mph) Signalized
T-intersection Two northbound through lanes

Baring Blvd at the front of
the Reed High School 56.3 km/h (35 mph) Yield sign for pedestrian

crossing Two westbound through lanes

Figure 5a shows the data collection location at the I80 work zone. Figure 5b shows the detected
queue length and the measured queue length at the work zone in I80-W freeway. There are two lanes
at the westbound and the left lane at the westbound was closed due to the pavement construction.
It should be mentioned that there was not stop line near the work zone and the location of the LiDAR
was not exactly located at the work zone since we did not get the permit to put LiDAR at the work zone.
In other words, a zero value of queue length in Figure 5b does not really mean that there is no queue at
the work zone, but no queue in the detection range of the LiDAR. The max queue length (among two
lanes) in every minute was recorded by the proposed method and by checking the camera installed on
top of the LiDAR. It is shown that from 13:05, the queue started to be formed. The camera can detect
about a total of 169 m distance of the queue and the LiDAR can detect about a total of 300 m distance.
The offsets between the queue lengths were manually extracted from the camera and the detected
queue length from the LiDAR was small from 13:05 to 13:12. After 13:12, the queue length was difficult
to be determined through the camera. Therefore, the green line in Figure 5b disappeared around 13:12.
After 13:17, since the queue length was longer than the detection range of the LiDAR, the queue length
could not be successfully detected. Therefore, the orange line disappeared around 13:17.

Figure 5c shows the data collection location at Virginia St @ Artemesia Way. The results of queue
length detection are illustrated in Figure 5d. A total of six-minutes data were randomly selected for
evaluation. The queue length for each lane was analyzed. It is shown that the detected queue length
and the ground-truth queue length are close to each other for lane 2. However, there are some offsets
between the detected queue length and the ground-truth queue length for lane 1 (as shown in the
red rectangle in Figure 5d. Around 13:26, the detected queue length (28 m) was significantly higher
than the ground-truth queue length (22 m). The longer detected queue length was caused by the
definition of the end of the queue that the vehicle with the speed less than 5 km/h as the VEQ. But for
ground-truth data, the queue length was identified by the graduate students based on their own
judgment. Therefore, there were some offsets between the detected queue length and the ground-truth
data. Figure 5e shows the data collection location at Baring Blvd. There is a pedestrian middle crossing
at this site. Since there are not stop lines at this location, it is difficult to determine the start point of
the queue. Therefore, we used the number of vehicles in the queue to represent the queue length.
The results of the number of vehicles detection for each lane are illustrated in Figure 5f. It is shown
that the detected number of vehicles and the ground-truth data matched very well though some errors
existed in the detected results. There are two types of errors for detecting the number of vehicles.
The first type of error can be seen at around 11:07 in Figure 5f. The detected number of vehicles in the
queue was higher than the ground-truth number of vehicles in the queue in lane 2. By checking the
camera data, it was found that the vehicle at the end of the queue was a commercial truck and it was
chopped into two parts due to occlusion or package loss issue. As a result, the clustering algorithm
clustered the truck as two vehicles. The second type of error can be seen at around 11:08 in Figure 5f.
The detected number of vehicles in the queue was lower than the ground-truth number of vehicles in
the queue in lane 1. The offsets were also caused by the different definitions of the end of the queue by
the proposed algorithm and the graduate students.

Table 2 summarizes the distribution of the cumulative errors of the detected queue length and
number of vehicles in the queue at the three sites. It is shown that 88.3% of calculated records had
an error of less than 0.5 m in the queue length when compared to the ground-truth data and 96.2%
of calculated records had an error of less than 3.0 m in the queue length when compared to the
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ground-truth data. As for the number of vehicles in the queue, 96.2% of the number of calculated
vehicles in the queue was exactly matched to the human-counted records and 98.5% of calculated
records had an offset within 1-vehicle count from the ground truth data. The maximum offset between
the calculated records and the ground truth data were no more than 4 vehicles. The results indicated
that the proposed method could achieve the relatively high accuracy for queue length detection.
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Table 2. Cumulative errors of queue length detection.

Queue Length Number of Vehicles in the Queue

Error Percentage (%) Error Percentage (%)

0–0.5 m 88.3 0 vehicle 96.2
0.5–1.0 m 89.8 1 vehicle 98.5
1.0–1.5 m 91.3 2 vehicles 99.1
1.5–2.0 m 94.5 3 vehicles 99.8
2.0–3.0 m 96.2 4 vehicles 100

5. Conclusions and Discussion

This paper presented a novel method for queue length detection using the roadside LiDAR data.
Unlike the estimation methods used in most existing studies, the queue length can directly be detected
with the proposed method. This proposed method can work for different road scenarios. The testing
results showed that the proposed method can detect the queue length with high accuracy under
different scenarios. The strategy of the proposed method is simple but effective in practice. With this
proposed method, the accurate queue length can be provided in real-time for different applications.
Therefore, the method is of great value in signal coordination especially in solving the initial queue
estimation. Since the initial queue is unpredictable between cycle by cycle, this real-time measurement
is proper to handle it. By capture the queue length, the proper offset can be calculated for each
intersection along a corridor under each cycle to timely release the initial queue before the platoon
arrives. This can be very helpful in adaptive signal control since the system is ready for real-time
adjustment. Even for the traditional actuated-coordinated signals, the accurate trend of the initial
queue change would help to decide the offset settings. On the other hand, it also directly supports
the connected vehicle (which will avoid the queue blockage to the maximum extent) in the future.
Vehicle to Vehicle or Vehicle to Infrastructure facilities can get the accurate queue information and in
turn make adjustments from both vehicle approach and infrastructure approach with the least time
loss in the process. The prospect of the method is bright. Queue length is also an important measure of
effectiveness in the operational analysis. However, it is usually hard to estimate or measure; the problem
has puzzled traffic engineers for a long time. The proposed method revolutionary decreases the
measured time with the enhancement of the accuracy, which benefits a lot to operational analysis.

This paper did not compare the proposed queue length detection method with the existing
queue length estimation methods since the data from the other sensors (such as loop detectors and
signal timing) were not available. The future studies should also consider selecting one signalized
intersection or a metered ramp to compare the proposed queue length detection method with other
methods. For one LiDAR sensor, the longest detectable length of the queue is subject to the detection
range of the LiDAR. If the queue length is out of the detection range, then another LiDAR to extend
the detection range is needed. The ground-truth data were measured by two graduate students by
checking the camera, Veloview and Google Earth. It is inevitable that errors exist in the ground-truth
data in this paper. How to find a more accurate evaluation method for queue length detection is
another research topic for future studies. Another limitation is that this paper used many assumptions
(e.g., vehicle length is shorter than 6 m, vehicles with speed <5 km/h is considered in the queue),
those assumptions can impact the accuracy of queue length detection. Future studies should consider
to further improve the accuracy of queue length detection by reducing the assumptions of the proposed
method. The performance of LiDAR can be reduced under adverse weather conditions, such as foggy,
rainy, snowy weather. The proposed queue length detection highly relied on the accuracy of LiDAR
detection. Therefore, future studies should also test the performance of the proposed queue length
detection method under severe weather conditions.
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